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Abstract 
 

An ad hoc routing algorithm must be able to locate 
and maintain a path from a source to a destination 
node while overcoming sudden changes in the network 
topology and explore alternative paths in case of path 
breaks. One "classic" type of solution is to constantly 
maintain an approximate routing table at each node 
and use it to dynamically search for a routing path to 
the destination. Another, more efficient type of 
algorithms uses geographical/geometrical coordinates 
at each node (obtained by GPS devices) to forward 
packets and explore alternative paths to the 
destinations. Recently it was shown that the exact GPS 
coordinates can be replaced by "virtual" grid like 
coordinates computed based on the number of 
links/hops between the nodes. Computing these grid-
like coordinates is a costly process eliminating the 
advantages of the geographical routing over the more 
classic types of algorithms. We propose a different type 
of virtual coordinates based on dynamic embedding of 
the ad-hoc connectivity graph by a minimal set of 
rooted trees. We give a novel ad hoc routing algorithm 
called MRA (Metrical Routing Algorithm) that uses the 
tree like coordinates to efficiently find minimal cover 
of the nodes by rooted trees and based on the tree 
coordinates forward packets to their destinations. 
Similar to geographical routing our algorithm allows 
oblivious transfer of packets to any destination 
avoiding the use of routing tables.  

The proposed method is compared to the well 
known AODV (Ad Hoc on Demand Distance Vector 
Routing) obtaining significant improvements in terms 
of number of messages, number of concurrent sessions, 
duration of the sessions, nodes' densities, queue sizes 
and resilience to sudden movements of the nodes. We 
have built a sophisticated simulator that has been 
carefully designed for a fair comparison between the 
two algorithms 

  

1. Introduction 
 

Ad Hoc networks allow communication between a 
dynamic set of mobile wireless users without using a 
fixed set of base stations. Each user of an Ad Hoc 
network also acts as a router allowing other users to 
communicate through its mobile communication 
device. The communication range of each device is 
limited thus at any given time a user can exchange 
packets only with other devices in its 
receiving/transmitting range. The set of users is highly 
dynamic: new users join in while other users may quit 
or move out of receiving range. In addition each node 
can arbitrarily move and possibly cause loss of 
communication with some nodes while creating new 
connections with other nodes. The basic 
communication structure is therefore of a dynamic 
graph where new edges (communication links with 
neighbors) and nodes are fused while other nodes and 
edges get arbitrarily deleted. This extremely difficult 
setting demands novel communication protocols that 
can maximize the amount and length of “sessions” 
between the users.  

The main or the "classic" types of ad-hoc routing 
algorithms (see [6]) maintain routing tables at each 
node containing the path (where to forward packets) 
for every possible session. Each change in the network 
(e.g., a communication link with a neighbor has been 
disconnected) must be forward to all other nodes in the 
network so that they can update their routing tables. 
Another possibility of the classic types is to 
dynamically search for a given destination. Typically 
such a search may require flooding the network by 
“search messages” until the destination is reached and 
a routing path has been located.  

The AODV algorithm [3] combines on demand 
search with temporal recent destination routing 
information and is considered to be one of the most 
efficient algorithms for ad-hoc routing. In AODV a 
search for a route to a given destination is basically 



performed by flooding. In AODV each node maintains 
a list of all its recent routings, thus the flooding can be 
reduced when it reaches an intermediate node that has 
the destination in its recent routing list. It becomes 
obvious that the AODV and all the other "classic" 
algorithms may use quadratic number of messages (in 
the number of nodes) to perform a search for a route or 
to update a routing table. 

Another type of ad-hoc algorithm uses the GPS 
coordinates of each node to forward packets to the 
neighboring node that has the shortest Euclidian 
distance to the destination. The routing is oblivious and 
thus potentially more efficient than the one used in the 
AODV types of algorithms. Using GPS can be 
regarded as a way of assigning grid like coordinates (in 
the real plane) to every node and using the grid metric 
to select the shortest routing paths. 

Compared to AODV type of algorithms in 
Geographical routing there is a need to locate the 
geographical coordinates of every destination before a 
packet can be sent. One solution was proposed by the 
GLS algorithm [5] wherein each node v periodically 
broadcasts its coordinates to a small well dispersed 
subset of nodes that have the nearest id-number to v. 
This subset of nodes forms a search tree allowing 
relatively efficient search for nodes' coordinates. 
Methods for locating coordinates based on nodes' ids 
also include the use of distributed hashing (DHT) 
see[9]. Another interesting algorithm is DREAM[4] 
where coordinate updates to far away nodes are less 
frequent than updates to nearer nodes. The algorithm 
that is proposed here also coordinateses this problem 
but uses a different type of solution to it.  One problem 
of forwarding packets to the geographically nearest 
neighbor is that the packet may reach a dead-end where 
all the neighbors are far apart from the destination than 
the current node. In this case the packet must move 
"backwards" along the current "face" searching for a 
new node out of which the greedy forwarding can 
continue (e.g., the GOAFR+ [13] algorithm combining 
greedy routing and face routing). A Pure face routing 
algorithms have also been proposed and analyzed, e.g., 
Compass routing [2], GFG[8],GPSR[7] and AFR[4].  

Figure 1 left side demonstrates a bad case of face-
routing where a packet from node S should reach node 
T. The gray nodes indicate real nodes and the 
transmission distance is such that each node is 
connected only to its left, right, up down most nearest 
grey neighbors. Following the short distance to T, the 
packet first moves from S to L but then must move 
along the face back to Q. At this point the packet takes 
the longer way to T and moves down since the lower 
neighbor of Q is closer to T than Q's upper neighbor.  

Recently, Rao et. Al. [12] proposed to use virtual 
coordinates that approximate geographical coordinates 
without using GPS. The basic idea is to embed the 
nodes in a grid wherein Euclidian distances in the 
plane are replaced by connectivity distances in the 
dynamic communication graph. The algorithm has 
three stages: 1) The nodes on the perimeter are 
identified, 2) The virtual coordinates of the perimeter 
are computed, and 3) Based on the perimeter, virtual 
coordinates of internal nodes are computed. Virtual 
coordinates are basically computed using a relaxation 
method wherein each node updates its coordinate based 
on the coordinates of its neighbors. Other works on 
virtual coordinates assume that a subset of the nodes 
(anchors) are equipped with GPS and thus based on the 
anchors coordinates other nodes can learn their relative 
approximated coordinates. Note that the bad case of 
Figure 1 is avoided when using a spanning tree rather 
than the grid metric. Intuitively, the term metric can be 
defined as follows. Let G be a communication graph 
such that there is an edge between every two nodes that 
are in communication range. For ad hoc routing, A 
metric D can be intuitively defined as a sub graph of G 
"more simple" with coordinates such that the shortest 
path between every two nodes U,V can be computed 
based on their coordinates d(U,V)= f(U.coor,V.coor).  
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Figure 1: Face routing & tree routing 

Actually the proposed metric uses spanning trees 
with "horizontal" edges (called shortcuts) connecting 
every node in the chosen rooted tree to all other nodes 
that are in transmission range. In routing from s to t, a 
shortcut edge <u,v> is used only if the distance from v 
to t on the rooted tree is shorter than the distance on the 
rooted tree from u's father and sons to t.  Figure 2 
illustrates this metric of rooted trees with shortcuts 
(denoted by double arrows). 

Note that the short distance (based on the proposed 
metric) from s to t is obtained by going up to node h 
then through the shortcut to node j and finally to t. A 
shortcut will be created automatically when it can 
reduce the path length and there is no management of 
shortcuts in tables. 
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Figure 2: Routed trees with shortcuts 

Note that potentially the packet could use a shorter 
path S f e T, however the distance in the tree 
from b to T is shorter than the tree distance from f to T. 
Note that the tree distance between any two nodes can 
be directly computed based on their IDs (their virtual 
coordinates in the tree), e.g., the distance between 
S=01010 and d=01000 is 4 as we need to go up 2 times 
and reach the common node/prefix  g=010 and then 
down  2 times. There are of course bad cases where 
this metric (rooted trees with shortcuts) will fail and 
two relatively close nodes will be far apart (as is 
depicted in figure 2), however we believe that 
practically for most pairs of nodes the distance 
assigned by this metric will be close to the real one. 

The choice of using the tree with shortcuts metric 
rather than the grid metric is motivated by the fact that 
it is better suited to handle the dynamic case of ad hoc 
networks. In particular note that adding a new node to 
an existing rooted tree requires only changing the 
virtual coordinates (IDs) of that node alone while 
adding a new node to an existing grid may require 
changing the virtual coordinates of most of the grid's 
nodes. In the case that a node U gets deleted, we might 
be forced to update the virtual coordinates of every 
node in the sub tree of U, however, usually the number 
of updates caused by deletion in the proposed metric is 
significantly less than that needed by the grid-like 
metric. In particular adding and deleting several nodes 
at the same time is more complex in grids than in trees 
as the new coordinates of most nodes in the grid are 
affected by all the changes while in trees the changes 
in two disjoint sub trees do not affect one another. 
Figure 3 presents a communication graph organized as 
a grid metric and a tree metric. Adding node A after 
the addition of node B in the grid metric requires a 
broad update of coordinates. The addition of nodes in 
the tree metric is totally independent. 

 

 
Figure 3: Spannig tree vs. grid metric 

The choice of rooted trees metric is also motivated 
by the theoretical results of the "metric labeling" 
problem [15]. In this problem, the goal is to 
approximate distances of nodes in the plane via simple 
graphs with virtual coordinates. A known result for 
metric labeling with trees [14] is to select the "center" 
point in the plane as the root of a tree and keep adding 
new leaves by selecting points that are the closest to a 
given leaf (also known as Dijkstra's trees). The average 
distance distortion factor (ADDF) using Dijkstra’s 
trees is less equal 2. Another result [16] shows that if 
we select a spanning tree at random out of a special 
distribution then the ADDF is less equal square log N, 
where N is the number of points in the plane. Better 
approximations to the static metric labeling problem 
can have been obtained, e.g., the use of spanner graphs 
or using integer programming [15], however, as 
explained such constructions are not feasible for ad hoc 
routing.  In any case, the metric of rooted tree with 
shortcuts has not been proposed in this context.      

Recently, [17] proposed an ad-hoc routing 
technique that is also based on routing via rooted trees 
where each node gets a virtual address in a rooted tree. 
This algorithm is not based on metrical routing and 
actually does not use virtual coordinates in the sense 
we have defined, i.e., embeds the connectivity/radius 
graph in a rooted tree such that the distance distortion 
is minimized. 



The focus of this work is to obtain a pragmatic 
general proof for using the tree + shortcuts metric for 
ad hoc routing, hence theoretical issues such as formal 
proofs for the effectiveness of the proposed metric 
compare to the grid metric are not considered. We have 
developed a complex simulator for testing the proposed 
algorithm and comparing its performances with those 
of the AODV. The complexity of Rao et. Al. [12] is 
too high for a practical implementation leaving the 
AODV as the only competitor for the proposed 
method. We remark that every effort was made to 
design the simulator such that the comparison will be 
fair. The design of a suitable ad hoc simulator required 
careful consideration of many factors. The current 
simulator deals with the new Metrical Routing 
Algorithm (MRA) and AODV. It presents a set of 
enhanced visualization, real-time tracing and online 
control features. There are only very few simulators 
that can simulate ad hoc networks (e.g.,PARSEC[10], 
NS-[11]), however due to the special features of the 
proposed algorithm we have decided to develop a 
special ad hoc simulator. The results obtained by the 
simulator indicate that using tree based metrics for ad 
hoc routing can improve both the number of messages 
and the duration of the sessions between ad hoc nodes.   

 
2. MRA Algorithm 

In this section we describe the MRA algorithm, by 
presenting the notations, the data used to control the 
connections between the nodes and the session 
mechanism. 

2.1 Main idea dynamic fusion of trees using 
shortcuts 

The MRA algorithm organizes the nodes in the field in 
rooted trees. Only nodes that belong to the same tree 
can create sessions among themselves. To ensure the 
maximal connectivity, all nodes will try to organize 
themselves in a single tree. Every node in the field has 
a unique node-id (phone number or IP address) and 
virtual coordinates that may change depending on the 
changes in the tree structure. Every tree is identified 
with a “tree name” which is the id of the root node. 
Nodes send periodically beacons (hello messages). 
Every node that receives a beacon checks whether the 
node that sent the beacon belongs to a different tree. If 
the nodes belong to different trees, they will initiate a 
fuse process that will fuse the separate trees into a 
single tree. The fusion protocol should satisfy the 
follow properties: 
1. The protocol should not cause active sessions to 
break  

2. Eventually (assuming no dynamic changes occur) 
all trees with nodes within transmission area must fuse 
into a single tree. 
3. When two trees are being fused most updates 
should be made to the nodes of the smaller tree (in the 
number of nodes). 
4. The protocol should maximize the number of 
nodes that migrate from one tree to the other in every 
step (yielding a parallel fuse).  
5. Nodes constantly attempt to shorten their distance 
to the root of the tree by fusion to higher level nodes. 
6. Initially every node forms a separate tree of size 
1. 
7. The protocol is fully distributive with no “central'' 
bottlenecks, namely it is defined at the level of pairs 
of nodes. 
Every node in the tree can initiate a fusion process to a 
neighboring tree regardless of the node position in the 
tree. The fusion node gets a new coordinates in its 
new tree according to the node new position. 
Naturally, when a node migrates from one tree to a 
new tree, it may carry its neighboring nodes to follow 
him. Figure 4 presents two stages of the trees fusion 
protocol: the initial state and final organization to trees 
(assuming no dynamic changes occur). Note that the 
two separate trees in Figure 4-B cannot fuse because 
there are no two nodes between the trees within a 
transmission range that will start a fusion process. 

(A)

  

(B)

 
Figure 4: Trees formation process 

The fusion process of two trees is a parallel process 
where at any given stage more than one node of the 
smaller tree joins the larger tree as is depicted in Figure 
5.  
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Figure 5:  Fusion of trees  

2.2 Notations 
An Ad Hoc network is built of moving nodes. All 

nodes are identical and run the same software. Every 
node sends periodically a “Hello” message that is 
received by all nodes within the transmission radius. 



Every node receives Hello messages from nodes within 
their transmission range. A “Source node” is a node 
that initiates a session that connects the “Source node” 
to the “Target node”. The following notations are used: 

Node Identification (ID) is a unique identifier of 
each node in the system. When a node initializes a new 
session towards the target node, the target node is 
identified by its ID.  

Node Coordinates. The coordinates of node v 
specifies the path from the tree root to v. For example 
if the coordinates of v is <0.1.1.2>, then v is son 
number 2 of a node with the coordinates <0.1.1>.  

Tree is a structured group of nodes that share the 
same tree name, which is the ID of the root node. Each 
node in the tree knows the ID and coordinates of its 
father and sons. The nodes of the tree and their father-
son connections form a legal tree graph.  

Tree size presents the number of nodes of the tree. 
Similarly, every node in a tree holds its sub-tree size.  

A Session is a period of time when the two nodes 
(the source node and target node) exchange 
speech/voice packets. The Source node initiates the 
session and either of the parties can trigger the 
termination of the session. The Source node will try to 
resume the session in case of a break off. The pair 
{Source node-ID, Target node-ID} identifies the 
session uniquely. 

Session Path is a bi-directional path used to transfer 
speech packets between the source node and the Target 
node. If needed, one or more intermediate nodes will 
be used to bridge between the session parties. The 
resources in every node are limited and voice receivers 
are allocated for a specific session. The voice receivers 
will be released when the session terminates or when 
needed, by a forced release. Note that a session path 
requires radio connectivity between adjacent session 
path nodes.  

Shortcuts are edges used to transfer sessions 
between two nodes that are within transmission range. 
The usage method of using shortcuts is described in the 
metric explained in the introduction. The path 
allocation algorithm will look for possible shortcuts in 
order to create a shorter session path. 

Figure 6 presents the “natural” session path 
<0.1.1><0.1><0><0.3><0.3.1><0.3.3.1> and the path 
created using shortcuts <0.1.1><0.1><0.2.2><0.3.3.1>. 
The node internal data structures are divided into 2 
major parts. The connectivity part keeps updated data 
describing the node relations with other nodes in the 
field. 

<0.3.2>

<0>

<0.1> <0.2>

<0.2.1>
<0.1.1>

<0.2.2> <0.2.3> <0.2.4>

<0.3>

<0.3.1>

<0.3.1.1> <0.3.1.2>Path with shortcuts  
Figure 6: Session path and path shortcuts 

The session’s part stores the sessions control 
information. Every session uses a local data structure 
target node session-cell that keeps the exact state of the 
session.   

2.3. Tree Connectivity Data 
Every node v broadcasts periodically a hello message. 
This message carries information about v, the 
coordinates of its neighbors that share the same tree 
with v, and the IDs of the father and sons of v. Every 
node, receiving a hello message from the node v, 
regardless of the source tree, stores/updates the 
information about v. 

The IDs are used to validate that v agrees with the 
receiving node about the type of “relationship” 
between them. In case that the nodes disagree about the 
type of relationship for a test-time then the receiving 
node assumes that something went wrong, and resets 
the type of the relationship to a “stranger” node. 

The following data items are stored in each node to 
manage the connectivity with the nodes’ father, sons 
and neighbors.  
 <Father ID and Coordinates>.  
 <Son ID, Coordinates and the size of the son’s 

sub-tree>.  
 <Neighbor ID, Coordinates, size of tree and tree 

name>.  
A neighboring node is a node that is within the range 
and is not a father or son. A neighboring node can be 
from v’s tree or from an adjacent tree. For every 
neighbor of node v that belongs to v’s tree, v keeps also 
a list of their neighbors. This information is used for 
efficient session route allocation (creating of 
shortcuts). 
For tracking the stability of the connection to the father 
or son, the node counts the number of consecutive 
times that a Hello message was received from a known 
father/son but with non-father or non-son indication. 
Crossing a threshold indicates that there is an 
inconsistent situation were the father and son or vice 
versa don’t agree on the relations between themselves. 
In this case, the node resets the connection state to 
stranger. 



2.4. Session Control Data 
Every session has the following parties: The Source 
node who originates the session, the Target node and if 
necessary intermediate “transit” nodes. Sessions are 
identified uniquely in the system by the session-id, 
which is constructed of the Source node and Target 
node ID’s. A session will not break if nodes in the 
session path change their coordinates. The following 
data items are used in order to control and maintain the 
sessions: 

A Source node maintains the Target node ID, 
coordinates of Target node, ID of the next node on the 
session path and the session state. A Target node 
maintains the Source node ID and the ID of the 
previous node on the session path. 

Transit nodes maintain the Source node and Target 
node ID’s and the coordinates of previous and next 
nodes on the session path. 

2.5 States 

Every node handles two state machines: The 
connectivity state machine that controls the relations of 
the node with its neighbors (with the following states: 
Neighbor addition, Father Loss, Son loss, Son addition, 
Father Migration, Change of tree size and Son 
migration) and the session state machine that controls 
every session (with the following states: Coordinates 
Resolution, Path Allocation, Stable and Terminating) 

2.6 Actions performed by node 
Every node takes autonomous actions targeted to 

keep the node in a tree, and when possible to join a 
larger tree. When triggered, the node will take actions 
to create a session to another node. The best 
connectivity can be achieved only if a session can be 
created between every two nodes in the field. This 
requires that all nodes will be organized in the same 
tree. The following actions are taken as follows to 
support the maximal connectivity of all nodes in the 
field: Node Migration (from a small tree to a bigger 
tree), Node Relocation (inside a tree), Rooting as a tree 
and registration of a node as a tree.  
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Figure 7: Nodes relocation  

Every session occupies a Source node, Target node 
and if necessary transit nodes. The Source node is the 
proactive side initiating the session and the Target 

node and the transit nodes react to the session initiation 
request. The Source node is in charge of resuming the 
session after a session break. 

3. Simulations and results 
 

We tested the MRA protocol and compared the 
results to Ad hoc On-demand Distance Vector Routing 
[3]. AODV minimizes the number of broadcasts by 
creating routes on demand. For reminding the route 
discovery process in AODV is initiated whenever a 
nodes needs to create a session with another node. 
When possible, nodes use local routing information 
stored in its tables. 

3.1 Simulation environment 
We developed a simulator for testing the MRA 

algorithm and running comparable tests to other 
routing protocols. Currently the AODV protocol was 
implemented and used in the tests. A special care was 
taken during the design and implementation of the 
simulator on the following aspects: (a) enhanced 
visualization tools that give a full online view of the 
testing field, nodes movements, voice channels, 
specific node status including queues status etc. (b) 
Tracing the forming of trees in MRA protocol. (c) 
Tracing the sessions in real time (d) Configuration via 
online screens (e) Support of logging, debugging and 
analysis tools. 

Our simulator does not fully model the MAC layer. In 
our simplified model, no packets get lost and 
transmission reception is granted within the 
transmission range. Our simplified MAC model allows 
us to concentrate on the unique features of the MRA 
algorithm and analyze the results in an isolated 
environment. This decision allowed us to reduce the 
number of independent factors and enhance the debug 
and visualization capabilities. 

A session is a full duplex connection between nodes. A 
message can be lost because of an overflow of the 
queue in one of the chain of nodes used by the session. 
The following values were used in the simulations. 

Table 1: Main simulation parameters 
Attributes Selected Values 

Field Size 120 x 120 meters 
No. Of nodes in 
simulation  

100, 140, 180, 220,260 and 300 
nodes in the field. 

Node Movement Speed: 5-7 Km/Hour. Movement 
direction: Change with the 
probability of 0.01.  

Transmission 
Radius 

27 meters. 

Session setup 3 retries. The session will be 



retries dropped after the 3rd false retry. 
Session Length 5 seconds 

3.2 Main Experiments 
Table 2 present the number of sessions through 

which more than a certain percentage of the speech 
messages passed. For example, the notation MRA 100 
presents a run of MRA protocol with 100 nodes. The 
success rate presents the number of sessions that 
succeeded to transfer more than X% of the session 
packets. Naturally, the sessions that succeeded to 
transfer 85%-100% of the packets are included in 80%-
100% column (sessions with less than 80% success of 
packets transfer were classified as faulty sessions).  

Table 2: Successful sessions MRA Vs. AODV 
Success rate in % Protocol 

80-100 85-100 90-100 95-100 100 
MRA100 270 267 264 257 71 
AODV100 188 188 188 184 45 
MRA140 341 325 315 289 67 
AODV140 210 210 210 197 25 
MRA180 477 462 444 410 95 
AODV180 252 226 172 90 6 
MRA220 524 489 452 383 95 
AODV220 176 134 81 31 0 
MRA260 535 491 441 377 94 
AODV260 40 23 12 4 0 
MRA300 604 558 518 442 112 
AODV 300 13 7 3 0 0 
The analysis of the results raises the following 
observations:  
1. MRA generates a higher number of successful 
sessions. This observation is true for all densities. 
2. The gap between the number of sessions generated 
by MRA and AODV grows as the density of the nodes 
grows.  
3. The session’s quality drops quicker for AODV 
than for MRA as the density increases. The quality of 
service is defined as the weighted sum of the sessions 
from every success rate, divided by the estimated 
attempts. This decrease is mainly noticeable in the high 
densities. For example, in the case of 300 nodes, MRA 
succeeded to handle 604 sessions with a success of 
80% and AODV handled successfully only 13 
sessions. MRA handled successfully 112 sessions with 
100% messages transfer and AODV failed to handle 
any sessions with 100% message transfer. 

3.3. Queue overflow 
Every node handles 2 types of messages: Control 

messages which are used in order to control and 
generate sessions and data messages which are used in 
order to transfer the speech between the nodes. The 
total number of messages that a node handles depends 
on two factors: (1) the number of concurrent sessions 

managed by the node (Transit sessions or terminating 
sessions) Naturally, peripheral nodes will transfer less 
transit traffic than inner nodes. (2) The load generated 
by the control traffic. This load depends on the density 
of the nodes and on the nature of the algorithm. 
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Figure 8: MRA Vs. AODV queue overflow 
 MRA generates new sessions with an order of O(n) 
messages while AODV generates sessions with the 
order of O(n2). Intuitively, as the number of nodes 
grows and the density grows, the number of messages 
handled by a node working under AODV protocol is 
significantly higher than a node working under MRA 
protocol. Figure 8 presents the number of lost 
messages due to queue overflow. The nodes queues are 
limited to 20 messages. This limit exposes the node to 
queue overflow and loss of messages. This risk grows 
as the traffic grows. The number of messages that are 
lost under AODV grows rapidly compared to MRA. 
This loss of messages is a central factor decreasing the 
quality of the session. 

3.4. Session Path Length 
Table 3 presents the average number of hopes used 

by the sessions in MRA and AODV. The path created 
by MRA is shorter except for the exceptional case of 
300 nodes where the path created by AODV seems 
shorter, but in fact AODV has not succeeded to create 
and maintain a meaningful number of sessions. A 
shorter path means that less transit nodes are involved 
in the sessions and the message load occupies fewer 
nodes. The short path keeps the nodes that are not 
involved with the session with less traffic and reduces 
the chance of queue overflow. 

Table 3: Session path length 
Number of Nodes in Field  

100 140 180 220 260 300 
MRA 4.33 4.35 4.27 4.22 4.17 4.1 
AODV 4.50 4.39 4.80 4.63 4.4 3.76 

 

4. Conclusions and Future Work 
A new type of ad hoc routing algorithm called MRA 

is presented. The MRA algorithm is designed to 
maximize a dynamic cover of the mobile nodes by a 



network of virtual coordinates. The proposed algorithm 
covers the nodes by rooted trees and thus establishes 
the coordinates. The MRA algorithm handles: 

• Maximal coverage of the nodes by rooted trees 
through migration of nodes from smaller trees to larger 
ones. 
• The coordinates are used to forward packets to a 
destination in spite of sudden disappearances of nodes 
along selected paths. 
• Coordinates are used to find "shortcuts" on the 
rooted trees so that sub-roots of the trees will not form 
bottlenecks.  
• A distributed "phone" directory for searching the 
coordinates of nodes is maintained by the algorithm. 
The proposed method is compared to the well known 
AODV (ad Hoc on Demand Distance Vector Routing) 
algorithm obtaining significant improvements in terms 
of number of messages, number of concurrent sessions, 
duration of the sessions, nodes' densities, queue sizes 
and resilience to sudden movements of the nodes.   
Future research directions include the exploration of 
various regular structures for coordinate coverage as an 
alternative to the rooted trees presented in this paper. 
Another direction is the enhancement of the simulator 
by simulating obstacles and improvements of the 
simulator performance. 
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