
Frequency Capping in Online Advertising
(Extended Abstract)

Niv Buchbinder1, Moran Feldman2?, Arpita Ghosh3, and Joseph (Seffi)
Naor2??

1 Open University, Israel
niv.buchbinder@gmail.com

2 Computer Science Dept., Technion, Haifa, Israel

{moranfe,naor}@cs.technion.ac.il
3 Yahoo! Research, Santa Clara, CA

arpita@yahoo-inc.com

Abstract. We study the following online problem. Each advertiser ai

has a value vi, demand di, and frequency cap fi. Supply units arrive
online, each one associated with a user. Each advertiser can be assigned
at most di units in all, and at most fi units from the same user. The
goal is to design an online allocation algorithm maximizing total value.
We first show a deterministic upper bound of 3/4-competitiveness, even
when all frequency caps are 1, and all advertisers share identical values
and demands. A competitive ratio approaching 1 − 1/e can be achieved
via a reduction to a model with arbitrary decreasing valuations [GM07].
Our main contribution is analyzing two 3/4-competitive greedy algo-
rithms for the cases of equal values, and arbitrary valuations with equal
demands. Finally, we give a primal-dual algorithm which may serve as a
good starting point for improving upon the 1− 1/e ratio.

1 Introduction

Display advertising, consisting of graphic or text-based ads embedded in web-
pages, constitutes a large portion of the revenue from Internet advertising, to-
taling billions of dollars in 2008. Display, or brand, advertising is typically sold
by publishers or ad networks on a pay-per-impression basis, with the advertiser
specifying the total number of impressions she wants (the demand) and the price
she is willing to pay per impression.4

Since display ads are sold on a pay-per-impression rather than on a pay-per-
click or pay-per-action basis, effective delivery of display ads is very important to
maximize advertiser value — each impression that an advertiser pays for must
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be shown to as valuable a user as possible. One aspect of effectively delivering
display ads, which has been widely studied, is good targeting — matching ads
to users who are likely to be responsive to the content of the ad. Another very
important, but less studied, aspect is limiting user exposure to an ad - displaying
the same ad to a user multiple times diminishes value to the advertiser, since the
incremental benefit from repeatedly displaying the same ad to a user is likely to
be small (a user is unlikely to react to an ad after he has seen it a few times).

The notion of limiting the number of times a user is exposed to a particular
ad is called frequency capping [19], and is often cited as a way to avoid banner
ad burnout. That is, frequency capping prevents ads from being displayed re-
peatedly to the point where visitors are being overexposed and response drops.5

Serving frequency capped ads is a very real requirement to maximize value de-
livered to display advertisers, particularly in the pay-per-impression structure of
the display advertising marketplace. This is recognized by a number of publish-
ers and ad networks (for instance, RightMedia, Google and Yahoo!) who already
offer or implicitly implement frequency capping for their display advertisers.

Serving display ads subject to a frequency capping constraint poses an on-
line assignment problem since the supply of users, or impressions, is not known
to the ad server in advance. How should the ad server allocate impressions to
advertisers in this setting? In this paper, we study the simplest abstractions of
the assignment problems motivated by frequency capping.

Problem Statement. There are n advertisers. Advertiser i has value per impres-
sion vi, which is the price she is willing to pay for an impression, and a demand
di, which is the maximum number of impressions she is interested in. In addi-
tion, she also has a frequency cap fi, which is the maximum number of times
her ad can be displayed to the same user. That is, an advertiser pays vi only for
impressions from users who have not seen her ad more than fi times. The set of
advertisers, and their parameters, is known to the ad server in advance.

Impressions from users arrive online. We say an advertiser is eligible for an
impression if she still has leftover demand, and has not yet exhausted her fre-
quency cap for the user associated with this impression. When an impression
arrives, the ad server must immediately decide which ad, among the set of eligi-
ble advertisers, to display for that impression. The total revenue obtained by an
algorithm is the sum of the revenues from each impression it allocates. We want
to design algorithms that are competitive against the optimal offline allocation,
which knows the supply of impressions (with their associated users) in advance.
(This problem is captured by the model in [14], see §1.1.)

In the absence of the frequency capping constraint (fi = ∞), the natural
greedy algorithm, which assigns each arriving impression to the advertiser with
the highest per-impression value vi, is optimal. However, with the frequency
capping constraint, the ad server faces a tradeoff between assigning an arriving
impression to an advertiser with high vi but large frequency cap (since the

5 While it might be argued that multiple displays of an ad to a user reinforces its
message, repeated display without an upper limit clearly diminishes value.



supply can stop anytime) and a lower value advertiser with a smaller frequency
cap (since small fi means this advertiser needs to be assigned to many distinct
users). In fact, even when all advertisers have identical values (with arbitrary tie
breaking), the greedy algorithm is not optimal, as the following example shows:
there are two advertisers, the first with v1 = 1, f1 = n, and the second with
v2 = 1 − ε and f2 = 1; both advertisers have demand n (the 1 − ε is used for
tie breaking). The sequence of users is u1, . . . , un, un+1, . . . , un+1, where the last
user appears n times (n impressions). The greedy allocation gets a value of n+1,
whereas the optimal offline allocation gets 2n.

As the next example shows, however, it is not even the different frequency
caps that lead to the suboptimality of the greedy algorithm: suppose there are
n + 1 advertisers each with fi = 1. The first n advertisers have value 1 and
demand 1, and the last advertiser has value 1− ε and demand n. With the same
arrival sequence of users, a greedy allocation, again, gets a value of n+1, whereas
the optimal value is 2n. In fact, as we will show in §3, even when all values and
demands are equal and all frequency caps are 1, no deterministic algorithm can
have a competitive ratio better than 3/4.

Distinction from Online Matching. Finding a matching in a bipartite graph
where one side is known and the other side is exposed one vertex at a time is
known as online matching. While the problem of online allocation with frequency
capping constraints appears to be similar to online matching, they are actually
quite different. In the frequency capping problem, a-priori each impression can
be assigned to any of the advertisers. Now, as the impressions arrive, in the lan-
guage of online matching, the existence of an edge between an advertiser and an
arriving impression depends on the previous assignments made by the algorithm
because of the frequency capping constraint. Specifically, if the algorithm has al-
ready assigned enough impressions from user j to advertiser i, or has exhausted
i’s demand, there is no edge between advertiser i and a newly arrived impression;
otherwise, there is an edge. This means that an adversary can no longer control
the set of edges hitting each new impression; instead, the online algorithm de-
termines the set of edges using indirect means. While we expect this property
to translate into better competitive ratios for the frequency capping problem,
taking advantage of the difference is not easy, a fact which is demonstrated by
the involved analysis for the natural greedy algorithm for the problem.

Results. Our online assignment problem can be stated abstractly as follows:
There are n agents, each with a total demand di, and a value vi for items. Items
of different types arrive one by one in an online fashion and must be allocated to
an agent immediately. Agent i wants at most fi copies of any single type of item.
How should an online algorithm assign each arriving item to agents to maximize
value? This abstract statement suggests the following simpler questions.

– Equal values, arbitrary di, fi: Suppose agents (advertisers) have identical
values for items (impressions), that is, vi = 1 for all i. Now, the goal of the
online algorithm is simply to assign as many items as possible. Our main



technical contribution is the analysis of a novel greedy algorithm, proving
that it is 3/4-competitive; this is optimal for a deterministic algorithm. The
first step is to show that we can assume without loss of generality that every
advertiser has frequency cap 1, i.e., wants no more than one impression from
each user (the reduction is independent of advertisers having the same value,
and also applies when advertisers have arbitrary values). This reduction is
simple, yet crucial — for each of the cases we study, designing algorithms
directly, with arbitrary frequency caps, turns out to be rather hard.
We then analyze our greedy algorithm, which assigns arriving impressions in
decreasing order of total demand amongst eligible advertisers, for instances
with unit frequency cap. (Assigning greedily according to maximum residual
demand does not work; this algorithm cannot do better than 2/3.) The unit
frequency cap means that an advertiser is eligible for an impression if she has
leftover demand and has not yet been assigned to this user. We first prove
that any non-lazy algorithm has competitive ratio 3/4 when all demands
are equal (in addition to the equal value); then we build on this analysis to
account for the fact that advertisers have unequal demands.
Combinatorial analysis of online algorithms is usually done via a potential
function argument which shows that at each step, the change in the potential
function plus the algorithm’s revenue are comparable to the gain of the opti-
mal solution. Surprisingly, our analysis considers only the final assignment,
disregarding the way in which it is reached. This allows us to avoid coming
up with a potential function (which in many cases seems to come “out of
nowhere”), and skip the tedious consideration of each possible step.
Our result is especially interesting in light of the known upper bounds for
unweighted online matching: 0.5 and 1 − 1/e ≈ 0.63 for deterministic and
randomized algorithms, respectively [16].

– Arbitrary values, equal di/fi: The ideas used in the analysis of the equal val-
ues case can be extended to analyze the case where advertisers have different
values, but the same ratio of demand to frequency cap. We show here that
the natural greedy algorithm, which assigns in decreasing order of value,
has a competitive ratio of 3/4; again, this is optimal in the sense that no
deterministic algorithm can do better.

– Arbitrary values, di and fi, with targeting: Finally, for the general case with
arbitrary values, demands and frequency caps, we design a primal-dual al-
gorithm whose competitive ratio approaches 1− 1/e ≈ 0.63 when di/fi À 1
6; we also show an upper bound of 1/

√
2 for this case. Our online primal-

dual algorithm has an interesting feature: it both increases and decreases
primal variables during the execution of the algorithm. The same algorithm
and competitive ratio also apply when advertisers have target sets, i.e., they
have value vi for impressions from a set Si of users, and value of 0 for other
impressions. For this case, we have a matching upper bound for determinis-
tic online algorithms, using the upper bound on online b-matching [15]. (See
§1.1 for a discussion regarding [14] and online primal dual algorithms.)

6 The competitive ratio of 1− 1/e in [14] is under an assumption similar to ours.



1.1 Related Work

Maximizing revenue in online ad auctions has received much attention in recent
years [8, 7, 18, 17, 6, 11, 12]. The problem of designing online algorithms to max-
imize advertising revenue was introduced in the adwords model [18]: advertisers
have budgets, and bids for different keywords. Keywords arrive online, and the
goal is to match advertisers to keywords to maximize revenue, while respecting
the advertisers’ budget constraints. Goel and Mehta [14] extend the adwords
model, allowing advertisers to specify bids for keywords which are decreasing
functions of the number of impressions (of the keyword) already assigned to the
advertiser. Our frequency capping problem is, in fact, a special case of the model
of [14] (but not of the adwords model of [18]), where keywords correspond to
users, and the decreasing function takes the form of a step function with cutoff
fi. Hence, the (1−1/e)-competitive online algorithm of [14] applies to our prob-
lem as well. On the other hand, the upper bounds in [14] do not apply to our
problem since the model of [14] also captures online matching. Improving upon
the ratio of 1− 1/e in special cases is posed as an open problem in [14].

Our greedy algorithms in §3 and §4 obtain a ratio of 3/4, improving upon this
ratio of 1− 1/e. While the competitive ratio of our algorithm in §5 is the same
as that in [14], the algorithms are quite different. Moreover, our model does not
inherit the upper bound of 1− 1/e 7, and in fact, the best upper bound for the
case without target sets is 1/

√
2. Also, while the most general problem we solve

in this paper remains within the model of [14], the most general and realistic
version of the frequency capping problem (§6) cannot be stated as a special case
of the model of [14]. For this model the question of both a competitive algorithm
and an upper bound (tighter than 1− 1/e) are open.

The primal dual framework for online problems, first introduced by Buch-
binder and Naor [9], has been shown to be useful in many online scenarios
including ad auctions, see [4, 5, 3, 2, 10, 11]. Unlike these primal-dual algorithms
(e.g., [9, 11]), which simply update the primal variables monotonically in each
round, our primal-dual algorithm is novel in that it reassigns primal variables
several times during the execution of the algorithm; hence, the primal variables
do not necessarily increase monotonically with each round of new supply.

Mirrokni et al. [13] consider frequency capping in a stochastic model, but
they leave open the question of improving upon the 1− 1/e ratio in this model.
Finally, the work in [1] also addresses user fatigue in the context of sponsored
search; however, the model and algorithms substantially differ from ours.

2 Preliminaries

We denote by A(σ) the revenue of algorithm A on a sequence σ of arrivals of
impressions, and by OPT (σ) the revenue of the optimal offline algorithm, which

7 Since the model of [14] captures the adwords model of [18], it inherits an upper
bound of 1 − 1/e on the competitive factor. The frequency capping problem does
not generalize the adwords model, and therefore, does not inherit this upper bound.



knows σ in advance. The goal is to design an online algorithm A that assigns
each impression immediately upon arrival, and produce a feasible allocation
whose total value A(σ) is competitive against OPT (σ) for any σ. The natural
greedy algorithm for the problem, denoted by GREEDYV , allocates each arriv-
ing impression to the eligible advertiser with the highest value (breaking ties
arbitrarily, but consistently). The examples in the introduction show that the
greedy algorithm at most 1/2-competitive. The next theorem shows that this is
tight, due to space limitations, its proof is deferred to a full version of this paper.

Theorem 1. The competitive ratio of GREEDYV is 1/2.

We now establish a reduction from general frequency caps to unit frequency
caps which greatly simplifies our algorithms. The following theorem allows us to
assume fi = 1 in the rest of the paper, its proof is also deferred to a full version.

Theorem 2 (Reduction to Unit Frequency Cap). For every frequency cap-
ping instance there is an equivalent instance where all frequency caps are 1.
Moreover, any solution to the equivalent instance can be transformed in an on-
line fashion to an equivalent solution in the original model.

3 Identical Valuations

In this section, we assume all advertisers have identical valuations, i.e., for each
advertiser ai, w.l.o.g., vi = 1. The following theorem gives an upper bound on
any deterministic online algorithm; due to space limitations, its proof is deferred
to a full version of this paper.

Theorem 3. No deterministic online algorithm is better than 3/4-competitive,
even if all advertisers have identical values, demands, and frequency caps.

We now turn to online algorithms. A natural greedy algorithm is one that as-
signs an arriving impression to an eligible advertiser with the maximum residual
demand. However, assigning according to residual demand, breaking ties arbi-
trarily, cannot have a competitive ratio better than 2/3, as the following example
shows. There are two advertisers, with d1 = 1 and d2 = 2, with ties broken in
favor of a1. The sequence of arrivals is u2, u1, u2. The residual demand algorithm
allocates only two impressions: the first impression to a2 and then the second
impression to a1. The optimal assignment, however, can assign all 3 impressions.

We show that an alternative greedy algorithm, GREEDYD, which assigns
according to total demand, is 3/4-competitive. Hereby is algorithm GREEDYD:

1. Sort advertisers a1, . . . , an in a non-decreasing demand order (d1 ≥ . . . ≥ dn).
2. Assign an arriving impression to the first eligible advertiser in this order.

We need the following notation. Let yi denote the number of impressions
assigned by GREEDYD to ai, and let y∗ = mini yi. Let k denote the number
of advertisers whose demand is exhausted by GREEDYD. In §3.1, we analyze
the case of equal demands, and in §3.2 we build on this analysis to deal with the
case where demands are arbitrary. We include the proof of the equal demands
case since it is simpler, yet gives some insight into the proof of the general case.



3.1 Equal Demand Case

Algorithm GREEDYD is non-lazy, i.e., it allocates every impression it receives,
unless no advertiser is eligible for it. We show that any non-lazy algorithm,
including GREEDYD, is 3/4-competitive if all advertisers have equal demand d.

Theorem 4. Let ALG be a non-lazy algorithm, and let σ be a sequence of im-
pressions. Then, ALG(σ)/OPT (σ) ≥ 3/4.

k n-k
y*

d-y*R1

R2

R3

Fig. 1. Each column is an advertiser and each row corresponds to a unit demand.

Before going into the proof of Theorem 4, consider the example depicted in
Figure 1. The rectangle is divided into three areas: R1 is the total allocation
of advertisers who have exhausted their demand, R2 is the total allocation of
advertisers who have not exhausted their demand, and R3 is “unused” demand.
We use two bounds on |OPT (σ)| − |ALG(σ)|: |R3| ≤ (d− y∗) · (n− k) ≤ |R2| ·
(d−y∗)/y∗, and k ·y∗ ≤ |R1| ·y∗/d (note that y∗ > 0 since an advertiser who has
received no impressions can always be assigned at least one impression without
violating the frequency cap constraint). The theorem follows from these bounds,
and the observation |ALG(σ)| = |R1|+ |R2|.

Let A be the set of impressions allocated by OPT , and let B ⊆ A be of
size OPT (σ)−ALG(σ). Associate each impression of B with an advertiser, such
that up to d − yi impressions of B are associated with each advertiser ai. This
is possible since

∑n
i=1(d− yi) = nd−ALG(σ) ≥ OPT (σ)−ALG(σ) = |B|.

Lemma 1. |B| = OPT (σ)−ALG(σ) ≤ y∗k.

Proof. Let ai∗ be an advertiser for which yi∗ = y∗. If y∗ = d, then ALG(σ) =
nd = OPT (σ), so we can assume y∗ < d. Thus, each impression ALG fails to al-
locate belongs to a user already having an impression allocated to ai∗ (else ALG
could have assigned it to ai∗). Hence, there are at most y∗ users having unallo-
cated impressions. Each such user u has at most k more impressions allocated
by OPT than by ALG (if u has an unassigned impression, all n− k advertisers
with non-exhausted demands must have been assigned an impression of u).



We define two types of payments received by each impression x ∈ B. Suppose
impression x is associated with advertiser ai. The first payment x gets is px =
yi/(d− yi), and the second payment is p′x = d/y∗.

Lemma 2. The total payment received by all impressions of B is at most ALG(σ).

Proof. Let E denote the set of advertisers whose demand is not exhausted by
ALG (i.e., |E| = n − k). Let ai ∈ E. For each impression x associated with ai,
we have px = yi/(d− yi) and the number of such impressions is at most d− yi.
Therefore, the first type of payment received by impressions associated with ai

sums up to at most yi. Adding up over all advertisers of E, the sum of the first
type payments to all impressions in B is at most

∑
ai∈E yi. Since payments of

the second type all equal values, they add up to |B| · d
y∗ ≤ y∗k · d

y∗ = dk. Note
that dk +

∑
ai∈E yi = ALG(σ), since ai 6∈ E ⇒ yi = d, completing the proof.

Lemma 3. For each impression x ∈ B, px + p′x ≥ 3.

Proof. Suppose x is associated with an advertiser ai. The total payment received
by x is: yi

d−yi
+ d

y∗ ≥ y∗

d−y∗ + d
y∗ = y∗2+d(d−y∗)

y∗(d−y∗) = 3 + (2y∗−d)2

y∗(d−y∗) ≥ 3 .

Corollary 1. ALG(σ) ≥ 3|B|.
The proof of Theorem 4 is now immediate:

ALG(σ)
OPT (σ)

=
ALG(σ)

ALG(σ) + |B| ≥
3|B|

3|B|+ |B| =
3
4

. (1)

3.2 General Case

In this section we prove the main result of our paper. Unfortunately, the proof
from the previous section does not readily generalize; the core of the difficulty
is that it is no longer possible to sort the advertisers in non-decreasing demand
order such that all exhausted advertisers appear before the non-exhausted adver-
tisers. Instead, exhausted and non-exhausted advertisers might be interleaved in
every non-decreasing demand ordering of the advertisers. Thus, it is hard to guar-
antee the extent to which impressions of exhausted advertisers can be charged. A
simple approach to overcome this difficulty is to split the advertisers into blocks,
making sure that within each block the exhausted advertisers appear before the
non-exhausted ones. However, this fails since OPT and GREEDYD may place
impressions in different blocks. To circumvent this problem we consider subsets
of advertisers having demand above a given threshold. The proof then makes a
connection between the difference in number of impressions allocated by OPT
and GREEDYD to a subset of the advertisers and the number of exhausted
advertisers in the subset, yielding a lower bound on the payment that can be
extracted from the impressions of the exhausted advertisers.

The next theorem shows that GREEDYD is 3/4-competitive also for arbi-
trary demands; due to space limitations, its proof is deferred to a full version.

Theorem 5. For any sequence σ of input impressions, GREEDYD(σ)
OPT (σ) ≥ 3/4.



4 Equal Demands/Arbitrary Valuations

In this section, we assume advertisers have different values, but equal ratio of
demand to frequency cap (this can happen, e.g., when each advertiser has fre-
quency cap fi and wants to advertise to the same number of distinct users u, i.e.,
di = fiu). The reduction to unit frequency caps makes this equivalent to assum-
ing all demands are equal and all frequency caps are 1. The following theorem
shows that the natural greedy algorithm GREEDYV , assigning in decreasing
order of value, is 3/4-competitive. Note that by Theorem 3, this ratio is optimal.

Theorem 6. For any sequence σ of input impressions, GREEDYV (σ)
OPT (σ) ≥ 3/4,

under the above assumptions.

The proof builds on the ideas developed in Theorem 5, and due to lack of space,
it is deferred to a full version of this paper.

5 Arbitrary Valuations

We now consider arbitrary valuations vi. We first prove an improved upper bound
for this case. Due to space imitations, the proofs of the theorems of this section
are deferred to a full version of this paper.

Theorem 7. No deterministic algorithm is better than 1/
√

2 ≈ 0.707-competitive.

5.1 A Primal-Dual Algorithm

In order to apply the primal-dual approach to the problem, we first formulate
the offline allocation problem as a linear program as following. Let A be the set
of advertisers. Let B be the set of users. Finally, for each user j ∈ B, let K(j)
be the number of impressions of user j. We define variables y(i, j, k) indicating
that the k-th impression of user j is assigned to advertiser ai.

max
∑

ai∈A

vi

∑

j∈B

K(j)∑

k=1

y(i, j, k) (D)

s.t.
∑

j∈B

K(j)∑

k=1

y(i, j, k) ≤ di ∀ai ∈ A

K(j)∑

k=1

y(i, j, k) ≤ fi ∀ai ∈ A, j ∈ B

∑

ai∈A

y(i, j, k) ≤ 1 ∀j ∈ B, k ∈ {1, 2 . . . , K(j)}

y(i, j, k) ≥ 0

The first set of constraints guarantees that at most di impressions are assigned to
advertiser ai. The second set of constraints guarantees the frequency cap of each



advertiser. Finally, the last set of constraints guarantees that each impression
is assigned only once. For consistency with previous work [9], we refer to the
maximization problem as the dual problem. We now define the primal problem.
We have variable x(i) for each advertiser ai, a variable w(i, j) for each pair of
advertiser ai and user j and variable z(j, k) for the k-th impression of user j.

min
∑

ai∈A

dix(i) +
∑

ai∈A,j∈B

fiw(i, j) +
∑

j∈B,k

z(j, k) (P )

s.t. x(i) + w(i, j) + z(j, k) ≥ vi ∀ai ∈ A, j ∈ B, k
x, w, z ≥ 0

The allocation algorithm is as follows. We assume that the reduction to the case
where the frequency cap of each advertiser is 1 has already been applied.

Allocation Algorithm: Upon arrival of impression k of user j:

– Let S(j) be those advertisers not yet assigned impressions of user j, and
let S(j) = A \ S(j).

– Let m1 ∈ S(j) be the advertiser that maximizes vi − x(i). Let m2 ∈
S(j) \m1 be the advertiser that maximizes vi − x(i).a

1. Assign impression k to advertiser m1.
2. For each advertiser i ∈ S(j) ∪ m1 set: w(i, j) ← max{0, (vi − x(i)) −

(vm2 − x(m2))}.
3. For each advertiser i ∈ S(j) \m1 set: w(i, j) ← 0.
4. For each impression ` ≤ k of user j set: z(j, `) ← vm2 − x(m2).
5. For advertiser m1: x(m1) ← x(m1)

(
1 + 1

di

)
+ vm1

c·di
(c is a constant to

be determined later).

a If maxS(j)(vi − x(i)) ≤ 0, or S(j) = ∅, no assignment is made and no variables
are updated. If there is no m2, we view vm2 − x(m2) as equal to 0.

Notice that this algorithm differs from the standard online primal-dual ap-
proach because it both increases and decreases primal variables.

Theorem 8. The algorithm is (1−(c+1)−1)-competitive, for c = (1+ 1
dmin

)dmin−
1, where dmin is the minimum demand of any advertiser.

Targeting constraints. We assumed thus far that advertisers valued all users
equally. In practice, however, when buying display ad space, advertisers can
provide targeting information, specifying which subset of impressions is accept-
able. That is, advertisers have value vi for acceptable impressions that meet the
targeting constraints and value of 0 for others (contracts for display ads typi-
cally specify a single price-per-impression that does not vary across the set of
acceptable impressions, i.e., vi does not take on different non-zero values).

Suppose targeting information is user-dependent only, i.e., an advertiser may
value only a subset of users with certain characteristics (age, gender, location,
etc.), but does not distinguish between different impressions (e.g., when visiting



different webpages) from the same user. In this case, advertiser values have the
following form: v(i, j) is either vi or 0 (i.e., ai finds users with v(i, j) = vi

acceptable, and the rest unacceptable). We observe that the above algorithm
also works for this more general setting. The only change is that the sets S(j)
and S(j) include only advertisers that accept user j. This implies the following.

Theorem 9. For c = (1 + 1
dmin

)dmin − 1, the algorithm remains (1− (c + 1)−1)-
competitive, when v(i, j) ∈ {0, vi} for all i, j.

Theorem 10. With targeting constraints, no deterministic algorithm has a com-
petitive ratio higher than 1− 1/e, even when demand are large.

6 Further Directions

The frequency capping problem is an important practical problem which imposes
interesting algorithmic challenges. Here are two main directions for further work.

– Improving 1− 1/e for arbitrary valuations: There is a gap between the best
upper bound of 1/

√
2 and the best algorithm (1− 1/e) for the case of arbi-

trary valuations without targeting constraints, discussed in §5. The targeting
constraints are to be blamed for the “matching” aspects, leading to the upper
bound of 1− 1/e in Theorem 10. By removing these constraints, the differ-
ence between our problem and online matching resurfaces, and the upper
bound of 1 − 1/e does not hold anymore. We believe that our primal-dual
algorithm is an excellent starting point for a future online algorithm for
frequency capping with arbitrary values that will go beyond 1− 1/e.

– Content-based targeting specifications: Targeting specifications may be not
only user-based, but also depend on the webpage’s content. For instance,
an advertiser might want to display her ads only to males (user targeting)
when they browse a sports related webpage (content targeting); targeting
constraints are often of this form. So, advertisers now have valuations of
the form v(i, j, k) ∈ {0, vi}, i.e., the value of the k-th impression of the j-th
user to advertiser i is either vi or 0 depending on what page the user was
surfing on his k-th impression. Note that the model of [14] does not capture
this problem, which entangles a matching aspect with frequency capping.
The questions of designing a good online algorithm and finding the smallest
upper bound (of course, 1− 1/e is a trivial upper bound since this problem
generalizes arbitrary valuations with targeting) are both open.

Acknowledgments. We are extremely grateful to Ning Chen for several helpful
discussions, and for first suggesting the total demand algorithm.
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