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Abstract. This paper investigates the relationship between the dimen-
sion theory of partial orders and the problem of scheduling precedence-
constrained jobs on a single machine to minimize the weighted
completion time. Surprisingly, we show that the vertex cover graph as-
sociated to the scheduling problem is exactly the graph of incomparable
pairs defined in dimension theory. This equivalence gives new insights on
the structure of the problem and allows us to benefit from known results
in dimension theory. In particular, the vertex cover graph associated to
the scheduling problem can be colored efficiently with at most k col-
ors whenever the associated poset admits a polynomial time computable
k-realizer. Based on this approach, we derive new and better approxi-
mation algorithms for special classes of precedence constraints, including
convex bipartite and semi-orders, for which we give (1+ 1

3 )-approximation
algorithms. Our technique also generalizes to a richer class of posets ob-
tained by lexicographic sum.

1 Introduction

We consider the problem of scheduling a set N = {1, . . . , n} of n jobs on a single
machine, which can process at most one job at a time. Each job j has a processing
timepj andaweightwj ,wherepj andwj arenonnegative integers.Weonly consider
non-preemptive schedules, in which all pj units of job j must be scheduled consec-
utively. A partially ordered set (or poset) is a structure P = (X, P ) consisting of
a ground set X and a partial order, i.e. a reflexive, antisymmetric, and transitive
binary relation P on X . Jobs have precedence constraints between them that are
specified in the form of a poset P = (N, P ), where (i, j) ∈ P (i �= j) implies that
job i must be completed before job j can be started. The goal is to find a schedule
whichminimizes the sum

∑n
j=1 wjCj , whereCj is the time atwhich job j completes

in the given schedule. In standard scheduling notation (see e.g. Graham et al. [9]),
this problem is known as 1|prec|

∑
j wjCj .

The general version of 1|prec|
∑

j wjCj was shown to be strongly NP-hard
by Lawler [13] and Lenstra & Rinnooy Kan [14]. While currently no inap-
proximability result is known (other than that the problem does not admit
a fully polynomial time approximation scheme), there are several polynomial
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time 2-approximation algorithms [17, 20, 10, 3, 2, 15, 1]. For the general version
of 1|prec|

∑
j wjCj , closing the approximability gap is considered a longstanding

open problem in scheduling theory (see e.g. [21]).
Due to this difficulty, more attention has recently been given to special classes

[24, 12, 4, 1]. With this aim, it is worth mentioning that Woeginger [24] proved
that the general case of 1|prec|

∑
j wjCj is not harder to approximate than

many fairly restricted special cases, among them the case where all job weights
are one. However, for a few relevant special posets with “nice” structural prop-
erties, one can obtain better approximation ratios than 2. For the special cases
of interval order and convex bipartite precedence constraints, Woeginger [24] de-
veloped polynomial time approximation algorithms with worst case performance
guarantee arbitrarily close to the golden ration 1

2 (1 +
√

5) ≈ 1.61803. Recently,
Ambühl & Mastrolilli [1] settled an open problem first raised by Chudak &
Hochbaum [3] and whose answer was conjectured by Correa & Schulz [4]. The
results in [1, 4] imply the existence of an exact polynomial time algorithm for the
special case of two-dimensional partial orders, improving on previously known
approximation algorithms [12, 4], and generalizing Lawler’s exact algorithm [13]
for series-parallel orders.

Moreover, the most significant implication in [1] is that problem
1|prec|

∑
j wjCj is a special case of the weighted vertex cover problem in an

undirected graph GCS(P) (see [1, 4] and Section 2) that has a node for each or-
dered pair (i, j) of jobs i, j ∈ N with (i, j) �∈ P and (j, i) �∈ P (we say i and j are
incomparable and write i ‖ j in P ). By using this relationship several previous
results for the scheduling problem can be explained, and in some cases improved,
by means of the vertex cover theory.

Dimension is one of the most heavily studied parameters of partial orders, and
many beautiful results have been obtained (see e.g. [22]). Dushnik & Miller [5]
introduced dimension as a parameter of partial orders in 1941. Since that time,
many theorems have been developed. The dimension of a partial order P is the
minimum number of linear extensions which yield P as their intersection. More
precisely, if P and Q are two partial orders on the same ground set, we say Q is
an extension of P if P ⊆ Q, and we call Q a linear extension of P if Q is a linear
order and an extension of P . A realizer R of P is a family of linear extensions
of P such that P = ∩R, i.e., for all x, y ∈ X , (x, y) ∈ P if and only if (x, y) ∈ L
for every L ∈ R. The dimension of P, denoted by dim(P) or dim(X, P ), is
the smallest k such that there exists a realizer R of P with cardinality k, i.e.,
|R| = k (R is said to be a k-realizer). Obviously, dim(X, P ) = 1 if and only if
P is a linear order. With any finite poset P, we can associate a hypergraph HP
so that the dimension of P is equal to the chromatic number of HP [7, 22]. The
vertices of HP are the incomparable pairs in P , and this hypergraph is called
the hypergraph of incomparable pairs. The edges of size 2 in HP determine an
ordinary graph GP, which is called the graph of incomparable pairs. Trotter [22]
is a good source for further results involving dimension.

In this paper we continue to investigate the structure of problem
1|prec|

∑
j wjCj . We point out an interesting relationship between the dimension
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theory of partial orders and problem 1|prec|
∑

j wjCj . More specifically, in Sec-
tion 3 we show that the vertex cover graph GCS(P) associated to
1|prec|

∑
j wjCj is exactly the graph of incomparable pairs GP in dimension the-

ory [7, 22]. This equivalence allows us to benefit from dimension theory. In partic-
ular, the chromatic number of GCS(P) is at most k, whenever the dimension of
the poset at hand is (at most) k. Hochbaum [11] showed that if a given graph for
the vertex cover problem can be colored by using k colors in polynomial time, then
there exists a (2 − 2/k)-approximation algorithm for the corresponding weighted
vertex cover problem. It follows that there exists a (2 − 2/k)-approximation al-
gorithm for 1|prec|

∑
j wjCj for all those special classes of precedence constraints

that admit a polynomial time computable k-realizer.
By following this general approach, we obtain approximation algorithms for

relevant special classes of precedence constraints, such as1 convex bipartite prece-
dence constraints (Sections 4) and semi-orders (Section 5), for which we ex-
hibit (1 + 1

3 )-approximation algorithms that improve previous results by Woeg-
inger [24]. However, the technique in [24] also extends to the case of interval
order precedence constraints, for which we prove that our approach cannot yield
a better approximation ratio (Section 5).

Our technique also generalizes to a richer class of posets obtained by lexico-
graphic sum. Indeed we show, in Section 6, that the number of colors needed to
color the graph of incomparable pairs does not increase under the lexicographic
sum. In Section 7 we end up by discussing further posets and pointing out some
related interesting open problems.

2 Preliminaries

Problem 1|prec|
∑

j wjCj was recently proved [1] to be a special case of minimum

weighted vertex cover: Given a graph G = (V, E) with weights wi on the
vertices, find a subset V ′ ⊆ V , minimizing the objective function

∑
i∈V ′ wi, such

that for each edge (u, v) ∈ E, at least one of u and v belongs to V ′.
This result was achieved by investigating the relationship between several dif-

ferent linear programming formulations and relaxations [18, 3, 4] of
1|prec|

∑
j wjCj , using linear ordering variables δij . The variable δij has value 1

if job i precedes job j in the corresponding schedule, and 0 otherwise. Correa &
Schulz [4] proposed the following relaxation of 1|prec|

∑
j wjCj :

[CS-IP] min
∑

i‖j

δijpiwj+
∑

j∈N

pjwj +
∑

(i,j)∈P

piwj

s.t. δij + δji ≥ 1 i ‖ j, (1)
δik + δkj ≥ 1 (i, j) ∈ P, i ‖ k and k ‖ j, (2)
δi� + δkj ≥ 1 (i, j), (k, �) ∈ P, i ‖ � and j ‖ k, (3)
δij ∈ {0, 1} i ‖ j.

1 Further special classes of posets can be found in [16, 22].
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Note that [CS-IP] can be interpreted as the minimum weighted vertex cover
in an undirected graph GCS(P), that has a node for each incomparable pair
(i, j) of jobs. Two nodes (i, j) and (k, �) are adjacent if either j = k and i = �,
or j = k and (i, �) ∈ P , or (i, �), (k, j) ∈ P .

Correa & Schulz [4] conjectured that an optimal solution to 1|prec|
∑

j wjCj

gives an optimal solution to [CS-IP] as well. The conjecture in [4] was re-
cently solved by Ambühl & Mastrolilli [1], who proved that any feasible so-
lution to [CS-IP] can be turned in polynomial time into a feasible solution to
1|prec|

∑
j wjCj without deteriorating the objective value. It follows that prob-

lem 1|prec|
∑

j wjCj is a special case of the weighted vertex cover problem in the
graph GCS(P). We refer the interested reader to [1, 4] for a more comprehensive
discussion.

We already mentioned that Hochbaum [11] gave a (2 − 2/k)-approximation
algorithm for the weighted vertex cover problem, whenever the vertex cover
graph is k-colorable in polynomial time. Putting everything together we come
up with the following result.

Theorem 1. [1, 4, 11] Problem 1|prec|
∑

j wjCj, for which the graph GCS(P)
is k-colorable in polynomial time, has a polynomial time (2−2/k)-approximation
algorithm.

3 Posets: Dimension and Coloring

The aim of this section is to point out the connection between 1|prec|
∑

j wjCj

and the dimension theory of partial orders. For this purpose, we need some
preliminary definitions.

Let P = (N, P ) be a poset. We say that the partial order P d = {(x, y) :
(y, x) ∈ P} is the dual of P . An alternating cycle in (N, P ) is a collection
of incomparable pairs {(x1, y1), (x2, y2), . . . , (xk, yk)} such that (yi, xi+1) ∈ P
for all i (modulo k). We associate with P a hypergraph HP = (V, E) defined
as follows. The vertex set V of HP is the set of incomparable pairs inc(P) =
{(x, y) ∈ X × X : x||y in P}, and the edge set E consists of those subsets
of V whose duals form alternating cycles. Let GP denote the ordinary graph
determined by all edges of size 2 in HP. In the literature [22, 7], HP and GP are
referred to as the hypergraph and the graph of incomparable pairs, respectively,
and they play an important role in the understanding of dimension. We recall
that the chromatic number of a hypergraph H = (V, E), denoted χ(H), is the
least positive integer t for which there is a function f : V → [t] so that there is
no α ∈ [t] for which there is an edge E ∈ E with f(x) = α for every x ∈ E. The
following result associates a poset P to HP so that the dimension of P is the
chromatic number of HP.

Proposition 1 ([22, 7]). Let P = (N, P ) be a poset, that is not a linear order.
Then dim(P) = χ(HP) ≥ χ(GP).

Given a k-realizer R = {L1, L2, . . . , Lk} of P, we can easily color HP (and GP)
with k colors: color vertex (i, j) with some color c whenever (j, i) ∈ Lc. Observe
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that if all nodes of a hyperedge are colored by the same color c then the linear
extension Lc contains an alternating cycle, which is impossible.

The following proposition is immediate and it can be easily checked. It estab-
lishes a strong relationship between the dimension theory and 1|prec|

∑
j wjCj .

Proposition 2. The vertex cover graph GCS(P)associated to 1|prec|
∑

j wjCj

and the graph of incomparable pairs GP coincide.

A large amount of combinatorial theory exists for posets. Tapping this source
can help in designing approximation algorithms.

Theorem 2 ([22, 7]). Let P = (N, P ) be a poset, that is not a linear order.
Then the graph GP is bipartite if and only if dim(P) = 2.

Theorem 2 is a well-known result in dimension theory. Correa & Schulz [4] redis-
covered it for the vertex cover graph GCS(P), unaware of the connection pointed
out by Proposition 2. What is more, the following theorem follows easily from
Theorem 1 and Propositions 2 and 1.

Theorem 3. Problem 1|prec|
∑

j wjCj, whenever precedence constraints are
given by a k-realizer, has a polynomial time (2 − 2

k )-approximation algorithm.

A natural question is for which posets one can construct a k-realizer in polyno-
mial time. In the general case, Yannakakis [25] proved that determining whether
the dimension of a poset is at most k is NP-complete for every k ≥ 3. How-
ever, for several special cases, including convex bipartite orders (Section 4) and
semi-orders (Section 5), a minimal realizer can be computed in polynomial time.

Finally, by Proposition 1, we remark that dim(P) and χ(GP) are, in general,
not the same (see [7] for an example where dim(P) is exponentially larger than
χ(GP)). However, it is an immediate consequence of Theorem 2 that dim(P) =
χ(GP) when dim(P) = 3. Therefore, a 3-realizer for a 3-dimensional partial
order P (as in Sections 4 and 5) immediately gives an optimal coloring for GP.

4 Convex Bipartite Precedence Constraints

In this section we consider 1|prec|
∑

j wjCj for which the precedence constraints
form a so called convex bipartite order. For this class of partial orders, we show
how to construct a realizer of size 3 in polynomial time. By Theorem 3, this
gives a (1 + 1

3 )-approximation algorithm.
A convex bipartite order P = (N = J− ∪ J+, P ) is defined as follows.

1. The set of jobs are divided into two disjoint sets J− = {j1, . . . ja} and J+ =
{ja+1, . . . , jn}, the minus-jobs and plus-jobs, respectively.

2. For every k = a+1, . . . , n there are two indices l(k) and r(k) with 1 ≤ l(k) ≤
r(k) ≤ a such that (ji, jk) ∈ P if and only if l(k) ≤ i ≤ r(k) (bipartiteness
and convexity).
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It is not hard to check that convex bipartite orders can be recognized in
polynomial time. Moreover, the class of convex bipartite orders forms a proper
subset of the class of general bipartite orders, and a proper superset of the class
of strong bipartite orders [16]. Lemma 3 states that the class of convex bipartite
orders has dimension ≤ 3. This is indeed a tight bound, since a bipartite order P
is 2-dimensional if and only if it is a strong bipartite order [16]. Finally, we ob-
serve that 1|prec|

∑
j wjCj with strong bipartite orders is solvable in polynomial

time [1, 4, 16].
In the subsequent, we sometimes stress that a job ji is a plus- or minus-job by

writing j+
i and j−i , respectively. We also assume, without loss of generality, that

the plus-jobs are numbered such that i < j if and only if l(i) ≤ l(j) (breaking
ties arbitrarily), where ji, jj ∈ J+.

Given a convex bipartite poset P = (N, P ), we partition its incomparable
pairs into three sets E1, E2, and E3 (also depicted in Fig. 1). A pair of incom-
parable jobs (ji, jj) ∈ inc(P) is a member of

E1 if i > j and ji, jj ∈ J−; else if i < j and ji, jj ∈ J+; else if ji ∈ J− and
jj ∈ J+.

E2 if i < j and ji, jj ∈ J−; else if ji ∈ J+, jj ∈ J− and there exists a k > i
such that (jj , jk) ∈ P .

E3 if i > j and ji, jj ∈ J+; else if ji ∈ J+, jj ∈ J− and (jj , jk) �∈ P for all
k > i.

J− J− J− J+J+J+
E1 E2 E3

ja

jb

jc

jd
ja ja

jb

jd
jd

jc jc

jeje
je

Fig. 1. The round and square nodes correspond to minus-jobs and plus-jobs, respec-
tively. Bold edges correspond to precedence constrains, whereas the other edges are
between incomparable jobs. In this example we assume that a < b and c < d < e.

The following lemma is a direct consequence of the definition of E1, E2, and E3.

Lemma 1. Let P be a convex bipartite order then

1. The sets E1, E2, and E3 form a partition of inc(P);
2. For every (i, j) ∈ inc(P), if (i, j) ∈ Ek then (j, i) �∈ Ek, where k ∈ {1, 2, 3}.

Lemma 2. Let Ē1 = E1 ∪ P , Ē2 = E2 ∪ P , and Ē3 = E3 ∪ P . Then Ē1, Ē2,
and Ē3 are extensions of P .
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Proof. By the definition of Ēi, it follows that if (ji, jj) ∈ P then (ji, jj) ∈ Ēi,
where i = 1, 2, 3. Moreover, it is easy to see (Fig. 1) that the sets Ē1 and Ē3 do
not contain cycles, i.e., are extensions of P .

Now suppose Ē2 contains an alternating cycle C, i.e., it is a non valid exten-
sion. By the definition of E2 we have C ∩ P �= ∅ and thus C ∩ (J+ × J−) �= ∅.
Let j−i ∈ J− be the minus-job with largest index in the cycle, i.e., there does
not exist a k > i such that jk ∈ J− is part of the cycle. Then (j−i , j+

j ) ∈ P ∩ C

and (j+
j , j−m) ∈ C for some jobs jj ∈ J+ and jm ∈ J−, where m < i. However,

this implies that there exists an n > j such that (j−m, j+
n ) ∈ P (recall the defini-

tion of E2). Together with convexity and the numbering of plus-jobs this implies
(j−m, j+

j ) ∈ P , which contradicts the existence of (j+
j , j−m) ∈ C. ��

Let L1, L2, and L3 be any linear extensions of Ē1, Ē2, and Ē3, respectively.
That R = {L1, L2, L3} is a realizer follows from the facts that all incomparable
pairs are reversed (Lemma 1), and that Ē1, Ē2, and Ē3 are valid extensions
of P (Lemma 2). Furthermore, all steps involved in creating R can clearly be
accomplished in polynomial time.

Lemma 3. Given a convex bipartite order P = (N, P ), a realizer of size three
can be computed in polynomial time.

Theorem 3 and Lemma 3 give us the following result.

Theorem 4. Problem 1|prec|
∑

j wjCj for which the precedence constraints
form a convex bipartite order has a polynomial time (1+ 1/3)-approximation
algorithm.

5 Interval Orders

A poset P = (N, P ) is an interval order [16, 22, 23] if there is a function I
assigning to each point x ∈ N a closed interval I(x) = Ix = [ax, bx] of the
real line R so that (x, y) ∈ P, x �= y if and only if bx < ay in R. The function
I is called an interval representation of the poset P. Interval orders can be
recognized in polynomial time and an interval representation can be computed
in O(n2) time [16].

The best known approximation algorithm for 1|prec|
∑

j wjCj with interval
order precedence constraints is due to Woeginger [24], who gave an (≈ 1.61803)-
approximation algorithm. We observe that this ratio can be improved to (1+ 1

3 )
in the special case of semi-order precedence constraints. Unfortunately, we show
that our techniques do not generalize to interval orders.

5.1 Approximating Semi-orders

A semi-order, also called unit interval order, has a similar definition as interval
orders, but the function I is restricted to only assign unit intervals, i.e., I(x) =
[ax, ax +1]. Semi-orders can be recognized in O(n2) time [16, 22]. Moreover, Rabi-
nowitz proved, by constructing a realizer, that the dimension of semi-orders is at
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most three [19, 22]. The constructive proof can easily be turned into a polynomial
algorithm and together with Theorem 3, we have the following theorem.

Theorem 5. Problem 1|prec|
∑

j wjCj for which the precedence constraints
form a semi-order has a polynomial time (1+ 1/3)-approximation algorithm.

5.2 Coloring Interval Orders

For 1|prec|
∑

j wjCj with interval precedence constraints, one cannot obtain a
better than 2-approximation by using our techniques. Indeed we exhibit interval
orders where the associated graphs of incomparable pairs have arbitrarily large
chromatic number. To prove this, we introduce the canonical interval orders. For
an integer n ≥ 2, let In denote the interval order determined by the set of all
closed intervals with distinct integer end points from [n]. We will find it conve-
nient to view the elements of In as 2-element subsets of [n] with ({i1, i2}, {i3, i4})
in In if and only if i2 < i3 in R or {i1, i2} = {i3, i4}. The family {In : n ≥ 2} is
called the canonical interval orders [23].

Theorem 6. For any integer k, there exists an integer n0 so that if n ≥ n0,
then the chromatic number χ(GIn) is larger than k.

Proof. The chromatic number χ(GIn) is clearly a non-decreasing function of n.
We assume that χ(GIn) ≤ k for all n ≥ 2 and obtain a contradiction when n is
sufficiently large.

Let the map ϕ :
(

[n]
3

)

→ {1, 2, . . . , k} denote a coloring of the 3-element

subsets of [n]. Note that any coloring of GIn , defines the map ϕ, by letting
ϕ({i, j, k}) equal the coloring of the vertex ({i, j},{j, k}) 2 in GIn .

Let n0 equal the Ramsey number R(3 : h1, h2, h3 . . . , hk), where h1 =
h2 = · · · = hk = 4. Now pick n to be greater or equal to n0 and hence |[n]| ≥ n0.
Consider any coloring of GIn and the corresponding map ϕ. By Ramsey’s The-
orem [22], there exists a subset H of [n] with |H | ≥ 4 so that ϕ(A) = c for
every 3-element subset A of H . Consider {i, j, k, l} ⊆ H , where i < j < k < l.
We know that ϕ({i, j, k}) = c and ϕ({j, k, l}) = c. However, this implies that
the adjacent vertices ({i, j},{j, k}) and ({j, k},{k, l}) are colored with the same
color. The vertices are adjacent because {({j, k}, {i, j}), ({k, l}, {j, k})} forms an
alternating cycle.

Thus, for any k-coloring, we have two adjacent nodes in GIn , which are colored
by the same color. This contradicts the existence of a valid k-coloring for GIn

when n ≥ n0. ��

6 Coloring Lexicographic Sums

So far, we have dealt with some classes of ordered sets and obtained approxima-
tion algorithms by coloring. In this section we will ask ourselves how we can use
2 Note that we can assume without loss of generality that i < j < k.
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existing posets to build new ordered sets for which the graph of incomparable
pairs is still easily colorable. The construction we use here, lexicographic sums,
comes from a very simple pictorial idea (see [22] for a more comprehensive dis-
cussion). Take a poset P = (X, P ) and replace each of its points x ∈ X with an
ordered set Qx, the module, such that the points in the module have the same
relation to points outside it. A more formal definition follows.

Let P = (X, P ) be a poset, and let F = {Qx = (Yx, Qx) : x ∈ X} be a family
of posets indexed by the elements of X. Define the lexicographic sum of F
over P, denoted

∑
x∈P F , as the poset S = (Z, S) where Z = {zxy : x ∈ X, y ∈

Yx} and (zx1y1 , zx2y2) ∈ S if and only if both x1 = x2 and (y1, y2) ∈ Qx1 , or
(x1, x2) ∈ P (where x1 �= x2).

We observe that the resulting class of posets will be a new, larger class than
its modules. For example, even if P and all posets in F are semi-orders, the
lexicographic sum

∑
x∈P F need not be an interval order: the two-element chain

and the two-element antichain both carry semi-orders; Yet the lexicographic sum
of two two-element chains over a two-element antichain is the forbidden poset
for interval orders [22]. As another example, the lexicographic sum of any 3-
irreducible convex bipartite poset and any non-bipartite semiorder poset over a
two-element antichain is a poset that is none of the poset previously considered.

A natural question to ask is of course how approximation behaves under
lexicographic constructions. With this aim, we prove that the number of col-
ors needed to color the graph of incomparable pairs does not increase under
the lexicographic sum. We remark that Hiraguchi (see e.g. [22]) proved that
the dimension is “preserved” during lexicographic sum, i.e. dim

(∑
x∈P F

)
=

max{dim(P), max{dim(Qx) : x ∈ X}}. However, by Proposition 1 we know
that dim(P) and χ(GP) are, in general, not the same. This motivates the fol-
lowing result.

Theorem 7. Let P = (X, P ) be a poset and let F = {Qx = (Yx, Qx) : x ∈ X}
be a family of posets. Assume that for each i ∈ P, where P = {P} ∪ F , the
graph of incomparable pairs Gi can be colored with ki colors. Then the graph of
incomparable pairs GS of the lexicographic sum S =

∑
x∈P F can be colored with

maxi∈P{ki} colors.

Proof. For every i ∈ P , let Ci be a valid vertex coloring of graph Gi = (Vi, Ei)
that uses ki colors, i.e. a map Ci : Vi → {1, . . . , ki} such that Ci(u) �= Ci(w)
whenever u and w are adjacent. Let (zai, zbj) be any incomparable pair of GS

and consider the following vertex coloring of GS:

C(zai, zbj) :=
{

CP(a, b) if a �= b;
CQa(i, j) otherwise; for all (zai, zbj) ∈ inc(S). (4)

The claim follows by showing that (4) is a valid coloring of GS. With this aim it is
sufficient to show that for any two adjacent incomparable pairs, namely (zai, zbj)
and (zck, zd�), we always have C(zai, zbj) �= C(zck, zd�). Note that (zai, zd�) ∈ P
and (zck, zbj) ∈ P , since (zai, zbj) and (zck, zd�) are assumed to be adjacent. We
will consider two alternative cases: either we have a = d and b = c, or at least
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one of the previous two conditions is not satisfied, say a �= d, without loss of
generality.

(i) (a = d and b = c) If a = b then (i, j) and (k, �) are adjacent in GQa , and
C(zai, zbj) = CQa(i, j) and C(zck, zd�) = CQa(k, �). Otherwise a �= b, and
C(zai, zbj) = CP(a, b) and C(zck, zd�) = CP(b, a). The claim follows since
CQa and CP are a valid vertex coloring of GQa and GP, respectively.

(ii) (a �= d) We start observing that b �∈ {a, d} by the lexicographic construc-
tion. Indeed, by contradiction, if a = b then (zbj , zd�) ∈ P and this, to-
gether with (zck, zbj) ∈ P , implies (zck, zd�) ∈ P ; a contradiction since
(zck, zd�) ∈ inc(S). Moreover, if b = d then (zai, zbj) ∈ P , again a con-
tradiction since (zai, zbj) ∈ inc(S). Similarly, we can prove that c �∈ {a, d}.
It follows that C(zai, zbj) = CP(a, b) and C(zck, zd�) = CP(c, d). Moreover,
since a �= d we have (a, d) ∈ P . Finally, observe that either b = c or (c, b) ∈ P
and in both cases CP(a, b) �= CP(c, d), and the claim follows. ��

A lexicographic sum
∑

x∈P F is trivial if either P has only one point, or every
poset in F is a one point poset; otherwise the sum is non-trivial. A poset is
decomposable if it is isomorphic to a non trivial lexicographic sum; otherwise it
is indecomposable. A poset can be decomposed into indecomposable posets in
O(n2) time [16] and by Theorem 7, when coloring, we can restrict our attention
on indecomposable posets.

7 Discussion and Open Problems

Semi-Order Dimension. The semi-order dimension of a poset P = (X, P ),
denoted dimS(P), is the smallest k such that there exists k semi-order extensions
of P which realize P [6]. Since a linear extension is a semi-order and every semi-
order has at most dimension 3 it follows that dimS(P) ≤ dim(P) ≤ 3 ·dimS(P).

Proposition 3. Problem 1|prec|
∑

j wjCj , where precedence constraints are
given as a semi-order realizer of size k, has a polynomial time (2 − 2

3k )-
approximation algorithm.

Recognizing posets with interval dimension 2 can be computed in time complex-
ity O(n2) [22]. The complexity of recognizing posets with semi-order dimension
2 is not known. A polynomial constructive algorithm (constructs the semi-order
realizer) would imply a (1 + 2

3 )-approximation algorithm for 1|prec|
∑

j wjCj

when precedence constraints form a poset with semi-order dimension at most 2.
The class of semi-order dimension 2 posets is a proper superclass of the class of
semi-orders and it is not contained in the class of interval orders.

Planar Posets. A poset is planar if its Hasse diagram [22] can be drawn without
edge crossings. Our interest in planar posets stems from the fact that a planar
poset P = (X, P ) with a greatest or least element has at most dimension 3 [22].
Even though it is NP-complete to recognize if a given partial order is planar [8],
we can construct a realizer of size 3 of P in polynomial time if the planar Hasse
diagram is given as input [22].
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Proposition 4. Problem 1|prec|
∑

j wjCj , where precedence constraints are
given as a planar Hasse diagram with a greatest or least element, has a polyno-
mial time (1+1/3)-approximation algorithm.

We also note that planar posets with a greatest and least element have at most
dimension two. As a consequence they can be recognized in polynomial time
and 1|prec|

∑
j wjCj with precedence constraints of this type can be solved in

polynomial time [1, 4]. The situation for planar posets without greatest or least
element is more complex, because they can possess arbitrary high dimension [22].

Dimension Approximation. Finally, we remark that the complexity of com-
puting a realizer of a poset is crucial for our approach. At the time being it is an
open problem if there is a constant c such that for any partial order of dimension
k ≥ 3, it is possible to construct a realizer of size at most c ·k in polynomial time.
Any results on this problem would be interesting for the scheduling problem as
well as for the dimension theory.
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