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Abstract. We resolve an open question raised by Feige & Scheideler by
showing that the best known approximation algorithm for flow shops is
essentially tight with respect to the used lower bound on the optimal
makespan. We also obtain a nearly tight hardness result for the general
version of flow shops, where jobs are not required to be processed on
each machine.

Similar results hold true when the objective is to minimize the sum
of completion times.

1 Introduction

In the flow shop scheduling problem we have a set of n jobs that must be processed
on a given set of m machines that are located in a fixed order. Each job j consists
of a sequence of m operations, where the i-th operation must be processed during
pij ∈ Z

+ time units without interruption on the i-th machine. A feasible schedule
is one in which each operation is scheduled only after all operations preceding
it in its job have been completed, and each machine processes at most one
operation at a time. A natural generalization of the flow shop problem is to
not require jobs to be processed on all machines, i.e., a job still requests the
machines in compliance with their fixed order but may skip some of them. We
will refer to this more general version as generalized flow shops or flow shops with
jumps. Generalized flow shop (and thus flow shop) scheduling is a special case
of the acyclic job shop scheduling, which only requires that within each job all
operations are performed on different machines, which in turn is a special case
of the general job shop scheduling, where each job may have many operations
on a single machine.

For any given schedule, let Cj be the completion time of the last operation of
job j. We consider the natural and typically considered objectives of minimizing
the makespan, Cmax = maxj Cj , and the sum of weighted completion times,∑

wjCj , where wj are positive integers. The goal is to find a feasible schedule
which minimizes the considered objective function. In the notation of Graham
et al. [6] the flow shop scheduling problem is denoted as F ||γ, where γ denotes the
objective function to be minimized. We will sometimes abbreviate the generalized
flow shop problem by F |jumps|γ.

1.1 Literature Review

Flow shops have long been identified as having a number of important practi-
cal applications and have been widely studied since the late 50’s (the reader is
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referred to the survey papers of Lawler et al. [9] and of Chen, Potts & Woegin-
ger [2]). To find a schedule that minimizes the makespan, or one that minimizes
the sum of completion times, was proved to be strongly NP-hard in the 70’s,
even for severely restricted instances (see e.g. [2]).

From then, many approximation methods have been proposed. Since the qual-
ity of an approximation algorithm is measured by comparing the returned so-
lution value with a polynomial time computable lower bound on the optimal
value, the goodness of the latter is very important. For a given instance, let
C∗

max denote the minimum makespan taken over all possible feasible schedules.
If D denotes the length of the longest job (the dilation), and C denotes the
time units requested by all jobs on the most loaded machine (the congestion),
then lb = max[C, D] is a known trivial lower bound on C∗

max. To the best of
our knowledge, no significant stronger lower bound is known on C∗

max, and all
the proposed approximation algorithms for flow shops (but also for the more
general job shop, acyclic job shop and the more constrained case of permuta-
tion flow shops) have been analyzed with respect to this lower bound (see, e.g.,
[10,11,4,17,5,13]).

Even though the trivial lower bound might seem weak a surprising result by
Leighton, Maggs & Rao [10] says that for acyclic job shops, if all operations
are of unit length, then C∗

max = Θ(lb). If we allow operations of any length,
then Feige & Scheideler [4] showed that C∗

max = O(lb · log lb log log lb). They also
showed their analysis to be nearly tight by providing acyclic job shop instances
with C∗

max = Ω(lb · log lb/ log log lb). The proofs of the upper bounds in [10,4]
are nonconstructive and make repeated use of (a general version) of Lovasz local
lemma. Algorithmic versions appeared in [1,3]. Recently, the authors showed
that the best known approximation algorithm for acyclic job shops is basically
tight [12]. More specifically, it was shown that for every ε > 0, the (acyclic) job
shop problem cannot be approximated within ratio O(log1−ε lb), unless NP has
quasi-polynomial Las-Vegas algorithms.

In contrast to acyclic job shops, the strength of the lower bound lb for flow
shop scheduling is not well understood, and tight results are only known for
some variants. A notable example is given by the permutation flow shop problem,
that is a flow shop problem with the additional constraint that each machine
processes all the jobs in the same order. Potts, Shmoys & Williamson [14] gave a
family of permutation flow shop instances with C∗

max = Ω(lb ·√min[m, n]). This
lower bound was recently showed to be tight, by Nagarajan & Sviridenko [13],
who gave an approximation algorithm that returns a permutation schedule with
makespan O(lb · √min[m, n]).

Feige & Scheideler’s upper bound for acyclic jobs [4] is also the best upper
bound for the special case of flow shops. As flow shops have more structure
than acyclic job shops and no flow shop instances with C∗

max = ω(lb) were
known, one could hope for a significant better upper bound for flow shops. The
existence of such a bound was raised as an open question in [4]. Unfortunately
our recent inapproximability results for acyclic job shops do not apply to flow
shops, since in [12] our construction builds upon the lower bound construction
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for acyclic job shop, which does not seem to generalize to flow shop [4]. The only
known inapproximability result is due to Williamson et al. [18], and states that
when the number of machines and jobs are part of the input, it is NP-hard to
approximate F ||Cmax with unit time operations, and at most three operations
per job, within a ratio better than 5/4. It is a long standing open problem if
the above algorithms F ||Cmax, are tight or even nearly tight (see, e.g. “Open
problem 6 ” in [16]).

A similar situation holds for the objective
∑

wjCj . Queyranne & Sviridenko
[15] showed that an approximation algorithm for the above mentioned problems
that produces a schedule with makespan a factor O(ρ) away from the lower bound
lb can be used to obtain a O(ρ)-approximation algorithms for other objectives,
including the sum of weighted completion times. The only known inapproxima-
bility result is by Hoogeveen, Schuurman & Woeginger [7], who showed that
F ||∑Cj is NP-hard to approximate within a ratio better than 1 + ε for some
small ε > 0.

1.2 Our Results

In this paper, we show that the best known upper bound [4] is essentially the best
possible, by proving the existence of instances of flow shop scheduling for which
the shortest feasible schedule is of length Ω(lb · log lb/ log log lb). This resolves
(negatively) the aforementioned open question by Feige & Scheideler [4].

Theorem 1. There are flow shop instances for which any schedule has makespan
Ω(lb · log lb/ log log lb).

If we do not require a job to be processed on all machines, i.e. generalized flow
shops, we prove that it is hard to improve the approximation guarantee. Theo-
rem 2 shows that generalized flow shops, with the objective to either minimize
makespan or sum of completion times, have no constant approximation algo-
rithm unless P = NP .

Theorem 2. For all sufficiently large constants K, it is NP-hard to distinguish
between generalized flow shop instances that have a schedule with makespan 2K ·lb
and those that have no solution that schedules more than half of the jobs within
(1/8)K

1
25 (log K) ·lb time units. Moreover this hardness result holds for generalized

flow shop instances with bounded number of operations per job, that only depends
on K.

By using a similar reduction, but using a stronger assumption, we give a hard-
ness result that essentially shows that the current approximation algorithms for
generalized flow shops, with both makespan and sum of weighted completion
times objective, are tight.

Theorem 3. Let ε > 0 be an arbitrarily small constant. There is no
O

(
(log lb)1−ε

)
-approximation algorithm for F |jumps|Cmax or F |jumps|∑Cj,

unless NP ⊆ ZTIME(2O(log n)O(1/ε)
).
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No results of this kind were known for a flow shop problem. Moreover, this paper
extends and significantly simplifies the recent hardness results by the authors
for the acyclic job shop problem [12].

In summary, the consequences of our results are among others that in order
to improve the approximation guarantee for flow shops, it is necessary to (i)
improve the used lower bound on the optimal makespan and (ii) use the fact
that a job needs to be processed on all machines.

2 Job and Flow Shops Instances with Large Makespan

We first exhibit an instance of general job scheduling for which it is relatively
simple to show that any optimal schedule is of length Ω(lb · log lb). The con-
struction builds upon the idea of jobs of different “frequencies”, by Feige &
Scheideler [4], but we will introduce some important differences that will be de-
cisive for the flow shop case. The resulting instance slightly improves1 on the
bound by Feige & Scheideler [4], who showed the existence of job shop instances
with optimal makespan Ω(lb · log lb/ log log lb).

The construction of flow shop instances with “large” makespan is more com-
plicated, as each job is required to have exactly one operation for every machine,
and all jobs are required to go through all the machines in the same order. The
main idea is to start with the aforementioned job shop construction, which has
very cyclic jobs, i.e., jobs have many operations on a single machine. The flow
shop instance is then obtained by “copying” the job shop instance several times
and, instead of having cyclic jobs, we let the i-th long operation of a job to be
processed in the i-th copy of the original job shop instance. Finally, we insert
additional zero-length operations to obtain a flow shop instance. We show that
the resulting instance has optimal length Ω(lb · log lb/ log log lb).

2.1 Job Shops with Large Makespan

Construction. For any integer d ≥ 1 consider the job shop instance with d
machines m1, . . . , md and d jobs j1, . . . , jd. We say that job ji has frequency
i, which means that it has 3i so-called long-operations on machine mi, each
one of them requires 3d−i time units. And between any two consecutive long-
operations, job ji has short-operations that requires 0 time units on the machines
m1, . . . , mi−1. Note that the length of all jobs and the load on all machines are
3d, which we denote by lb. For a small example see Figure 1.

m1

m2

m3

Fig. 1. An example of the construction for job shop with d = 3

1 However, in their construction all operations of a job have the same length which is
not the case for our construction.
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Analysis. Fix an arbitrarily feasible schedule for the jobs. We shall show that
the length of the schedule must be Ω(lb · log lb).

Lemma 1. For i, j : 1 ≤ i < j ≤ d, the number of time units during which both
ji and jj perform operations is at most lb

3j−i .

Proof. During the execution of a long-operation of ji (that requires 3d−i time
units), job jj can complete at most one long-operation that requires 3d−j time
units (since its short-operation on machine mi has to wait). As ji has 3i long-
operations, the two jobs can perform operations at the same time during at most
3i · 3d−j = 3d

3j−i = lb
3j−i time units.

It follows that, for each i = 1, . . . , d, at most a fraction 1/3+1/32+ · · ·+1/3i ≤
1/3+1/32+ · · ·+1/3d ≤ 1

3−1 = 1/2 of the time spent for long-operations of a job
ji is performed at the same time as long-operations of jobs with lower frequency.
Hence a feasible schedule has makespan at least d · lb/2. As d = Ω(log lb) (recall
that lb = 3d), the optimal makespan of the constructed job shop instance is
Ω(lb · log lb).

2.2 Flow Shops with Large Makespan

Construction. For sufficiently large integers d and r, consider the flow shop
instance defined as follows:

– There are r2d groups of machines2, denoted by M1, M2, . . . , Mr2d . Each group
Mg consists of d machines mg,1, mg,2, . . . , mg,d (one for each frequency).
Finally the machines are ordered in such a way so that mg,i is before mh,j

if either (i) g < h or (ii) g = h and i > j. The latter case will ensure that,
within each group of machines, long-operations of jobs with high frequency
will be scheduled before long-operations of jobs with low frequency, a fact
that is used to prove Lemma 3.

– For each frequency f = 1, . . . , d, there are r2(d−f) groups of jobs, denoted
by Jf

1 , Jf
2 , . . . , Jf

r2(d−f) . Each group Jf
g consists of r2f copies, referred to as

jf
g,1, j

f
g,2, . . . , j

f
g,r2f , of the job that must be processed during r2(d−f) time

units on the machines

ma+1,f , ma+2,f , . . . , ma+r2f ,f where a = (g − 1) · r2f

and during 0 time units on all the other machines that are required to create
a flow shop instance. Let Jf be the set of jobs that correspond to frequency
f , i.e., Jf = {jf

g,a : 1 ≤ g ≤ r2(d−f), 1 ≤ a ≤ r2f}.
Note that the length of all jobs and the load on all machines are r2d, which we
denote by lb. Moreover, the total number of machines and number of jobs are
both r2d ·d. In the subsequent we will call the operations that require more than
0 time units long-operations and the operations that only require 0 time units
short-operations. For an example of the construction see Figure 2.
2 These groups of machines “correspond” to copies of the job shop instance in

subsection 2.1.
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Fig. 2. An example of the construction for flow shop scheduling with r = d = 2.
Only long-operations on the first 4 and last 4 groups of machines are depicted. The
long-operations of one job of each frequency are highlighted in dark gray.

Analysis. We shall show that the length of the schedule must be Ω(lb·min[r, d]).
As lb = r2d, instances constructed with r = d has optimal makespan Ω(lb ·
log lb/ log log lb).

Fix an arbitrarily feasible schedule for the jobs. We start by showing a useful
property. For a job j, let dj(i) denote the delay between job j’s i-th and i+1-th
long-operations, i.e., the time units between the end of job j’s i-th long-operation
and the start of its i + 1-th long-operation (let dj(i) = ∞ for the last long-
operation). We say that the i-th long-operation of a job j of frequency f is good
if dj(i) ≤ r2

4 · r2(d−f).

Lemma 2. If the schedule has makespan less than r · lb then the fraction of good
long-operations of each job is at least

(
1 − 4

r

)
.

Proof. Assume that the considered schedule has makespan less than r · lb. Sup-
pose toward contradiction that there exists a job j of frequency f so that j has
at least 4

r r2f long-operations that are not good. But then the length of j is at
least 4

r r2f · r2

4 · r2(d−f) = r · r2d = r · lb, which contradicts that the makespan of
the considered schedule is less than r · lb.
We continue by analyzing the schedule with the assumption that its makespan
is less than r · lb (otherwise we are done). In each group Mg of machines we
will associate a set Tg,f of time intervals with each frequency f = 1, . . . , d. The
set Tg,f contains the time intervals corresponding to the first half of all good
long-operations scheduled on the machine mg,f .

Lemma 3. Let k, � : 1 ≤ k < � ≤ d be two different frequencies. Then the sets
Tg,k and Tg,� , for all g : 1 ≤ g ≤ r2d, contain disjoint time intervals.

Proof. Suppose toward contradiction that there exist time intervals tk ∈ Tg,k

and t� ∈ Tg,� that overlap, i.e., tk ∩ t� �= ∅. Note that tk and t� correspond to
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good long-operations of jobs of frequencies k and �, respectively. Let us say that
the good long-operation corresponding to t� is the a-th operation of some job j.
As t� and tk overlap, the a-th long-operation of j must overlap the first half of the
long-operation corresponding to tk. As job j has a short operation on machine
mg,k after its long-operation on machine mg,� (recall that machines are ordered
mg,d, mg,d−1, . . . , mg,1 and � > k), job j’s (a + 1)-th operation must be delayed
by at least r2(d−k)/2− r2(d−�) time units and thus dj(a) > r2(d−k)/2− r2(d−�) >
r2

4 r2(d−�), which contradicts that the a-th long-operation of job j is good.

Let L(Tg,f) denote the total time units covered by the time intervals in Tg,f . We
continue by showing that there exists a g such that

∑d
f=1 L(Tg,f ) ≥ lb

4 · d. With
this in place, it is easy to see that any schedule has makespan Ω(d · lb) since all
the time intervals {Tg,f : f = 1, . . . , d} are disjoint (Lemma 3).

Lemma 4. There exists a g ∈ {1, . . . , r2d} such that

d∑

f=1

L(Tg,f) ≥ lb

4
· d

Proof. As
∑d

f=1 L(Tg,f ) adds up the time units required by the first half of each
good long-operation scheduled on a machine in Mg, the claim follows by showing
that there exist one group of machines Mg from {M1, M2, . . . , Mr2d} so that the
total time units required by the good long-operations on the machines in Mg is
at least lb·d

2 .
By lemma 2 we have that the good long-operations of each job requires at least

lb · (1 − 4
r

)
time units. Since the total number of jobs is r2dd the total time units

required by all good long-operations is at least lb · (
1 − 4

r

) · r2dd. As there are
r2d many groups of machines, a simple averaging argument guarantees that in at
least one group of machines, say Mg, the total time units required by the good
long-operations on the machines in Mg is at least lb · (1 − 4

r

)
d > lb · d/2.

3 Hardness of Generalized Flow Shops

Theorem 2 and Theorem 3 are proved by presenting a gap-preserving reduction
Γ from the graph coloring problem to the generalized flow shop problem. Γ
has two parameters r and d. Given an n-vertex graph G whose vertices are
partitioned into d independent sets, it computes in time polynomial in n and rd,
a generalized flow shop instance S(r, d) where all jobs have the same length r2d

and all machines the same load r2d. Hence, lb = r2d. Instance S(r, d) has a set
of r2d jobs and and a set of r2d machines for each vertex in G. The total number
of jobs and the total number of machines are thus both r2dn. Moreover, each
job has at most (Δ + 1)r2d operations. By using jobs of different frequencies,
as done in the gap construction, we have the property that “many” of the jobs
corresponding to adjacent vertices cannot be scheduled in parallel in any feasible
schedule. On the other hand, by letting jobs skip those machines corresponding
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to non-adjacent vertices, jobs corresponding to an independent set in G can be
scheduled in parallel (their operations can overlap in time) in a feasible schedule.
This ensures that the following completeness and soundness hold for the resulting
generalized flow shop instance S(r, d).

– Completeness case: If G can be colored using L colors then C∗
max ≤ lb · 2L;

– Soundness case: For any L ≤ r. Given a schedule where at least half the jobs
finish within lb · L time units, we can, in time polynomial in n and rd, find
an independent set of G of size n/(8L).

In Section 3.1 we describe the gap-preserving reduction Γ . With this construction
in place, Theorem 2 easily follows by using a result by Khot [8], that states that
it is NP-hard to color a K-colorable graph with K

1
25 (log k) colors, for sufficiently

large constants K. The result was obtained by presenting a polynomial time
reduction that takes as input a SAT formula φ together with a sufficiently large
constant K, and outputs an n-vertex graph G with degree at most 2KO(log K)

.
Moreover, (completeness) if φ is satisfiable then graph G can be colored using K
colors and (soundness) if φ is not satisfiable then graph G has no independent set
containing n/K

1
25 (log K) vertices (see Section 6 in [8]). Note that the soundness

case implies that any feasible coloring of the graph uses at least K
1
25 (log K) colors.

We let G[c, i] be the family of graphs that either can be colored using c colors or
have no independent set containing a fraction i of the vertices. To summarize,
for sufficiently large K and Δ = 2KO(log K)

, it is NP-hard to decide if an n-vertex
graph G in G[K, 1/K

1
25 (log K)] with bounded degree Δ has

χ(G) ≤ K or α(G) ≤ n

K
1
25 (log K)

where χ(G) and α(G) denote the chromatic number and the size of a maximum
independent set of G, respectively. As the vertices of a graph with bounded
degree Δ can, in polynomial time, be partitioned into Δ + 1 independent sets,
we can use Γ with parameters d = Δ+1 and r = K

1
25 (log K) (r is chosen such that

the condition L ≤ r in the soundness case of Γ is satisfied for L = K
1
25 (log K)/8).

It follows, by the completeness case and soundness case of Γ , that it is NP-hard
to distinguish if the obtained scheduling instance has a schedule with makespan
at most lb · 2K, or no solution schedules more than half of the jobs within
lb·K 1

25 (log K)/8 time units. Moreover, each job has at most (Δ+1)r2d operations,
which is a constant that only depends on K.

The proof of Theorem 3 is similar to the proof of Theorem 2 with the exception
that the graphs have no longer bounded degree. Due to space limits the proof
is omitted; it follows the one provided by the authors for the acyclic job shop
problem [12].

3.1 Construction

Here, we present the reduction Γ for the general flow shop problem where jobs are
allowed to skip machines. Given an n-vertex graph G = (V, E) whose vertices are
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partitioned into d independent sets, we create a generalized flow shop instance
S(r, d), where r and d are the parameters of the reduction. Let I1, I2, . . . Id denote
the independent sets that form a partition of V .

S(r, d) is very similar to the gap instance described in Section 2.2. The main
difference is that in S(r, d) distinct jobs can be scheduled in parallel if their
corresponding vertices in G are not adjacent. This is obtained by letting a job to
skip those machines corresponding to non-adjacent vertices. (The gap instance of
Section 2.2 can be seen as the result of the following reduction when the graph
G is a complete graph with d nodes). For convenience, we give the complete
description with the necessary changes.

– There are r2d groups of machines, denoted by M1, M2, . . . , Mr2d . Each group
Mg consists of n machines {mg,v : v ∈ V } (one for each vertex in G). Finally
the machines are ordered in such a way so that mg,u is before mh,v if either
(i) g < h or (ii) g = h and u ∈ Ik, v ∈ I� with k > �. The latter case
will ensure that, within each group of machines, long-operations of jobs with
high frequency will be scheduled before long-operations of jobs with low
frequency, a fact that is used to prove Lemma 8.

– For each f : 1 ≤ f ≤ d and for each vertex v ∈ If there are r2(d−f) groups of
jobs, denoted by Jv

1 , Jv
2 , . . . , Jv

r2(d−f) . Each group Jv
g consists of r2f copies,

referred to as jv
g,1, j

v
g,2, . . . , j

v
g,r2f , of the job that must be processed during

r2(d−f) time units on the machines

ma+1,v, ma+2,v, . . . , ma+r2f ,v where a = (g − 1) · r2f

and during 0 time units on machines corresponding to adjacent vertices,
i.e., {ma,u : 1 ≤ a ≤ r2d, {u, v} ∈ E} in an order such that it results in a
generalized flow shop instance. Let Jv be the jobs that correspond to the
vertex v, i.e., Jv = {jv

g,i : 1 ≤ g ≤ r2(d−f), 1 ≤ i ≤ r2f}.
Note that the length of all jobs and the load on all machines are r2d, which we
denote by lb. The total number of machines and total number of jobs are both
r2d·n. Moreover, each job has at most (Δ+1)r2d operations. In the subsequent we
will call the operations that require more than 0 time units long-operations and
the operations that only require 0 time units short-operations. For an example
of the construction see Figure 3.

Fig. 3. An example of the reduction with r = 2, d = 2, I1 = {A} and I2 = {B, C}.
Only the two first out of r2d = 16 groups of machines are depicted with the jobs
corresponding to A,B, and C to the left, center, and right respectively.
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Completeness. We prove that if the graph G can be colored with “few” colors
then there is a relatively “short” schedule to the general flow shop instance.

Lemma 5. There is a schedule of S(r, d) with makespan 2lb · χ(G).

Proof. We start by showing that all jobs corresponding to non-adjacent vertices
can be scheduled within 2 · lb time units.

Claim. Let IS be an independent set of G. Then all the jobs
⋃

v∈IS Jv can be
scheduled within 2 · lb time units.

Proof of Claim. Consider the schedule defined by scheduling the jobs corre-
sponding to each vertex v ∈ IS as follows. Let If be the independent set with
v ∈ If . A job jv

g,i corresponding to vertex v is then scheduled without interrup-
tion starting from time r2(d−f) · (i − 1).

The schedule has makespan at most 2 · lb since a job is started at latest at
time r2(d−f) · (r2f − 1) < lb and requires lb time units in total.

To see that the schedule is feasible, observe that no short-operations of the jobs
in

⋃
v∈IS Jv need to be processed on the same machines as the long-operations

of the jobs in
⋃

v∈IS Jv (this follows from the construction and that the jobs
correspond to non-adjacent vertices). Moreover, two jobs jv

g,i, j
v′
g′,i′ , with either

g �= g′ or v �= v′, have no two long-operations that must be processed on the same
machine. Hence, the only jobs that might delay each other are jobs belonging
to the same vertex v and the same group g, but these jobs are started with
appropriate delays (depending on the frequency of the job).

We partition set V into χ(G) independent subsets V1, V2, . . . , Vχ(G). By the above
lemma, the jobs corresponding to each of these independent sets can be scheduled
within 2 · lb time units. We can thus schedule the jobs in χ(G)-”blocks”, one
block of length 2 · lb for each independent set. The total length of this schedule
is 2lb · χ(G).

Soundness. We prove that, given a schedule where many jobs are completed
“early”, we can, in polynomial time, find a “big” independent set of G.

Lemma 6. For any L ≤ r. Given a schedule of S(r, d) where at least half the
jobs finish within lb ·L time units , we can, in time polynomial in n and rd, find
an independent set of G of size at least n/(8L).

Proof. Fix an arbitrarily schedule of S(r, d) where at least half the jobs finish
within lb ·L time units. In the subsequent we will disregard the jobs that do not
finish within lb · L time units throughout the analysis. Note that the remaining
jobs are at least r2dn/2 many. As for the gap construction (see Section 2.2), we
say that the i-th long-operation of a job j of frequency f is good if the delay
dj(i) between job j’s i-th and i + 1-th long-operations is at most r2

4 · r2(d−f).
In each group Mg of machines we will associate a set Tg,v of time intervals with
each vertex v ∈ V . The set Tg,v contains the time intervals corresponding to
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the first half of all good long-operations scheduled on the machine mg,v. We
also let L(Tg,v) denote the total time units covered by the time intervals in Tg,v.
Scheduling instance S(r, d) has a similar structure as the gap instances created
in Section 2.2 and has similar properties. By using the fact that all jobs (that
were not disregarded) have completion time at most L·lb which is by assumption
at most r · lb, Lemma 7 follows from the same arguments as Lemma 2.

Lemma 7. The fraction of good long-operations of each job is at least
(
1 − 4

r

)
.

Consider a group Mg of machines and two jobs corresponding to adjacent vertices
that have long-operations on machines in Mg. Recall that jobs corresponding to
adjacent vertices have different frequencies. By the ordering of the machines, we
are guaranteed that the job of higher frequency has, after its long-operation on
a machine in Mg, a short-operation on the machine in Mg where the job of lower
frequency has its long-operation. The following lemma now follows by observing,
as in the proof of Lemma 3, that the long-operation of the high frequency job
can only be good if it is not scheduled in parallel with the first half of the
long-operation of the low frequency job.

Lemma 8. Let u ∈ Ik and v ∈ Il be two adjacent vertices in G with k > l. Then
the sets Tg,u and Tg,v , for all g : 1 ≤ g ≤ r2d, contain disjoint time intervals.

Finally, Lemma 9 is proved in the very same way as Lemma 4. Their different
inequalities arise because in the gap instance we had d · r2d jobs and here we are
considering at least r2dn/2 jobs that were not disregarded.

Lemma 9. There exists a g ∈ {1, . . . , r2d} such that

∑

v∈V

L(Tg,v) ≥ lb · n
8

.

We conclude by a simple averaging argument. Set g so that
∑

v∈V L(Tg,v) is at
least lb·n

8 , such a g is guaranteed to exist by the lemma above. As all jobs that
were not disregarded finish within L · lb time units, at least lb·n

8 /(L · lb) = n
8L

time intervals must overlap at some point during the first L · lb time units of
the schedule, and, since they overlap, they correspond to different vertices that
form an independent set in G (Lemma 8). Moreover, we can find such a point in
the schedule by, for example, considering all different blocks and, in each block,
verify the start and end points of the time intervals.
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