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ABSTRACT
Clustering, the partitioning of objects with respect to a sim-
ilarity measure, has been extensively studied as a global op-
timization problem. We investigate clustering from a game
theoretic approach, and consider the class of hedonic clus-
tering games. Here, a self organized clustering is obtained
via decisions made by independent players, corresponding
to the elements clustered. Being a hedonic setting, the util-
ity of each player is determined by the identity of the other
members of her cluster. This class of games seems to be
quite robust, as it fits with rather different, yet commonly
used, clustering criteria. Specifically, we investigate hedonic
clustering games in two different models: fixed clustering,
which subdivides into k-median and k-center, and corre-
lation clustering. We provide a thorough and non-trivial
analysis of these games, characterizing Nash equilibria, and
proving upper and lower bounds on the price of anarchy and
price of stability. For fixed clustering we focus on the ex-
istence of a Nash equilibrium, as it is a rather non-trivial
issue in this setting. We study it both for general metrics
and special cases, such as line and tree metrics. In the cor-
relation clustering model, we study both minimization and
maximization variants, and provide almost tight bounds on
both price of anarchy and price of stability.
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1. INTRODUCTION
Clustering is the partitioning of objects or elements with

respect to a similarity measure. The greater is the similar-
ity of elements belonging to a cluster, or the distance be-
tween elements belonging to different clusters, the “better”
is the clustering. Clustering has been extensively treated as
a global optimization problem, employing a variety of opti-
mization methods. We adopt here a novel game theoretic
approach, and consider a setting in which a self organized
clustering is obtained from decisions taken by independent
players. We assume that the players correspond to the el-
ements clustered, and their goal is to maximize their own
utility functions. From the perspective of a single player,
the quality, or the utility of a clustering, depends on the
player’s similarity to elements in her own cluster and per-
haps on dissimilarity to elements in other clusters.

Our clustering games belong to the well known class of
hedonic games, introduced in the Economics literature as a
model of coalition formation. In a hedonic game, the utility
of a player is solely determined by the identity of the players
belonging to her coalition, and is independent of the parti-
tion of the other players into coalitions. Hedonic games were
first introduced and analyzed by [11] in the context of co-
operative games, and were motivated by situations in which
individuals carry out joint activities as coalitions. Examples
of such situations are individuals organizing themselves in
groups for consumption or production purposes, or individ-
uals relying upon local communities for the provisioning of
public goods. Thus, hedonic games can be used to model
settings arising in a wide variety of social, economic, and po-
litical problems, ranging from communication and trade to
legislative voting. See [7] for a discussion of several real-life
situations fitting the hedonic model. The notion of stability
in hedonic games has been investigated both from coopera-
tive, as well as non-cooperative, aspects [3, 7, 5]. The non-
cooperative framework makes sense in environments lacking
a social planner, or if the cost of coordinating movements
is high. We note that most work on hedonic games has
mainly focused on the existence of stable coalition parti-
tions, whether core stable or individually stable, and on the
complexity of finding such outcomes.

We investigate non-cooperative hedonic clustering games,
in which elements are independent selfish players. Each
player joins a group maximizing her utility, and the result-
ing clustering is the outcome of the choices of all players.
We present a case study of two different well-known cluster-
ing models, with commonly used utility functions. The first
model is fixed clustering, in which the number of clusters is



fixed, and each cluster has a centroid whose position is de-
termined by the identity of the cluster members. A player’s
utility depends on the location of the centroid of her clus-
ter. The second model is correlation clustering, in which a
player’s utility depends on her similarity to other elements
in her cluster as well as on her dissimilarity to elements in
other clusters. In general, various settings in which players
form clusters, and then each cluster provides a public good,
or a service from a set of available alternatives, is captured
by hedonic clustering games. Following are two motivating
examples coming from different application areas.

In an ad-hoc (or sensor) network there is a large number
of autonomous devices which are spread over a geographic
area and wish to communicate with each other. In or-
der to establish communication, devices invest transmission
power which depends on the physical distance between them.
Power is a critical resource for battery-limited devices, and
thus the goal of each device is to minimize its transmission
power and save on battery time. Fixed clustering is a proven
method for enhancing energy efficiency and lifetime of large
ad-hoc networks, and has been extensively studied in this
context [1, 2]. Proposed clustering protocols organize the
devices in data aggregation clusters to reduce network traf-
fic. Each cluster has a center that receives data from other
devices in the cluster, and sends it beyond the cluster limits,
possibly after aggregating the received data and reducing its
volume. A device will then join a cluster having the closest
center to minimize the power needed for transmission, thus
leading to a game-theoretic setting. We note that clustering
in ad-hoc networks has been studied from a game-theoretic
perspective in [19], yet their game definition is completely
different from ours.

In online web advertising, publishers wish to join adver-
tising services. Publishers are partitioned into clusters, and
each cluster provides a different type of advertising service
to its members. The type of service a cluster offers is de-
rived from the attributes of its members, where possible at-
tributes are, e.g., fields of specialization, geographical area,
organization size, types of product and annual budget. Pub-
lishers join or leave a cluster depending on the advertising
service that the cluster offers and on the attributes of its
members. For example, a new and relatively small business
would prefer not to be coupled with a well-known large com-
pany specializing in a similar field. Thus, the utility of each
player (publisher) depends on her similarity to the cluster,
i.e., how close are her advertising needs to the service pro-
vided by the cluster, and on her dissimilarity to players in
other clusters (in the latter case, small and large businesses
would be considered dissimilar). This is precisely the type
of utility captured by correlation clustering.

Despite extensive work on clustering, not much work has
been done from a game theoretic perspective, and we believe
that this work contributes in that direction. We emphasize
that the focus of our paper is not on a specific setting, but
rather on the study of the general game theoretic framework
in the context of hedonic clustering games.

1.1 Our Model
Our clustering problems are defined on a set of n points

lying in a metric space with a distance function d(·, ·). The
points correspond to selfish, non-cooperative, players (or
users) moving between clusters at will. Players within a
cluster are provided a service depending on the set of play-

ers belonging to it. A player achieves a utility from being
a member of a cluster, and will naturally join the one max-
imizing her utility (or minimizing her cost). The notion of
social welfare (or social cost) corresponds to the overall util-
ity achieved by the system (or overall cost). The strategies
of a player in a clustering game correspond to the set of clus-
ters to which she can belong. Every choice of strategies by
the players partitions them into clusters, and is called a clus-
tering configuration. A Nash equilibrium1 of the clustering
game corresponds to a clustering configuration in which no
user can unilaterally increase her utility (reduce her cost) by
changing clusters. We investigate the clustering game in two
different models: fixed clustering and correlation clustering.

Fixed Clustering.
In a fixed clustering game, the number of clusters is known

beforehand and is denoted by k. Each cluster C has a
centroid, c(C), defined to be the element minimizing the
cost of the cluster. We consider two well-known defini-
tions in the clustering literature, known as k-median and
k-center. In the k-median clustering problem, the cost of a
cluster is defined as the sum of distances between all mem-
bers of the cluster and its centroid. The centroid is thus
defined as c(C) = arg minu∈C

{ ∑
v∈C d(u, v)

}
. In the k-

center clustering problem, the cost of a cluster is defined
by its radius, i.e., the maximum distance between an el-
ement in the cluster and its center. Hence, the centroid

is c(C) = arg minu∈C

{
maxv∈C d(u, v)

}
. We note that in

both models the choice of a centroid might not be unique,
and therefore a tie-breaking rule is needed. We elaborate on
this issue later on.

In both models, the strategy space of a player is defined
by the k clusters. Each player v chooses the cluster C that
minimizes her distance to the centroid c(C+v), where C+v

denotes the cluster C with the addition of player v. Note
that following v’s addition to C, the centroid of C might
change, i.e., it might be that c(C) 6= c(C+v). For k-median,
the social cost is defined to be the sum of costs of all the
clusters, whereas for k-center the social cost is defined to be
the maximum cost of a cluster.

In fixed clustering, the service offered by a cluster is repre-
sented by its centroid. The example of ad-hoc networks fits
this model, since the centroid is the node to which trans-
missions within a cluster are sent, and transmission costs
depend on the distances to the centroid.

Correlation Clustering.
In settings where only the relationship among objects is

known, correlation clustering is a natural approach. Unlike
most clustering formulations, specifying the number of clus-
ters as a separate parameter is not necessary. We assume
that the similarity metric is captured by a distance metric
d(·, ·) ∈ [0, 1]. If d(u, v) ≈ 0, then u and v are very similar,
and if d(u, v) = 1, then they are highly distinctive, unre-
lated elements. Each element v has a weight wv denoting
its “measure of influence” on other elements. Elements wish
to be clustered with similar elements of high weight, and to
be partitioned away from unrelated elements of high weight.
Since the number of clusters is not fixed, the possible strate-

1We consider in this paper only pure Nash equilibria.



gies of a player are either to join an existing cluster, or to
create a new cluster and become its sole member.

Given an element v, denote by Cv its cluster in a given
configuration. Typically, two variants are studied in corre-
lation clustering. In the minimization variant, the objective
of each element v is to minimize its cost

∑
u∈Cv

wu ·d(u, v)+∑
u6∈Cv

wu · (1 − d(u, v)), i.e., an element pays for being in
a cluster with unrelated nodes of high weight, and for being
partitioned away from similar elements of high weight. The
social cost is defined as the sum of the costs paid by all el-
ements. In the maximization variant, the objective of each
node is to maximize its utility

∑
u∈Cv

wu · (1 − d(u, v)) +∑
u6∈Cv

wu ·d(u, v), i.e., an element achieves utility from be-
ing in a cluster with similar nodes of high weight and from
being partitioned away from unrelated nodes of high weight.
Again, the social welfare is the sum of the utilities achieved
by all elements.

Correlation clustering essentially models scenarios in which
the objective is to either minimize the difference or maximize
the similarity among objects within clusters. This type of
clustering depends on the relationship among elements. The
advertising example fits this model if distances between ob-
jects represent willingness to be clients of the same adver-
tising service, and weights represent market influence.

1.2 Our Contribution
We provide a thorough and non-trivial analysis of hedonic

clustering games under several models, characterizing Nash
equilibria, and proving upper and lower bounds on price of
anarchy and price of stability2. Our study covers a broad
subclass of hedonic games which seems to lack previous in-
vestigation from a game theoretic perspective. This subclass
captures clustering as a self organizing process governed by
game theoretic considerations. We note that it is important
to study clustering games in several models, since it is a
diverse subject, and cannot be captured by a single frame-
work [6]. Our models seem to have quite a robust definition,
as they fit well with rather different, yet commonly used,
clustering criteria.

The first clustering model we consider is fixed clustering.
For a general metric, we show that Nash equilibrium does
not necessarily exist. Clearly, imposing high enough penal-
ties on players for changing the location of a centroid (when
moving to a different cluster) would guarantee the existence
of Nash equilibrium for both k-median and k-center models.
We prove that setting the penalty to be equal to the distance
traveled by the centroid suffices. This choice of penalty is
very natural, and can be thought of as a fee imposed by a
cluster on nodes joining it, in order to cover the incurred ex-
penses. This choice of penalty also resembles the way costs
are determined by the VCG mechanism [16].

Since Nash equilibrium does not necessarily exist in gen-
eral, we study the fixed clustering game in specific metrics,
i.e., tree and line metrics. The strict definition of hedo-
nic games requires that the members of a cluster uniquely
determine the location of its centroid. To achieve that one
needs to specify some (possibly arbitrary) static tie-breaking
rules. However, there exist instances for which no Nash equi-

2Price of stability is defined as the ratio between the social
value of the best Nash equilibrium and the social optimal so-
lution, while price of anarchy is defined as the ratio between
the social value of the worst Nash equilibrium and the social
optimal solution.

librium exists under any choice of a static tie-breaking rule,
even for line metrics. We circumvent this issue by using tie-
breaking rules that are history dependent; when the choice
of a centroid is not unique, it depends on the previous states
of the system.3 In this respect, our work on fixed cluster-
ing deviates from the class of hedonic games. However, we
emphasize that even if fixed clustering games were strictly
hedonic, our results would not have followed from existing
literature.

The proof of existence of Nash equilibrium in a tree metric
for the k-median model is rather involved and non-trivial.
It is based on a characterization of a centroid, definition of
a potential function, and a judiciously chosen schedule of
moves of players resulting in equilibrium. We note that for
the k-center model, the proof of existence of Nash equilib-
rium under tree metrics requires allowing centroids to be
located in an arbitrary location between the two end points
of an edge. We believe that this relaxation is not necessary
(as is the case for line metric), but we have not managed
to prove that. For both the k-median and k-center models,
we show that the price of stability is 1, while the price of
anarchy is unbounded.

Going back to the example of ad-hoc networks, from a
designer’s perspective, our work implies that simple greedy-
like algorithms are sufficient for reaching Nash equilibrium,
and thus the devices do not need to run more sophisticated
protocols.

The second clustering model we consider is correlation
clustering, for which we obtain results for both minimization
and maximization variants. This model is closely related
to additively-separable hedonic games [13], and techniques
used for this class of games can be extended to show that
Nash equilibria always exist for correlation clustering games,
but finding them is PLS-complete.

Our main results for correlation clustering games are lower
and upper bounds on both the price of anarchy and price
of stability. The bounds are proved by characterizing the
distance between nodes belonging to the same cluster vs.
the distance between nodes belonging to different clusters.
The specific bounds are:

• In the special case of equal node weight, the price of
stability is 1 for both the minimization and maximiza-
tion variants. For arbitrary weights, the price of sta-
bility is strictly larger than 1.

• For the minimization variant, an upper bound on the
price of anarchy is O(n2) and the corresponding lower
bound is n − 1. For the special case of equal nodes
weight, the lower bound still holds, and there is an
improved upper bound of n−1 on the price of anarchy.

• For the maximization variant, the price of anarchy is
Θ(
√

n). This bound holds even if all nodes have equal
weight and the metric is a tree metric. In case of a line
metric, the price of anarchy is Θ(n1/3), even for equal
nodes weight.

For both the fixed clustering and correlation clustering
models, an intriguing question is what kind of mechanisms
can be used to reduce the price of anarchy. We make a first

3The history of the system is one of the parameters for our
tie-breaking rules. For a one-shot game, these rules reduce
to static tie-breaking rules.



step in this direction by showing that the price of anarchy
of the maximization variant of correlation clustering can be
bounded by k (for k ≥ 2) by limiting the game to k clusters.
Moreover, if all node weights are equal, this constraint can
be removed after the game reaches a Nash equilibrium, and
the price of anarchy still remains at most k.

Previous work.
Clustering is a vast area of research with abundant re-

sults, and therefore we mention only a few, directly related,
results. Fixed clustering is the classic approach to clus-
tering data and the goal of the optimization problem is to
find a partitioning of the nodes to k clusters, such that the
cost is minimized. The k-center problem was considered by
Gonzalez [14], who gave the first 2-approximation algorithm
(see also the 2-approximation algorithm of [17].) For the
k-median problem, the first constant factor algorithm was
given by [8]. The approximation factor has since been im-
proved in a sequence of papers (see, e.g., [23]). We note that
in case of a tree metric, k-median can be solved optimally
in polynomial time [22].

Correlation clustering was first defined by [4]. They con-
sidered the version where the edges of a complete graph are
labelled as either“+”(similar) or“-” (different), and the goal
is to find a partition of the nodes into clusters that agrees as
much as possible with the edge labels. They considered both
maximizing agreements and minimizing disagreements, ob-
taining a constant factor approximation for the former and
a PTAS for the latter. These results were generalized for
real-valued edge weights; [10, 12, 9] obtained a logarithmic
approximation algorithm for the minimization version and
[9] obtained a constant (greater than 1/2) factor approxima-
tion for the maximization version.

From game-theoretic perspectives, in addition to being
a hedonic game, our correlation clustering game falls into a
class known as polymatrix games, introduced by Yanovskaya
[24]. Few other games that fall into both classes were also
considered. We mention only those that are most closely
related to our model. Hoefer [18] considered a game called
“MaxAgree”which is equivalent to the maximization variant
of our correlation clustering game with equal node weights
and a limit ` on the number of possible clusters. For this
game [18] shows that best response dynamics converge in
polynomial time to Nash equilibrium (which does not seem
likely in our model), and gives bounds on the price of an-
archy. Another example is the game version of Max-Cut,
considered by multiple works, e.g., [18, 15], and, in a sense,
is the inverse of our model.

A different game theoretic representation of clustering is
given by [20, 21], however, their approach is completely dif-
ferent from ours.

2. FIXED CLUSTERING
In this section we consider the fixed clustering game in

which the number of clusters is known beforehand, and is
denoted by k. We investigate both the k-median and k-
center variants of this model. In both variants, given the set
of nodes in a cluster, the choice of a centroid may not be
unique. As already mentioned, in order to fit perfectly into
the hedonic model, a static tie-breaking rule for choosing a
unique centroid is required. However, such tie breaking rules
may have a negative impact on our results, as demonstrated
by Theorem 2.1.

Theorem 2.1. With (static) tie breaking rules, there may
not exist Nash equilibrium for both the k-median and k-
center variants, even for line metrics with three nodes.

We circumvent this issue by analyzing game dynamics that
allow tie-breaking rules which are history dependent. Ini-
tially, an arbitrary static tie breaking rule R is used. (Rule
R also applies to a one shot game.) During the dynamics,
whenever a player performs a move and changes her strategy,
each centroid remains at the same node if it is still a valid
location for a centroid; otherwise, the static tie breaking rule
R is used to relocate it. The use of a history dependent rule
implies that the cost observed by a player does not solely de-
pend on the identity of the other players in her cluster, but
also on the history of the game. We can thus consider the
fixed clustering model as a hedonic game with an additional
attribute.

Due to space limitations, most proofs of this section are
omitted.

2.1 The k-Median Model
In the k-median model, the cost of a cluster C is defined as

the sum of the distances between all members of the cluster
and its centroid, and the centroid c(C) is defined as the
node minimizing the cost of the cluster, that is, c(C) =

minu∈C

{ ∑
v∈C d(u, v)

}
. We denote by D(u, C) the sum

of distances between u and the other nodes in C. Thus,
c(C) = minu∈C D(u, C). For ease of notation, we denote by
D(C) the cost of a cluster C, that is, D(C) = D(c(C), C).

The cost of a node v in the k-median clustering game
is defined as its distance from the centroid of its cluster,
d(v, c(Cv)). A clustering configuration of the k-median clus-
tering game is a Nash equilibrium if no player can reduce
its cost by choosing a different cluster, assuming the other
players stay in their cluster. We assume a node v changes
its strategy from cluster C1 to C2 only in case it strictly
decreases its distance to the center, that is d(v, c(C1)) >
d(v, c(C+v

2 )). As mentioned, we assume that following a
move performed by a player, the centroid of a cluster will
not change its location unless forced (i.e., only in case the
sum of distances of the points from the new location of the
centroid is strictly lower than from its previous location).

We first consider the general metric case, and prove that
Nash equilibrium does not necessarily exist. Moreover, we
show that this is the case even if centroids are allowed to
be located at any location along edges, rather than only
at a node of their own cluster. Then, we notice that by
imposing a high enough penalty on a node whose move to a
cluster changes the location of its centroid, Nash equilibrium
is guaranteed to exist. Moreover, we show that it is enough
to set the penalty to be equal to the distance traveled by
the centroid. Motivated by these results, we study the game
in line and tree metrics, and show that in these cases Nash
equilibrium always exists, with no further assumptions such
as penalties. Note that the existence of Nash equilibrium in
the line case is implied by our result for the tree case. Still,
we consider line metrics separately, since we can show that
best response dynamics converge to equilibrium.



Figure 1: Graph with no Nash equilibrium (assuming

two clusters).

2.1.1 The General Metric Case
For a general metric, there is no guarantee that a Nash

equilibrium exists. Figure 1 displays a graph representing
a metric having no Nash equilibria, assuming there are two
clusters. The numbers on the edges of the graph represent
the distances. The proof that no Nash equilibrium exists for
this graph is done via a case analysis, showing that any se-
lection of two nodes to be the centroids of the clusters results
in a configuration where either a cluster has a non optimal
centroid choice, or there is a node wishing to deviate.

A natural way to try to guarantee the existence of a Nash
equilibrium is by allowing the centroid of a cluster to be lo-
cated at any location along an edge of the graph. Formally,
every edge (u, v) and λ ∈ [0, 1] represents a possible location
for a centroid. The distance of this centroid from a node w
is min{d(u, w) + λ · d(u, v), d(v, w) + (1− λ) · d(u, v)}. The
centroid of the cluster is placed at the location minimizing
the sum of distances from the nodes of the cluster. Unfor-
tunately, this generalization fails to guarantee the existence
of a Nash equilibrium. The graph in Figure 1 represents
a counter example for this case as well. In order to estab-
lish the counter example based on this graph, we use the
notation of weak Nash equilibria.

Our original definition of Nash equilibrium states that a
centroid will not change location unless forced. If the cen-
troid is forced to change location, it might have multiple
locations to which it can move. The choice among these
possible new locations is based on some arbitrary tie break-
ing rule. On the other hand, a configuration is said to be
in weak Nash equilibrium if there is no node u wishing to
deviate to any cluster C 6= Cu, given that following u’s de-
viation, C’s centroid will move to the location farthest away
from u among its possible locations. In other words, if there
are multiple possible locations for the centroid of C after
u’s move, then the centroid will move to the worst location
from the point of view of u. Moreover, this move occurs
even if the original location of the centroid is still a possible
location for it.

Clearly, every Nash equilibrium is also a weak Nash equi-
librium, though the reverse is not necessarily true. We can
show that the graph in Figure 1 allows no weak Nash equi-
libria with two clusters; and therefore, it also does not allow
any Nash equilibria (assuming two clusters). The proof is
established by case analysis, and is based on Theorem 2.2,
where we show that it is sufficient to consider only half inte-
gral locations on edges as optional placements for centroids.

Theorem 2.2. An instance of the k-median clustering game
with integral edge distances has a weak Nash equilibrium if
and only if it has a weak Nash equilibrium configuration in
which centroids are placed in half integral locations on edges.

In order to guarantee the existence of Nash equilibrium,
we add a rule penalizing a node whose move to a cluster C
changes the location of the centroid of C. That is, the cost
of a node u performing an improvement move will consist of
two values:

• The distance from the updated centroid of the new
cluster, d(u, c(C+u)).

• A cost equal to the distance between the original and
new centroids of C, d(c(C), c(C+u)).

Intuitively, one can think of this choice of a penalty as a fee
imposed by a cluster on nodes joining it, in order to cover
the incurred expenses. Note that the total cost of the nodes
in the cluster deserted by u can only decrease.

Lemma 2.3. Under the above penalties, a node u will only
deviate from cluster C1 to cluster C2 if its distance from
the original location of the centroid c(C2) is shorter than its
distance from c(C1).

Lemma 2.3 implies that the above penalizing rule prevents
a node from deviating unless the deviation results in an im-
proved social value. Since the social value cannot improve
forever, the game must converge to Nash equilibrium. The
following theorem formalizes this argument.

Theorem 2.4. Under the above penalties, every best re-
sponse move strictly decreases the social cost. Hence, there
always exists Nash equilibrium, and it is guaranteed to be
reached by best response dynamics.

Corollary 2.5. Under the above penalties, the price of
stability is 1.

Proof. By Theorem 2.4, the social cost is guaranteed to
decrease with every best response move. Thus, the optimal
solution must be a Nash equilibrium.

Note that Nash equilibrium in the setting without penalties
is also valid with penalties (as penalties can only decrease
the benefit of a move). The price of anarchy for this case is
unbounded, as shown next.

Theorem 2.6. The price of anarchy of the k-median clus-
tering game is unbounded, even for a line metric.

Proof. Consider a line with three nodes at locations 0,
1 and M , for some large M , and assume k = 2. There are
two clusters {0} and {1, M}, and the centroid of the second
cluster is the node 1. Clearly this is a Nash equilibrium,
since the only node which is not a centroid will gain nothing
by deviating. However, the cost of this equilibrium is M .
On the other hand, the optimal solution has the following
two clusters: {0, 1} and {M}, yielding a cost of 1. The price
of anarchy of this instance is thus M .

2.1.2 The Line Metric Case
We prove that if players are nodes on a line, Nash equilib-

rium always exists (without penalties, and allowing a cen-
troid to be placed only at a node). We begin by character-
izing the centroid of a cluster on a line.



Lemma 2.7. The centroid of a cluster on a line is a me-
dian4 of all nodes in the cluster.

In case the number of nodes in a cluster is odd, there exists
a single median node. Thus, this node is the single optional
centroid node, and divides the other nodes in the cluster to
right and left sets where each set contains (m− 1)/2 nodes.
In case the number of nodes in a cluster is even, there are two
optional centroid nodes. These are two consecutive nodes on
the line, each dividing the nodes to right and left sets such
that one of the sets contains dm−1

2
e nodes and the other set

contains bm−1
2
c nodes.

Given a clustering configuration F , we define a potential
function Φ, and show that it strictly decreases with each
strategy change performed by a player. We assume a player
changes her strategy only if it strictly decreases her distance
to the center. The potential function is equal to the social
cost function, that is

Φ(F) =

k∑
i=1

∑
v∈Ci

d(v, c(Ci)) . (1)

The following lemma is proved using the characterization
of the centroid given by Lemma 2.7.

Lemma 2.8. The potential function Φ strictly decreases
during the clustering game’s natural dynamics.

As the strategy space of all nodes is finite, the potential
function will decrease following each move performed by a
node until reaching a local (or global) minimum, correspond-
ing to Nash equilibrium.

Corollary 2.9. Nash equilibrium always exists for the
k-median clustering game on a line.

2.1.3 The Tree Metric Case
We assume here that the distances are defined by a tree

metric, and the players are exactly the nodes of the tree.
We prove that in this case, a Nash equilibrium always exists.
First, we characterize the centroid node of a cluster for the
tree case. To this end we define the median node of a tree
as follows.

Definition 2.10. Given a tree T with |V | nodes, a node
v∗ ∈ T is called a median node if its removal partitions T

into connected components of size at most
⌈
|V |−1

2

⌉
each.

The following lemma is well known.

Lemma 2.11. There are at most 2 median nodes in a tree.

In order to define the relation between a median and the
centroid of a cluster, we use the next definition.

Definition 2.12. A cluster C has the closure property if
all nodes on each path between two nodes of C belong to C
as well.

Lemma 2.13. The centroid of a cluster with the closure
property in a tree is a median node of the cluster.

4A median node of a cluster is a cluster node for which the
number of cluster nodes to its left and to its right differ by
at most 1.

In order to prove that the k-median clustering game al-
ways has a Nash equilibrium, we use the potential function
of Equation (1), and describe a schedule that converges to
equilibrium. Unlike the line metric case, we cannot simply
use the potential function for each improvement move per-
formed by a node, since the closure property can easily be
violated by a best response move. Instead, we need to define
a set of moves that keep the closure property, allowing us to
use the median characterization of centroids, and that are
guaranteed to strictly decrease the potential function.

We describe the convergence schedule. It consists of itera-
tions, where each iteration starts and ends with a clustering
configuration in which all clusters have the closure property.
We call such a configuration a closed configuration. Starting
from a closed configuration, consider a node v in cluster C1

wishing to move to cluster C2. All nodes on the path be-
tween v and c(C2), denoted by δ(v, c(C2)), are either already
in C2 or wish to move to C2 as well (if there are other clus-
ters with equal distance to centroid, we choose C2). This fol-
lows since nodes in δ(v, c(C2)) are closer than v is to c(C+v

2 ).
Note that the center of C2 will be in the same way given that
any node of δ(v, c(C2)) moves to C2. In addition, if there
is a node w ∈ δ(v, c(C2)) having a better cluster Cm such
that d(w, c(C+w

m )) < d(w, c(C+w
2 )), then the same holds for

v as well since: d(v, c(C+v
m )) ≤ d(w, c(C+w

m )) + d(w, v) <
d(w, c(C+w

2 )) + d(w, v) = d(v, C+v
2 ).

Thus, when starting a new iteration of the schedule, we
choose a node u adjacent to C2, and make it perform a
best response move from C1 to C2 (we call this move “first
best response”). Following this move, there are two options.
In case C−u

1 remains connected, then it still has the clo-
sure property, and we can select a new first best response
(assuming we did not reach Nash equilibrium). Otherwise,
C−u

1 contains multiple connected components, and there is
a component C′1 containing the centroid of C−u

1 . Let C′′1
denote C−u

1 − C′1, i.e., C′′1 contains all nodes of C1 except
for the node that made the first best response (u) and the
nodes of the connected component containing C−u

1 ’s cen-
troid (that is, C′1). Next, we move all nodes of C′′1 to cluster
C2, and finish the iteration. Note that beside of the “first
best response” move, all other moves in the iteration need
not be best response moves.

Both C′1 and C2 ∪ {u} ∪ C′′1 are closed clusters. No other
cluster is affected by the iteration, hence, by the end of the
iteration, we get back to a closed configuration. We are
now ready to use our potential function, and show that it
strictly decreases with each iteration of the above schedule.
We conceptually divide the iteration into three steps, and
show that none of them can increase the potential function,
and at least one of them strictly decreases it. The three
steps are as follows.

1. The first best response move made by u, including the
possible relocation of the clusters’ centroids.

2. The move of the nodes of C′′1 to C2, assuming the
clusters’ centroids are not allowed to move.

3. A possible move of the clusters’ centroids to new loca-
tions (following the move of the nodes of C′′1 ).

Lemma 2.14. In step 1 of the iteration, the potential func-
tion P strictly decreases.

Proof. We consider a node u moving from C1 to C2, and
show that the sum of distances from all nodes in C−u

1 and



C+u
2 to their respective centers decreases. This is clearly

true for u (the distance strictly decreases since u had an in-
centive to move) as well as for C−u

1 (as the centroid of C−u
1

is relocated in order to minimize its total distance from the
cluster’s nodes). As for C2, observe that it has the closure
property by the above schedule, hence Lemma 2.13 applies.
We consider two cases. Let Q1, . . . , Qm denote the con-
nected components in C2 formed after the removal of c(C2).

1. Node u joins a connected component Qj of size at most⌈
|C2|

2

⌉
−1 in C2. Then, after it joins C2, c(C2) remains

a median node of C+u
2 and thus the centroid remains

at the same location.

2. Node u joins a connected component Qj of size
⌈
|C2|

2

⌉

in C2. This can occur if |C2| is even, and then
⌈
|C2|

2

⌉
=⌈

|C2|−1
2

⌉
and Qj is a maximal connected component.

In this case, there are two optional centroids (me-
dian nodes) in C2, that is c(C2) and vin(Qj) (the en-
try point to the connected component Qj). Clearly,
D(c(C2), C2) = D(vin(Qj), C2). Now, after v joins
Qj , the centroid is forced to move to vin(Qj), but the
total distance of the vertices in C2 from their centroid
remains unchanged.

Lemma 2.15. In steps 2 and 3 of the iteration, the poten-
tial function P cannot increase.

Corollary 2.16. The potential function P strictly de-
creases in each iteration of the above schedule.

As the strategy space of all players is finite, the potential
function decreases following each iteration performed by the
schedule, until reaching a local minimum (or global), corre-
sponding to Nash equilibrium.

Corollary 2.17. Nash equilibrium always exists for the
k-median clustering game in a tree.

We consider only dynamics of closed configurations. The
next lemma states that it is not restrictive.

Lemma 2.18. For any configuration of the clustering game
on a tree, there always exists a closed configuration which is
at least as good with respect to the social cost.

As the potential function of the game is equal to the objec-
tive function, an optimal k-clustering closed configuration
for the k-median model is also in Nash equilibrium (no move
can further decrease the global minimum point of the objec-
tive function). Moreover, following Lemma 2.18, the cost
of such a configuration is equal to the cost of an optimal
configuration. We thus get the following corollary.

Corollary 2.19. The price of stability of the clustering
game in a tree is 1.

Note that since a constant-approximation for the k-median
problem (or even an optimal one for tree metrics) can be
computed in polynomial time, a Nash equilibrium with a
price of anarchy O(1) can be guaranteed by setting the initial
configuration to be such an approximate solution, converting
it to a closed configuration, and then scheduling the moves as
described above until reaching equilibrium. Since the cost
of the clustering configuration strictly decreases along the
process, it will reach Nash equilibrium with price of anarchy
O(1).

2.2 The k-Center Model
In the k-center model, the cost of a cluster C is defined

by its radius, which is the maximal distance between its
centroid and a node of the cluster. The centroid c(C) is de-
fined as the node minimizing the cost of the cluster, that is,

c(C) = minu∈C

{
maxv∈C d(u, v)

}
. The cost of a node v in

the k-center clustering game is defined as its distance from
the centroid of its cluster, d(v, c(Cv)). A clustering configu-
ration of the k-center clustering game is in Nash equilibrium
if no user can reduce its cost by choosing a different cluster,
assuming the other users stay in their individual clusters.

We first consider the case of a line metric, and prove that
Nash equilibrium always exists. Then, we turn to tree met-
rics, and guarantee the existence of Nash equilibrium in case
centroids can be placed anywhere along edges. Finally, we
consider general metrics, and prove that Nash equilibrium
does not necessarily exist, even if centroids are allowed to
be placed at any location along edges. We note that by
imposing a high enough penalty on a node whose move af-
fects the location of the target cluster’s centroid, existence
of Nash equilibrium is guaranteed. We further show that
setting the penalty to be equal to the distance traveled by
the centroid is enough. As for the price of anarchy, we show
it is unbounded in all settings considered.

2.2.1 The Line and Tree Metric Cases

Theorem 2.20. Nash equilibrium always exists for the k-
center clustering game on a line.

We suspect that Nash equilibrium also always exists in
tree metrics, and best response dynamics are guaranteed to
reach it. However, we manage to prove this only in case the
centroid of a cluster is allowed to be placed at any location
along an edge (rather than only at a node). Formally, every
edge (u, v) and λ ∈ [0, 1] represent a possible location for
a centroid. The distance of this centroid from a node w is
min{d(u, w) + λ · d(u, v), d(v, w) + (1 − λ) · d(u, v)}. The
centroid of the cluster is placed at the location minimizing
the maximum distance from a node of the cluster. Note
that the centroid could be located at a node which does
not belong to its cluster, however, the configuration may be
stable only if this node is also the centroid of its own cluster.

Lemma 2.21. In case centroids are allowed to be placed on
edges, the centroid of a cluster is always located in the middle
of its diameter (since we are dealing with a tree metric, all
diameters share their middle point).

The following theorem is proved using the characterization
of the centroid given by Lemma 2.21.

Theorem 2.22. In case centroids are allowed to be on
edges, Nash equilibrium always exists for tree metrics and it
is guaranteed to be reached by best response dynamics.

Theorem 2.23. In case centroids are allowed to be on
edges, the price of anarchy of the k-center clustering game
remains unbounded, even for the case of a line metric.

2.2.2 The General Metric Case
Similarly to the k-median model, Nash equilibrium might

not exist for the case of a general metric. Figure 2 represents



Figure 2: Graph with no Nash equilibria (assuming two

clusters).

an instance that does not have a Nash equilibrium, assum-
ing there are two clusters. The numbers on the edges of
the graph represent the distances. The proof that no Nash
equilibrium exists for this graph is established similarly as
for the graph in Figure 1.

One can try, again, the trick that worked for tree met-
rics, i.e., allow the centroid of a cluster to be located at
any location along an edge of the graph. Unfortunately, this
generalization fails to guarantee the existence of Nash equi-
librium in this case. The graph in Figure 2 represents a
counter example for this case as well. The proof is estab-
lished by case analysis and is based on Theorem 2.24, where
we show that in Nash equilibrium centroids can be placed
only in half integral locations on edges.

Theorem 2.24. In any Nash Equilibrium configuration
of the k-center clustering game with integral edge distances,
centroids must be placed in half integral locations on edges.

In order to guarantee the existence of Nash equilibrium,
we add to the game a rule penalizing a node whose move to
a cluster C changes the location of the centroid of C. That
is, the cost of a node u performing an improvement move
will consist of two values:

• The distance from the updated centroid of the new
cluster, d(u, c(C+u)).

• A cost equal to the distance between the original and
new centroids of C, d(c(C), c(C+u)).

Theorem 2.25. Under the above penalties, there is al-
ways a Nash equilibrium solution, and it is guaranteed to be
reached by best response dynamics.

3. CORRELATION CLUSTERING
In this section we consider the clustering game in the cor-

relation clustering model. We investigate both minimization
and maximization variants. In the minimization variant, a
clustering configuration of the correlation clustering game is
in Nash equilibrium if no user can unilaterally reduce its cost∑

u∈Cv
wu · d(u, v) +

∑
u 6∈Cv

wu · (1− d(u, v)) by choosing a

different cluster (respectively, in the maximization variant,
a user cannot increase its profit

∑
u∈Cv

wu · (1 − d(u, v)) +∑
u6∈Cv

wu · d(u, v)). For ease of notation, given a cluster C,

we denote the total weight of its nodes by w(C). We denote
by V the set of elements, and by E the set of all pairs of

elements (E is the set of edges in a complete graph having V
as the set of nodes). Due to space limitations, most proofs
of this section are omitted from this extended abstract.

The following lemma shows that the two variants are closely
related.

Lemma 3.1. A configuration of the game is in Nash equi-
librium for the minimization variant if and only if it is in
Nash equilibrium for the maximization variant.

Correlation clustering is a hedonic game and it is closely
related to the class of additively-separable hedonic games [7].
It can be shown that for every correlation clustering game,
there exists an additively-separable hedonic game with the
same set of Nash equilibria. However, the reverse is not true,
i.e., additively-separable hedonic games strictly generalize
correlation clustering games. We omit the details.

Another interesting subclass of additively-separable hedo-
nic games are symmetric additively-sparable hedonic games
[7]. A potential function argument shows that every sym-
metric additively-sparable hedonic game has a Nash equi-
librium, but finding it is PLS-hard [13]. Although these
results do not extend immediately to correlation clustering
games, their techniques can be used for this type of games
as well. The next two theorems follow from the use of these
techniques.

Theorem 3.2. There always exists Nash equilibrium for
the correlation clustering game. Moreover, best response dy-
namics of this game always converge to a Nash equilibrium.

Theorem 3.3. Computing Nash equilibrium in the corre-
lation clustering game is PLS-Complete.

In the rest of this section we focus on the price of stability
and price of anarchy of correlation clustering games. Unlike
the set of Nash equilibria, these values are different for each
of the game classes mentioned above, and therefore, we can-
not use the relations between our model and these classes to
derive results in this context. We begin with several obser-
vations on the price of stability.

Lemma 3.4. In the special case where all elements have
an identical weight w, the price of stability is 1.

Proof. In the case of identical weights, the potential
function Φ from the proof of Theorem 3.2 can be rewrit-
ten as

Φ(F) = w2
∑
v∈V


 ∑

u∈Cv

d(u, v) +
∑

u6∈Cv

(1− d(v, u))


 .

Note that given a clustering configuration F , the value of
the potential function is identical to the value of the social
objective function up to a multiplicative factor of w. This
implies that any best response move performed by a player
will strictly decrease the social objective value. Thus, an
optimal clustering configuration is also a Nash equilibrium,
as no player can further reduce its cost. The proof for the
maximization variant follows directly from Lemma 3.1.

In the case of arbitrary weights of elements, the price of
stability differs between the minimization and maximization
variants and can be strictly larger than 1, as shown in the
following example. Consider the graph depicted in Figure 3.



Figure 3: Graph with price on stability greater than 1.

Table 1: Price of stability
Variant Nash Optimal Price of

Equilibrium Configuration Stability
Minimum 5.6 5.4 ≈ 1.037
Maximum 6.4 6.6 1.03125

The similarity between any two nodes appears on the edge
between them, and the weight of a node appears next to it.

It is easy to verify that Nash equilibrium in this graph only
occurs when all nodes share a single cluster. However, the
optimal configuration is when v shares a cluster with either
u1 or u2, and the third node is in a different cluster. Table 1
presents the price of stability provided by this example for
both variants.

We now turn to analyze the price of anarchy. Despite the
close relationship between the minimization and maximiza-
tion variants of the game, the results obtained for their price
of anarchy are quite different, as shown in the next sections.
Before turning to analyzing each variant, we present general
properties of Nash equilibrium which are later used for es-
tablishing the bounds on the price of anarchy for both game
variants.

Properties of Nash Equilibria.
We prove two lemmata bounding distances in Nash equi-

libria.

Lemma 3.5. Consider two nodes u and v. If there exists
a Nash equilibrium where u and v share a common cluster
C, then d(u, v) ≤ 1− wu+wv

2w(C)
.

Lemma 3.6. Consider two nodes u and v. If there exists
a Nash equilibrium where u and v belong to two different
clusters Cu and Cv, then d(u, v) ≥ wu+wv

2(w(Cu)+w(Cv))
.

3.1 Price of Anarchy - Minimization Variant
We present an upper bound of O(n2) and a lower bound of

(n−1) on the price of anarchy of the minimization variant of
the correlation clustering game. We begin with the special
case of equal weights and then proceed to arbitrary weights.
The next definition is used in the sequel.

Definition 3.7. Given a clustering configuration, an edge
e is of one of two types: either it is an internal edge within a
single cluster, or it is an external edge between two different
clusters.

Theorem 3.8. If all nodes have the same weight w, price
of anarchy is at most n− 1.

Proof. Without loss of generality, assume w = 1. Let E
be a Nash equilibrium of the game, and let O be an optimal
solution. In order to evaluate the contribution of an edge
e = (u, v) (of distance d(u, v)) to the total cost of E and O,
there are four cases to be considered.

• e is an internal edge in E and O. Then, e contributes
a cost of 2d(u, v) to both E and O.

• e is an external edge in E and O. Then, e contributes
a cost of 2(1− d(u, v)) to both E and O.

• e is an internal edge within cluster C in E , but is an
external edge in O. Since e is an edge within C in a
Nash equilibrium, Lemma 3.5 implies that d(u, v) ≤
1 − 2/2w(C) ≤ 1 − 1/n. Therefore, the cost con-
tribution of e to E is 2d(u, v) ≤ 2(1 − 1/n). On
the other hand, the cost contribution of e to O is
2(1 − d(u, v)) ≥ 2/n. Thus, the ratio between the
cost contribution of e to E and its contribution to O is
at most 2(1−1/n)

2/n
= n− 1.

• e is an external edge between two clusters C1 and C2

in E , but is an internal edge in O. Since e is an edge
between clusters in a Nash equilibrium, Lemma 3.6
implies that d(u, v) ≥ 2/(2w(C1) + 2w(C2)) ≥ 1/n.
Therefore the cost contribution of e to E is 2(1 −
d(u, v)) ≤ 2(1 − 1/n). On the other hand, the cost
contribution of e to O is 2d(u, v) ≥ 2/n. Thus, the
ratio between the cost contribution of e to E and its
contribution to O is again at most n− 1.

It follows that the cost contribution of all edges to the cost
of E is at most n− 1 times their contribution to the cost of
O, completing the proof.

For general weights we are only able to prove a weaker
result.

Theorem 3.9. The price of anarchy of the minimization
variant of the correlation clustering game is O(n2).

The following theorem establishes a lower bound of (n−1)
on the price of anarchy of the minimization variant. Note
that it matches the upper bound for the special case of equal
node weights.

Theorem 3.10. The price of anarchy of the minimization
variant is at least n−1. This holds even when all nodes have
the same weight and the metric is a line metric.

Proof. We show an instance in which the price of anar-
chy is at least n−1. Assume the weight of all nodes is 1. Let
A and B be two disjoint sets of n/2 nodes. The distances
between the nodes are defined as follows:

d(u, v) =

{
0 u, v ∈ A or u, v ∈ B
1/n otherwise

This distance function is a special case of a line metric. Con-
sider a clustering in which the nodes of A form one cluster
and the nodes of B form another one. We show that this
clustering is in Nash equilibrium. Due to symmetry, it suf-
fices to show that a node u ∈ A does not have an incen-
tive to deviate. The cost of u under the current clustering
is (n/2 − 1) · 0 + n/2 · (1 − 1/n) = (n − 1)/2. Node u
has two deviation options. The first one is to move to the



cluster of B which yields the same cost of (n/2 − 1) · 1 +
n/2 · 1/n = n/2 − 1 + 1/2 = (n − 1)/2. The other op-
tion is to form a new cluster, which increases the cost to
(n/2−1) ·1+n/2 · (1−1/n) = n/2−1+n/2−0.5 = n−1.5.
Hence, the clustering is in Nash equilibrium. The social
cost of the clustering solution is n(n − 1)/2. On the other
hand, the cost of the configuration in which all nodes belong
to a single cluster is: n · [(n/2− 1) · 0 + n/2 · 1/n] = n/2.
Thus, the price of anarchy of this game instance is at least
n(n−1)/2

n/2
= n− 1.

3.2 Price of Anarchy - Maximization Variant
In this section we provide tight bounds on the price of

anarchy of the maximization variant of correlation clustering
for general metrics and line metrics.

Theorem 3.11. The price of anarchy of the maximiza-
tion variant is O(

√
n).

The proof of Theorem 3.11 proceeds as follows. We first
note that an upper bound on the maximum social welfare
(total profit) is (n − 1) · w(V ). Then, we establish a lower
bound of Ω(

√
n) ·w(V ) on the total profit of any Nash equi-

librium solution.

Theorem 3.12. The price of anarchy of the maximiza-
tion variant is Ω(

√
n). This bound holds even if all nodes

have the same weight and the metric is a tree metric.

Theorem 3.13. The price of anarchy of the maximiza-
tion variant in the case of a line metric is Θ(n1/3). More-
over, this bound is tight even if all nodes have unit weight.

3.2.1 Bounding the Price of Anarchy
We suggest a method for bounding the price of anarchy

(at the cost of making slight modifications to the rules).

Lemma 3.14. If only k clusters are allowed (for k ≥ 2),
then the price of anarchy is at most k−1.

Corollary 3.15. Consider the case in which all nodes
have equal weight, and best response dynamics is executed by
first allowing it to reach Nash equilibrium in which nodes are
limited to k ≥ 2 clusters, and then it is allowed to continue
till it finds a true Nash equilibrium. Then, the resulting Nash
equilibrium has value of at least k−1 times the optimal social
value.

Proof. By Lemma 3.14, the Nash equilibrium reached
while the nodes are limited to k clusters has social value
of at least OPT/k, where OPT is the optimal social value.
Moreover, the proof of Lemma 3.14 actully shows that the
social value of this Nash equilibrium is also at least W/k,
where W is the maximal social value possible for any config-
uration (with any number of clusters). Using ideas similar
to the proof of Lemma 3.4, we get that the social value can-
not decrease by best response dynamics. Hence, the social
value of the final Nash equilibrium is at least as large as the
social value of the initial Nash equilibrium.
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