
Ad-Hoc Routing Using Virtual Coordinates Based on Rooted Trees

Yosi Ben-Asher, Moran Feldman and Sharoni Feldman

Computer Science Department, Haifa University, Israel
{yosi,sharoni}@cs.haifa.ac.il

Abstract

An ad hoc routing algorithm must be able to locate
and maintain a path from a source to a destination
node while overcoming sudden changes in the network
topology and explore alternative paths in case of path
breaks. One "classic" type of solution is to constantly
maintain an approximate routing table at each node
and use it to dynamically search for a routing path to
the destination. Another, more efficient type of
algorithms uses geographical/geometrical coordinates
at each node (obtained by GPS devices) to forward
packets and explore alternative paths to the
destinations. Recently it was shown that the exact GPS
coordinates can be replaced by "virtual" grid like
coordinates computed based on the number of
links/hops between the nodes. Computing these grid-
like coordinates is a costly process eliminating the
advantages of the geographical routing over the more
classic types of algorithms. We propose a different type
of virtual coordinates based on dynamic embedding of
the ad-hoc connectivity graph by a minimal set of
rooted trees. We give a novel ad hoc routing algorithm
called MRA (Metrical Routing Algorithm) that uses the
tree like coordinates to efficiently find minimal cover
of the nodes by rooted trees and based on the tree
coordinates forward packets to their destinations.
Similar to geographical routing our algorithm allows
oblivious transfer of packets to any destination
avoiding the use of routing tables.

The proposed method is compared to the well
known AODV (Ad Hoc on Demand Distance Vector
Routing) obtaining significant improvements in terms
of number of messages, number of concurrent sessions,
duration of the sessions, nodes' densities, queue sizes
and resilience to sudden movements of the nodes. We
have built a sophisticated simulator that has been
carefully designed for a fair comparison between the
two algorithms

1. Introduction

Ad Hoc networks allow communication between a
dynamic set of mobile wireless users without using a
fixed set of base stations. Each user of an Ad Hoc
network also acts as a router allowing other users to
communicate through its mobile communication
device. The communication range of each device is
limited thus at any given time a user can exchange
packets only with other devices in its
receiving/transmitting range. The set of users is highly
dynamic: new users join in while other users may quit
or move out of receiving range. In addition each node
can arbitrarily move and possibly cause loss of
communication with some nodes while creating new
connections with other nodes. The basic
communication structure is therefore of a dynamic
graph where new edges (communication links with
neighbors) and nodes are fused while other nodes and
edges get arbitrarily deleted. This extremely difficult
setting demands novel communication protocols that
can maximize the amount and length of “sessions”
between the users.

The main or the "classic" types of ad-hoc routing
algorithms (see [6]) maintain routing tables at each
node containing the path (where to forward packets)
for every possible session. Each change in the network
(e.g., a communication link with a neighbor has been
disconnected) must be forward to all other nodes in the
network so that they can update their routing tables.
Another possibility of the classic types is to
dynamically search for a given destination. Typically
such a search may require flooding the network by
“search messages” until the destination is reached and
a routing path has been located.

The AODV algorithm [3] combines on demand
search with temporal recent destination routing
information and is considered to be one of the most
efficient algorithms for ad-hoc routing. In AODV a
search for a route to a given destination is basically

performed by flooding. In AODV each node maintains
a list of all its recent routings, thus the flooding can be
reduced when it reaches an intermediate node that has
the destination in its recent routing list. It becomes
obvious that the AODV and all the other "classic"
algorithms may use quadratic number of messages (in
the number of nodes) to perform a search for a route or
to update a routing table.

Another type of ad-hoc algorithm uses the GPS
coordinates of each node to forward packets to the
neighboring node that has the shortest Euclidian
distance to the destination. The routing is oblivious and
thus potentially more efficient than the one used in the
AODV types of algorithms. Using GPS can be
regarded as a way of assigning grid like coordinates (in
the real plane) to every node and using the grid metric
to select the shortest routing paths.

Compared to AODV type of algorithms in
Geographical routing there is a need to locate the
geographical coordinates of every destination before a
packet can be sent. One solution was proposed by the
GLS algorithm [5] wherein each node v periodically
broadcasts its coordinates to a small well dispersed
subset of nodes that have the nearest id-number to v.
This subset of nodes forms a search tree allowing
relatively efficient search for nodes' coordinates.
Methods for locating coordinates based on nodes' ids
also include the use of distributed hashing (DHT)
see[9]. Another interesting algorithm is DREAM[4]
where coordinate updates to far away nodes are less
frequent than updates to nearer nodes. The algorithm
that is proposed here also coordinateses this problem
but uses a different type of solution to it. One problem
of forwarding packets to the geographically nearest
neighbor is that the packet may reach a dead-end where
all the neighbors are far apart from the destination than
the current node. In this case the packet must move
"backwards" along the current "face" searching for a
new node out of which the greedy forwarding can
continue (e.g., the GOAFR+ [13] algorithm combining
greedy routing and face routing). A Pure face routing
algorithms have also been proposed and analyzed, e.g.,
Compass routing [2], GFG[8],GPSR[7] and AFR[4].

Figure 1 left side demonstrates a bad case of face-
routing where a packet from node S should reach node
T. The gray nodes indicate real nodes and the
transmission distance is such that each node is
connected only to its left, right, up down most nearest
grey neighbors. Following the short distance to T, the
packet first moves from S to L but then must move
along the face back to Q. At this point the packet takes
the longer way to T and moves down since the lower
neighbor of Q is closer to T than Q's upper neighbor.

Recently, Rao et. Al. [12] proposed to use virtual
coordinates that approximate geographical coordinates
without using GPS. The basic idea is to embed the
nodes in a grid wherein Euclidian distances in the
plane are replaced by connectivity distances in the
dynamic communication graph. The algorithm has
three stages: 1) The nodes on the perimeter are
identified, 2) The virtual coordinates of the perimeter
are computed, and 3) Based on the perimeter, virtual
coordinates of internal nodes are computed. Virtual
coordinates are basically computed using a relaxation
method wherein each node updates its coordinate based
on the coordinates of its neighbors. Other works on
virtual coordinates assume that a subset of the nodes
(anchors) are equipped with GPS and thus based on the
anchors coordinates other nodes can learn their relative
approximated coordinates. Note that the bad case of
Figure 1 is avoided when using a spanning tree rather
than the grid metric. Intuitively, the term metric can be
defined as follows. Let G be a communication graph
such that there is an edge between every two nodes that
are in communication range. For ad hoc routing, A
metric D can be intuitively defined as a sub graph of G
"more simple" with coordinates such that the shortest
path between every two nodes U,V can be computed
based on their coordinates d(U,V)= f(U.coor,V.coor).

W

S
T

QL

R

Root = (0,0)

W

T

Shortcut

Q

LR

S

(0,0)

(7,0) (7,5)

(0,5)

Figure 1: Face routing & tree routing

Actually the proposed metric uses spanning trees
with "horizontal" edges (called shortcuts) connecting
every node in the chosen rooted tree to all other nodes
that are in transmission range. In routing from s to t, a
shortcut edge <u,v> is used only if the distance from v
to t on the rooted tree is shorter than the distance on the
rooted tree from u's father and sons to t. Figure 2
illustrates this metric of rooted trees with shortcuts
(denoted by double arrows).

Note that the short distance (based on the proposed
metric) from s to t is obtained by going up to node h
then through the shortcut to node j and finally to t. A
shortcut will be created automatically when it can
reduce the path length and there is no management of
shortcuts in tables.

a

b

Sfd

e

g

h

i

j

k

T

0 1 0 1 0 0 1 0 1 1

0 1 0 1

0 1 0

0 0
0 1

0 0 0

0 0 0 0
0 1 0 0

0 1 0 0 0 0 1 0 0 1

0

Figure 2: Routed trees with shortcuts

Note that potentially the packet could use a shorter
path S f e T, however the distance in the tree
from b to T is shorter than the tree distance from f to T.
Note that the tree distance between any two nodes can
be directly computed based on their IDs (their virtual
coordinates in the tree), e.g., the distance between
S=01010 and d=01000 is 4 as we need to go up 2 times
and reach the common node/prefix g=010 and then
down 2 times. There are of course bad cases where
this metric (rooted trees with shortcuts) will fail and
two relatively close nodes will be far apart (as is
depicted in figure 2), however we believe that
practically for most pairs of nodes the distance
assigned by this metric will be close to the real one.

The choice of using the tree with shortcuts metric
rather than the grid metric is motivated by the fact that
it is better suited to handle the dynamic case of ad hoc
networks. In particular note that adding a new node to
an existing rooted tree requires only changing the
virtual coordinates (IDs) of that node alone while
adding a new node to an existing grid may require
changing the virtual coordinates of most of the grid's
nodes. In the case that a node U gets deleted, we might
be forced to update the virtual coordinates of every
node in the sub tree of U, however, usually the number
of updates caused by deletion in the proposed metric is
significantly less than that needed by the grid-like
metric. In particular adding and deleting several nodes
at the same time is more complex in grids than in trees
as the new coordinates of most nodes in the grid are
affected by all the changes while in trees the changes
in two disjoint sub trees do not affect one another.
Figure 3 presents a communication graph organized as
a grid metric and a tree metric. Adding node A after
the addition of node B in the grid metric requires a
broad update of coordinates. The addition of nodes in
the tree metric is totally independent.

Figure 3: Spannig tree vs. grid metric

The choice of rooted trees metric is also motivated
by the theoretical results of the "metric labeling"
problem [15]. In this problem, the goal is to
approximate distances of nodes in the plane via simple
graphs with virtual coordinates. A known result for
metric labeling with trees [14] is to select the "center"
point in the plane as the root of a tree and keep adding
new leaves by selecting points that are the closest to a
given leaf (also known as Dijkstra's trees). The average
distance distortion factor (ADDF) using Dijkstra’s
trees is less equal 2. Another result [16] shows that if
we select a spanning tree at random out of a special
distribution then the ADDF is less equal square log N,
where N is the number of points in the plane. Better
approximations to the static metric labeling problem
can have been obtained, e.g., the use of spanner graphs
or using integer programming [15], however, as
explained such constructions are not feasible for ad hoc
routing. In any case, the metric of rooted tree with
shortcuts has not been proposed in this context.

Recently, [17] proposed an ad-hoc routing
technique that is also based on routing via rooted trees
where each node gets a virtual address in a rooted tree.
This algorithm is not based on metrical routing and
actually does not use virtual coordinates in the sense
we have defined, i.e., embeds the connectivity/radius
graph in a rooted tree such that the distance distortion
is minimized.

The focus of this work is to obtain a pragmatic
general proof for using the tree + shortcuts metric for
ad hoc routing, hence theoretical issues such as formal
proofs for the effectiveness of the proposed metric
compare to the grid metric are not considered. We have
developed a complex simulator for testing the proposed
algorithm and comparing its performances with those
of the AODV. The complexity of Rao et. Al. [12] is
too high for a practical implementation leaving the
AODV as the only competitor for the proposed
method. We remark that every effort was made to
design the simulator such that the comparison will be
fair. The design of a suitable ad hoc simulator required
careful consideration of many factors. The current
simulator deals with the new Metrical Routing
Algorithm (MRA) and AODV. It presents a set of
enhanced visualization, real-time tracing and online
control features. There are only very few simulators
that can simulate ad hoc networks (e.g.,PARSEC[10],
NS-[11]), however due to the special features of the
proposed algorithm we have decided to develop a
special ad hoc simulator. The results obtained by the
simulator indicate that using tree based metrics for ad
hoc routing can improve both the number of messages
and the duration of the sessions between ad hoc nodes.

2. MRA Algorithm

In this section we describe the MRA algorithm, by
presenting the notations, the data used to control the
connections between the nodes and the session
mechanism.

2.1 Main idea dynamic fusion of trees using
shortcuts

The MRA algorithm organizes the nodes in the field in
rooted trees. Only nodes that belong to the same tree
can create sessions among themselves. To ensure the
maximal connectivity, all nodes will try to organize
themselves in a single tree. Every node in the field has
a unique node-id (phone number or IP address) and
virtual coordinates that may change depending on the
changes in the tree structure. Every tree is identified
with a “tree name” which is the id of the root node.
Nodes send periodically beacons (hello messages).
Every node that receives a beacon checks whether the
node that sent the beacon belongs to a different tree. If
the nodes belong to different trees, they will initiate a
fuse process that will fuse the separate trees into a
single tree. The fusion protocol should satisfy the
follow properties:
1. The protocol should not cause active sessions to
break

2. Eventually (assuming no dynamic changes occur)
all trees with nodes within transmission area must fuse
into a single tree.
3. When two trees are being fused most updates
should be made to the nodes of the smaller tree (in the
number of nodes).
4. The protocol should maximize the number of
nodes that migrate from one tree to the other in every
step (yielding a parallel fuse).
5. Nodes constantly attempt to shorten their distance
to the root of the tree by fusion to higher level nodes.
6. Initially every node forms a separate tree of size
1.
7. The protocol is fully distributive with no “central''
bottlenecks, namely it is defined at the level of pairs
of nodes.
Every node in the tree can initiate a fusion process to a
neighboring tree regardless of the node position in the
tree. The fusion node gets a new coordinates in its
new tree according to the node new position.
Naturally, when a node migrates from one tree to a
new tree, it may carry its neighboring nodes to follow
him. Figure 4 presents two stages of the trees fusion
protocol: the initial state and final organization to trees
(assuming no dynamic changes occur). Note that the
two separate trees in Figure 4-B cannot fuse because
there are no two nodes between the trees within a
transmission range that will start a fusion process.

(A)

(B)

Figure 4: Trees formation process

The fusion process of two trees is a parallel process
where at any given stage more than one node of the
smaller tree joins the larger tree as is depicted in Figure
5.

1

2
3

1

2
3

Figure 5: Fusion of trees

2.2 Notations
An Ad Hoc network is built of moving nodes. All

nodes are identical and run the same software. Every
node sends periodically a “Hello” message that is
received by all nodes within the transmission radius.

Every node receives Hello messages from nodes within
their transmission range. A “Source node” is a node
that initiates a session that connects the “Source node”
to the “Target node”. The following notations are used:

Node Identification (ID) is a unique identifier of
each node in the system. When a node initializes a new
session towards the target node, the target node is
identified by its ID.

Node Coordinates. The coordinates of node v
specifies the path from the tree root to v. For example
if the coordinates of v is <0.1.1.2>, then v is son
number 2 of a node with the coordinates <0.1.1>.

Tree is a structured group of nodes that share the
same tree name, which is the ID of the root node. Each
node in the tree knows the ID and coordinates of its
father and sons. The nodes of the tree and their father-
son connections form a legal tree graph.

Tree size presents the number of nodes of the tree.
Similarly, every node in a tree holds its sub-tree size.

A Session is a period of time when the two nodes
(the source node and target node) exchange
speech/voice packets. The Source node initiates the
session and either of the parties can trigger the
termination of the session. The Source node will try to
resume the session in case of a break off. The pair
{Source node-ID, Target node-ID} identifies the
session uniquely.

Session Path is a bi-directional path used to transfer
speech packets between the source node and the Target
node. If needed, one or more intermediate nodes will
be used to bridge between the session parties. The
resources in every node are limited and voice receivers
are allocated for a specific session. The voice receivers
will be released when the session terminates or when
needed, by a forced release. Note that a session path
requires radio connectivity between adjacent session
path nodes.

Shortcuts are edges used to transfer sessions
between two nodes that are within transmission range.
The usage method of using shortcuts is described in the
metric explained in the introduction. The path
allocation algorithm will look for possible shortcuts in
order to create a shorter session path.

Figure 6 presents the “natural” session path
<0.1.1><0.1><0><0.3><0.3.1><0.3.3.1> and the path
created using shortcuts <0.1.1><0.1><0.2.2><0.3.3.1>.
The node internal data structures are divided into 2
major parts. The connectivity part keeps updated data
describing the node relations with other nodes in the
field.

<0.3.2>

<0>

<0.1> <0.2>

<0.2.1>
<0.1.1>

<0.2.2> <0.2.3> <0.2.4>

<0.3>

<0.3.1>

<0.3.1.1> <0.3.1.2>Path with shortcuts
Figure 6: Session path and path shortcuts

The session’s part stores the sessions control
information. Every session uses a local data structure
target node session-cell that keeps the exact state of the
session.

2.3. Tree Connectivity Data
Every node v broadcasts periodically a hello message.
This message carries information about v, the
coordinates of its neighbors that share the same tree
with v, and the IDs of the father and sons of v. Every
node, receiving a hello message from the node v,
regardless of the source tree, stores/updates the
information about v.

The IDs are used to validate that v agrees with the
receiving node about the type of “relationship”
between them. In case that the nodes disagree about the
type of relationship for a test-time then the receiving
node assumes that something went wrong, and resets
the type of the relationship to a “stranger” node.

The following data items are stored in each node to
manage the connectivity with the nodes’ father, sons
and neighbors.
 <Father ID and Coordinates>.
 <Son ID, Coordinates and the size of the son’s

sub-tree>.
 <Neighbor ID, Coordinates, size of tree and tree

name>.
A neighboring node is a node that is within the range
and is not a father or son. A neighboring node can be
from v’s tree or from an adjacent tree. For every
neighbor of node v that belongs to v’s tree, v keeps also
a list of their neighbors. This information is used for
efficient session route allocation (creating of
shortcuts).
For tracking the stability of the connection to the father
or son, the node counts the number of consecutive
times that a Hello message was received from a known
father/son but with non-father or non-son indication.
Crossing a threshold indicates that there is an
inconsistent situation were the father and son or vice
versa don’t agree on the relations between themselves.
In this case, the node resets the connection state to
stranger.

2.4. Session Control Data
Every session has the following parties: The Source
node who originates the session, the Target node and if
necessary intermediate “transit” nodes. Sessions are
identified uniquely in the system by the session-id,
which is constructed of the Source node and Target
node ID’s. A session will not break if nodes in the
session path change their coordinates. The following
data items are used in order to control and maintain the
sessions:

A Source node maintains the Target node ID,
coordinates of Target node, ID of the next node on the
session path and the session state. A Target node
maintains the Source node ID and the ID of the
previous node on the session path.

Transit nodes maintain the Source node and Target
node ID’s and the coordinates of previous and next
nodes on the session path.

2.5 States

Every node handles two state machines: The
connectivity state machine that controls the relations of
the node with its neighbors (with the following states:
Neighbor addition, Father Loss, Son loss, Son addition,
Father Migration, Change of tree size and Son
migration) and the session state machine that controls
every session (with the following states: Coordinates
Resolution, Path Allocation, Stable and Terminating)

2.6 Actions performed by node
Every node takes autonomous actions targeted to

keep the node in a tree, and when possible to join a
larger tree. When triggered, the node will take actions
to create a session to another node. The best
connectivity can be achieved only if a session can be
created between every two nodes in the field. This
requires that all nodes will be organized in the same
tree. The following actions are taken as follows to
support the maximal connectivity of all nodes in the
field: Node Migration (from a small tree to a bigger
tree), Node Relocation (inside a tree), Rooting as a tree
and registration of a node as a tree.

<0>

<0.1> <0.2>

<0.2.1>

<0.2.1.1>

<0>

<0.1> <0.2>

<0.2.1>

<0.1.1>
Figure 7: Nodes relocation

Every session occupies a Source node, Target node
and if necessary transit nodes. The Source node is the
proactive side initiating the session and the Target

node and the transit nodes react to the session initiation
request. The Source node is in charge of resuming the
session after a session break.

3. Simulations and results

We tested the MRA protocol and compared the
results to Ad hoc On-demand Distance Vector Routing
[3]. AODV minimizes the number of broadcasts by
creating routes on demand. For reminding the route
discovery process in AODV is initiated whenever a
nodes needs to create a session with another node.
When possible, nodes use local routing information
stored in its tables.

3.1 Simulation environment
We developed a simulator for testing the MRA

algorithm and running comparable tests to other
routing protocols. Currently the AODV protocol was
implemented and used in the tests. A special care was
taken during the design and implementation of the
simulator on the following aspects: (a) enhanced
visualization tools that give a full online view of the
testing field, nodes movements, voice channels,
specific node status including queues status etc. (b)
Tracing the forming of trees in MRA protocol. (c)
Tracing the sessions in real time (d) Configuration via
online screens (e) Support of logging, debugging and
analysis tools.

Our simulator does not fully model the MAC layer. In
our simplified model, no packets get lost and
transmission reception is granted within the
transmission range. Our simplified MAC model allows
us to concentrate on the unique features of the MRA
algorithm and analyze the results in an isolated
environment. This decision allowed us to reduce the
number of independent factors and enhance the debug
and visualization capabilities.

A session is a full duplex connection between nodes. A
message can be lost because of an overflow of the
queue in one of the chain of nodes used by the session.
The following values were used in the simulations.

Table 1: Main simulation parameters
Attributes Selected Values

Field Size 120 x 120 meters
No. Of nodes in
simulation

100, 140, 180, 220,260 and 300
nodes in the field.

Node Movement Speed: 5-7 Km/Hour. Movement
direction: Change with the
probability of 0.01.

Transmission
Radius

27 meters.

Session setup 3 retries. The session will be

retries dropped after the 3rd false retry.
Session Length 5 seconds

3.2 Main Experiments
Table 2 present the number of sessions through

which more than a certain percentage of the speech
messages passed. For example, the notation MRA 100
presents a run of MRA protocol with 100 nodes. The
success rate presents the number of sessions that
succeeded to transfer more than X% of the session
packets. Naturally, the sessions that succeeded to
transfer 85%-100% of the packets are included in 80%-
100% column (sessions with less than 80% success of
packets transfer were classified as faulty sessions).

Table 2: Successful sessions MRA Vs. AODV
Success rate in % Protocol

80-100 85-100 90-100 95-100 100
MRA100 270 267 264 257 71
AODV100 188 188 188 184 45
MRA140 341 325 315 289 67
AODV140 210 210 210 197 25
MRA180 477 462 444 410 95
AODV180 252 226 172 90 6
MRA220 524 489 452 383 95
AODV220 176 134 81 31 0
MRA260 535 491 441 377 94
AODV260 40 23 12 4 0
MRA300 604 558 518 442 112
AODV 300 13 7 3 0 0
The analysis of the results raises the following
observations:
1. MRA generates a higher number of successful
sessions. This observation is true for all densities.
2. The gap between the number of sessions generated
by MRA and AODV grows as the density of the nodes
grows.
3. The session’s quality drops quicker for AODV
than for MRA as the density increases. The quality of
service is defined as the weighted sum of the sessions
from every success rate, divided by the estimated
attempts. This decrease is mainly noticeable in the high
densities. For example, in the case of 300 nodes, MRA
succeeded to handle 604 sessions with a success of
80% and AODV handled successfully only 13
sessions. MRA handled successfully 112 sessions with
100% messages transfer and AODV failed to handle
any sessions with 100% message transfer.

3.3. Queue overflow
Every node handles 2 types of messages: Control

messages which are used in order to control and
generate sessions and data messages which are used in
order to transfer the speech between the nodes. The
total number of messages that a node handles depends
on two factors: (1) the number of concurrent sessions

managed by the node (Transit sessions or terminating
sessions) Naturally, peripheral nodes will transfer less
transit traffic than inner nodes. (2) The load generated
by the control traffic. This load depends on the density
of the nodes and on the nature of the algorithm.

Queue Overflow

0
500000

1000000
1500000
2000000
2500000
3000000

100 140 180 220 260 300

No. OF NODES

LOST
MESSGES

M RA AODV

Figure 8: MRA Vs. AODV queue overflow
 MRA generates new sessions with an order of O(n)
messages while AODV generates sessions with the
order of O(n2). Intuitively, as the number of nodes
grows and the density grows, the number of messages
handled by a node working under AODV protocol is
significantly higher than a node working under MRA
protocol. Figure 8 presents the number of lost
messages due to queue overflow. The nodes queues are
limited to 20 messages. This limit exposes the node to
queue overflow and loss of messages. This risk grows
as the traffic grows. The number of messages that are
lost under AODV grows rapidly compared to MRA.
This loss of messages is a central factor decreasing the
quality of the session.

3.4. Session Path Length
Table 3 presents the average number of hopes used

by the sessions in MRA and AODV. The path created
by MRA is shorter except for the exceptional case of
300 nodes where the path created by AODV seems
shorter, but in fact AODV has not succeeded to create
and maintain a meaningful number of sessions. A
shorter path means that less transit nodes are involved
in the sessions and the message load occupies fewer
nodes. The short path keeps the nodes that are not
involved with the session with less traffic and reduces
the chance of queue overflow.

Table 3: Session path length
Number of Nodes in Field

100 140 180 220 260 300
MRA 4.33 4.35 4.27 4.22 4.17 4.1
AODV 4.50 4.39 4.80 4.63 4.4 3.76

4. Conclusions and Future Work
A new type of ad hoc routing algorithm called MRA

is presented. The MRA algorithm is designed to
maximize a dynamic cover of the mobile nodes by a

network of virtual coordinates. The proposed algorithm
covers the nodes by rooted trees and thus establishes
the coordinates. The MRA algorithm handles:

• Maximal coverage of the nodes by rooted trees
through migration of nodes from smaller trees to larger
ones.
• The coordinates are used to forward packets to a
destination in spite of sudden disappearances of nodes
along selected paths.
• Coordinates are used to find "shortcuts" on the
rooted trees so that sub-roots of the trees will not form
bottlenecks.
• A distributed "phone" directory for searching the
coordinates of nodes is maintained by the algorithm.
The proposed method is compared to the well known
AODV (ad Hoc on Demand Distance Vector Routing)
algorithm obtaining significant improvements in terms
of number of messages, number of concurrent sessions,
duration of the sessions, nodes' densities, queue sizes
and resilience to sudden movements of the nodes.
Future research directions include the exploration of
various regular structures for coordinate coverage as an
alternative to the rooted trees presented in this paper.
Another direction is the enhancement of the simulator
by simulating obstacles and improvements of the
simulator performance.

5. References
 [1] S. Basagni, I. Chlamatc, V. R. Syrotiuk, B. A.
Woodward, “A Distance Routing Effect Algorithm for
Mobility (DREAM). ACM/IEEE MobCom 1998

[2] E. Kranakis, H. Singhy, J. Urrutia, “Compass Routing
on Geometric Networks”, In Proc. 11th Canadian
Conference on Computational Geometry, pages 51-54,
1999.

[3] C. E. Perkins, and E. M. Royer. “Ad-hoc On-Demand
Distance Vector Routing,” Second IEEE Workshop on
Mobile Computing Systems and Applications, pp.90-100,
February 1999

 [4] F. Kuhn, R. Wattenhoffer, A. Zollinger,
“Asymptotically Optimal Geometric Mobile Ad-Hoc
Routing”, In Proc. 6th Int. Workshop on Discreet
Algorithms and Methods foe Mobile Computing and
Communications (Dial-M), pages 24-33. ACM Press 2002.

[5] J. Li, J. Jannotti, D. S. J. De Couto, D. R. Karger, R.
Morris. “A Scalable Location Service for Geographic Ad
Hoc Routing,” Proceedings of MobiCon, Boston, MA,
2000.

 [6] Misra .P, “Routing Protocols for Ad Hoc Mobile
Wireless Networks,” http://www.cse.ohio-
state.edu/~jain/cis788-99/ftp/adhoc_routing/

[7] B. Karp, H. T. Kung. “GPSR: Greedy Perimeter
Stateless routing for wireless networks”, in Proc. of
MobiCom 1998, 2000.

[8] P. Bose, P. Morin, I. Stojmenovic, J. Urrutia, “Routing
with Guaranteed Delivery in Ad Hoc Wireless Networks,”
In workshop on Discreate Algorithms and Methods for
Mobile Computing and Communications, 1999.

[9] F. Araújo, L. Rodrigues, J. Kaiser, C. Liu, and C.
Mitidieri, “A Distributed Hash Table for Wireless Ad Hoc
Networks”, Proceedings of the Fourth International
Workshop on Distributed Event-Based Systems
(DEBS'05), Columbus, Ohio, USA, June 2005.

[10] R. Bagrodia, R. Meyer, M. Takai, Y. Chen, X. Zeng,
J. Martin, H. Y. Song, “PARSEC”: A Parallel Simulation
Environment for Complex Systems Computer,” Volume
31, Issue 10, October 1998,Pps: 77 - 85

[11] The ns Manuel,
http://www.isi.edu/nsnam/ns/doc/ns_doc.pdf, K. Fall, K.
Varadhan, eds. Dec. 2003

[12] A. Rao, S. Ratnasamy, C. Papadimitrou, S. Shenker,
I. Stoica, “Geographic Routing withhout Location
Information”, ACM MobiCom 2003.

[13] F. Kuhn, R. Wattenhofer, Y. Z, A.
Zollinger,”Geometric Ad-Hoc Routing: Of Theory and
Practice, “in Pricnciples of Didtributed Computing, 2003

[14] D. Gusfield, Algorithms on Strings, Trees, and
Sequences, Cambridge University Press, New York, NY,
USA 1997.

[15] C. Chekuri, S. Kahanna, J. Naor, L. Ziskin,
“Approximation Labeling Problem via a New Linear
Programming Formulation”, Proceedings of the thirtieth
annual ACM symposium on Theory of computing, Dallas
Texas, 1998.

[16] M.L .Elkin, “A Faster Distributed Protocol for
Constructing a Minimum Spanning Tree”, in Proc. ACM-
SIAM on Discrete Algorithms, SODA'04, pp. 352-361,
New Orleans, LA, USA, Jan. 04

[17] J. Eriksson, M. Faloutsos, S. Krishnamurthy,
“Scalable Ad Hoc Routing: The Case for Dynamic
Addressing””, IEEE INFOCOM 2004

