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a b s t r a c t

We study minimizing the sum of weighted completion times in a concurrent open shop. We give a
primal–dual 2-approximation algorithm for this problem. We also show that several natural linear
programming relaxations for this problem have an integrality gap of 2. Finally, we show that this problem
is inapproximable within a factor strictly less than 6/5 if P 6= NP, or strictly less than 4/3 if the Unique
Games Conjecture also holds.
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1. Introduction

Consider the following scheduling setting, sometimes known
as the concurrent open shop model, or the order scheduling model.
We have a set of machines M = {1, . . . ,m}, with each machine
capable of processing one operation type.Wehave a set of jobsN =
{1, . . . , n}, with each job requiring specific quantities of processing
for each of itsm operation types. Each job j ∈ N has a weightwj ∈
R≥0, and the processing time of job j’s operation on machine i is
pij ∈ R≥0. Operations are independent of each other: in particular,
operations from the same job can be processed in parallel. A job
is completed when all its operations are completed. In this paper,
we focus on minimizing the sum of weighted completion times in
a concurrent open shop. Following the notation of Leung et al. [12],
we denote this problem by PD ‖

∑
wjCj. Note that when m = 1,

or when each job consists of operations all with equal processing
time, PD ‖

∑
wjCj reduces to the classic problem of minimizing

the sum of weighted completion times on a single machine [18].
The concurrent open shopmodel can be considered as a variant

of the classical open shop model in which operations belonging
to the same job can be processed concurrently. This model has a
variety of applications inmanufacturing, including automobile and
airplane maintenance and repair [23], and orders with multiple
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components in manufacturing environments [19]. This model also
has applications in distributed computing [6].
The problem PD ‖

∑
wjCj was first studied by Ahmadi and

Bagchi [1]. A number of authors have since shown that various
special cases of this problem are NP-hard [1,19,4,12]; it turns out
this problem is strongly NP-hard, even when all jobs have unit
weight, and the number m of machines is 2 [16]. Garg et al. [6]
showed that PD ‖

∑
wjCj is APX-hard, even when all jobs have

unit weight and either zero or unit processing time.
Quite a bit of attention has been devoted to designing heuristics

for this problem. For example, Sung and Yoon [19], Wang and
Cheng [21], Ahmadi et al. [2] and Leung et al. [12] proposed various
heuristics for this problem; all of the heuristics they studied were
shown to either have a performance guarantee of m, or have
an unbounded performance guarantee. Inspired by techniques
in [7], Wang and Cheng [21] used an interval-indexed linear
programming (LP) relaxation of this problem to obtain a 16/3-
approximation algorithm. Finally, several groups of authors have
independently observed that a linear programming relaxation
of this problem in completion time variables with the parallel
inequalities of Wolsey [22] and Queyranne [14], combined with a
result of Schulz [17], yields a 2-approximation algorithm [4,6,13].
Webegin in Section 2 by presenting some interesting properties

of various natural linear programming relaxations for PD ‖∑
wjCj; in particular, we show that all these LP relaxations have an

integrality gap of 2. Then in Section 3, we present a combinatorial
approximation algorithm that has a performance guarantee of 2.
This algorithm can be seen either as a primal–dual algorithm,
or as a greedy algorithm that starts at the end of the schedule.
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Although the approximation algorithm independently proposedby
Chen and Hall [4], Garg et al. [6] and Leung et al. [13] achieves
the same performance guarantee, their algorithm requires solving
a linear program with an exponential number of constraints. Our
algorithm, on the other hand, requires O(n(m + n)) elementary
operations. Finally, in Section 4, we show that PD ‖

∑
wjCj is

inapproximable within a factor of 6/5 − ε for any ε > 0, unless
P = NP; under the increasingly prevalent assumption that the
Unique Games Conjecture holds, we can show that this scheduling
problem is in fact inapproximable within a factor of 4/3 − ε for
any ε > 0, unless P = NP. The construction used to show these
hardness results, as well as the integrality gap result in Section 2,
is an extension of the construction used by Garg et al. [6].
Recently, Bansal and Khot [3] and Kumar et al. [11] indepen-

dently showed that if the Unique Games Conjecture holds, PD ‖∑
wjCj is in fact inapproximable within a factor of 2 − ε for any

ε > 0, unless P = NP. In [3], this result is obtained by combining
our inapproximability construction with a new and stronger inap-
proximability result for the minimum vertex cover problem on r-
uniform hypergraphs. In [11], this result is obtained by combining
our integrality gap construction with an integrality-gap-based in-
approximability result for strict constraint satisfaction problems.

2. Linear programming relaxations

The existing mixed-integer programming formulations and
linear programming relaxations for various machine scheduling
problems (e.g. [15]) provide natural starting points for modeling
the problem of minimizing the sum of weighted completion times
in a concurrent open shop. We present two types of mathematical
programming formulations for PD ‖

∑
wjCj, one based on

completion time variables, and the other based on linear ordering
variables.

2.1. Completion time variables

Chen and Hall [4] proposed the following linear programming
relaxation of PD ‖

∑
wjCj:

CT1 : min
∑
j∈N

wjCj (1a)

s.t.
∑
j∈S

pijCij ≥ fi(S) for all i ∈ M, S ⊆ N, (1b)

Cj ≥ Cij for all i ∈ M, j ∈ N, (1c)
where Cij represents the completion time of job j’s operation on
machine i, Cj represents the completion time of job j, and

fi(S) =
1
2

∑
j∈S

p2ij +
1
2

(∑
j∈S

pij

)2
for all i ∈ M, S ⊆ N.

The constraints (1b) are the so-called parallel inequalities [22,14]
for each of the m machines. These inequalities are known to be
valid for the completion time vectors of jobs on a single machine;
in fact, they are sufficient to describe the convex hull of completion
time vectors for jobs on a single machine. It immediately follows
that CT1 is a valid relaxation for PD ‖

∑
wjCj.

By substituting the constraints (1c) into the constraints (1b), we
obtain a further relaxation of PD ‖

∑
wjCj in fewer completion

time variables:

CT2 : min
∑
j∈N

wjCj (2a)

s.t.
∑
j∈S

pijCj ≥ fi(S) for all i ∈ M, S ⊆ N. (2b)

The relaxation CT2 will serve as the basis of our analysis of the
algorithm presented in Section 3.
2.2. Linear ordering variables

In addition to explicitly modeling the completion times of each
job on each machine, we can model the order in which the jobs
are processed on each machine. For all i ∈ M and j, k ∈ N such
that j 6= k, we define the decision variables δijk, where δ

i
jk = 1 if

the operation of job j precedes the operation of job k on machine i,
and δijk = 0 otherwise. These variables are known as linear order-
ing variables. Consider the following mixed-integer programming
formulation for PD ‖

∑
wjCj:

min
∑
j∈N

wjCj (3a)

s.t. δijk + δ
i
kj = 1 for all i ∈ M, j, k ∈ N, (3b)

δijk + δ
i
kl + δ

i
lj ≤ 2 for all i ∈ M, j, k, l ∈ N, (3c)

δijk ∈ {0, 1} for all i ∈ M, j, k ∈ N, (3d)

Cij ≥
∑
k∈N:
k6=j

pikδikj + pij for all i ∈ M, j ∈ N, (3e)

Cj ≥ Cij for all i ∈ M, j ∈ N. (3f)

For a given machine i, the set of vectors defined by the constraints
(3b)–(3d) is known to define all permutations of N as described by
these δ-variables (the convex hull of this set is known as the lin-
ear ordering polytope). It follows that the mixed-integer program
(3a)–(3f) is a correct formulation of PD ‖

∑
wjCj.

A permutation schedule processes all jobs nonpreemptively,
without unnecessary idle time and in the same order on each
machine. Using concepts of Pareto minimality, Wagneur and
Sriskandarajah [20] showed that one may restrict attention to
permutation schedules without loss of optimality in problem PD ‖
f (C) when the objective function f (C) is nondecreasing in the
job completion times C = (Cj)j∈N (i.e., when f is a regular
performance measure). This result, which also implies that there is
no advantage to preemption in problem PD|pmtn|f (C), is in fact
an easy consequence of the optimality of Jackson’s [8] Earliest Due
Date (EDD) rule for minimizing maximum lateness on a single
machine, as we now show. (In a scheduling environment with a
set of jobs N and due dates dj for all j ∈ N , the lateness of a job
j is defined as the difference between its completion time and its
due date: Cj − dj. Jackson’s [8] EDD rule—schedule jobs in order of
nondecreasing due dates—minimizes the maximum lateness on a
single machine.)

Lemma 2.1 ([20]). Given an instance of PD ‖ f (C), let C = (Cj)j∈N
be the completion times of a feasible (possibly preemptive) schedule.
Then, there exists a permutation schedule with completion times C∗ =
(C∗j )j∈N such that C

∗

j ≤ Cj for all j ∈ N.

Alternative Proof. Let σ : {1, . . . , n} → N be a permutation of N
such that Cσ(1) ≤ · · · ≤ Cσ(n), and let (C∗ij )j∈N be the completion
times of the jobs on machine i ∈ M scheduled according to the
permutation σ . In addition, for each machine i ∈ M , define the
due dates dij = Cj for all j ∈ N . In the schedule corresponding
to the completion time vector C , for each machine i ∈ M , the
maximum lateness over all jobs is nonpositive, by construction.
Since Jackson’s EDD rule is optimal, scheduling the jobs according
to σ produces a permutation schedule in which the maximum
lateness over all jobs for each machine i ∈ M is nonpositive; that
is, C∗ij ≤ d

i
j = Cj for all i ∈ M and j ∈ N . �

Lemma 2.1 implies that we only need to find one common
ordering of the jobs to determine an optimal solution. Accordingly,
for all j, k ∈ N such that j 6= k, we define the decision variables
δjk, where δjk = 1 if job j precedes job k, and δjk = 0 otherwise.
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Consider the following mixed-integer programming formulation
for PD ‖

∑
wjCj, now with only one set of linear ordering

constraints:

min
∑
j∈N
wjCj (4a)

s.t. δjk + δkj = 1 for all j, k ∈ N, (4b)

δjk + δkl + δlj ≤ 2 for all j, k, l ∈ N, (4c)

δjk ∈ {0, 1} for all j, k ∈ N, (4d)

Cj ≥
∑
k∈N:
k6=j

pikδkj + pij for all i ∈ M, j ∈ N. (4e)

By Lemma 2.1, it follows that the above mixed-integer program-
ming formulation is also valid for PD ‖

∑
wjCj.

Let LO3 be the linear programming relaxation of the mixed-
integer program (3a)–(3f) obtained by replacing the binary
constraints (3d) with nonnegativity constraints. Similarly, let
LO4 be the linear programming relaxation of (4a)–(4e) obtained
by replacing the binary constraints (4d) with nonnegativity
constraints.

2.3. Relative strength of LP relaxations

For any linear programming relaxation X of PD ‖
∑
wjCj, let

OPTX be the optimal value of X. We show the following statement
on the relative strength of the four linear programming relaxations
presented above.

Lemma 2.2. For any given instance of PD ‖
∑
wjCj, we have that

OPTCT1 = OPTCT2 = OPTLO3 ≤ OPTLO4.

Proof. To simplify notation in this proof, when referring to a
vector of completion time or linear ordering variables, we omit
the associated set of indices; these sets should be clear from the
context.
Fix an instance of PD ‖

∑
wjCj. Let (C1

ij , C
1
j ), (C

2
j ), (δ

i3
jk, C

3
ij , C

3
j ),

and (δ4jk, C
4
j ) be optimal solutions to CT1, CT2, LO3, and LO4,

respectively.
Clearly, (C1

j ) is feasible in CT2, and so OPTCT2 ≤ OPTCT1. Now
define C2

ij = C
2
j for all i ∈ M and j ∈ N . Clearly, (C

2
ij , C

2
j ) is feasible

in CT1, and so OPTCT1 ≤ OPTCT2. Therefore, OPTCT1 = OPTCT2.
Using techniques from [17], it is straightforward to show that

(C3
j ) is feasible in CT2, and so OPTCT2 ≤ OPTLO3. To show the re-

verse inequality, for each machine i ∈ M we define P i = {(Cj) :∑
j∈S pijCj ≥ fi(S) for all S ⊆ N} and B

i
= {(Cj) :

∑
j∈N pijCj =

fi(N),
∑
j∈S pijCj ≥ fi(S) for all S ⊂ N}. As mentioned earlier, for

each i ∈ M , the polyhedron P i is the convex hull of completion time
vectors for jobs on machine i. In addition, for each i ∈ M , the poly-
tope Bi is the convex hull of completion time vectors corresponding
to permutation schedules on machine i [22,14]. It follows that P i is
the dominant of Bi (see [15]). Therefore, for every machine i ∈ M ,
there exists a vector (C2

ij ) ∈ B
i such that C2

ij ≤ C
2
j for all j ∈ N .

Also, for every machine i ∈ M , since (C2
ij ) ∈ B

i represents a convex
combination of permutation schedules on machine i, and each of
these permutation schedules can be represented by a vector of lin-
ear ordering variables and completion time variables that satisfies
(3b), (3c), (3e), and the nonnegativity constraints restricted to i, it
follows by convexity that there exists a vector (δi2jk) of linear order-
ing variables such that (δi2jk, C

2
ij ) satisfies the constraints (3b), (3c),

(3e), and the nonnegativity constraints restricted to i. Therefore,
(δi2jk, C

2
ij , C

2
j ) is a feasible solution to LO3, and so OPTLO3 ≤ OPTCT2.

So OPTCT2 = OPTLO3.
Finally, define δi4jk = δ

4
jk for all i ∈ M and j, k ∈ N such that j 6= k.

Also, define C4
ij = C

4
j for all i ∈ M and j ∈ N . Clearly, (δ

i4
jk, C

4
ij , C

4
j ) is

a feasible solution to LO3, and so OPTLO3 ≤ OPTLO4. �
The inequality in Lemma 2.2 can be strict. Consider the instance
with m = 2, n = 2, w1 = w2 = 1, p11 = 2, p12 = 1, p21 = 1,
and p22 = 2. The optimal objective value of LO3 is 14/3, and the
optimal objective value of LO4 is 5.

2.4. Integrality gaps for LP relaxations

Chen and Hall [4], Leung et al. [13], and Garg et al. [6] inde-
pendently observed that scheduling jobs in order of nondecreas-
ing optimal Cj to the linear program CT1 is a 2-approximation
algorithm for the problem PD ‖

∑
wjCj. They showed this using

a proof technique introduced in [17], which also implies that the
integrality gap of CT1 is at most 2. (In this subsection, we slightly
abuse terminology: for any relaxation X of the problem PD ‖∑
wjCj, we say that the integrality gap ofX is sup{OPT(I)/OPTX(I) :

I is an instance of PD ‖
∑
wjCj}, where OPT(I) denotes the op-

timal value of PD ‖
∑
wjCj under instance I , and OPTX(I)

denotes the optimal value of the relaxation X under instance I .)
Similarly, one can show that scheduling jobs in order of nonde-
creasing optimal Cj to the linear programs CT2, LO3, and LO4 are
also 2-approximation algorithms, and that for all these linear pro-
grams, the integrality gap is at most 2. We show that the analyses
of these LP relaxations are tight: the integrality gap is 2 for CT1,
CT2, LO3, and LO4.

Theorem 2.3. The integrality gap is 2 for the following linear
programming relaxations: CT1, CT2, LO3, and LO4.

Proof. As mentioned above, it follows from [4,13,6] that the
integrality gap of CT1 is at most 2. We next show that the
integrality gap of LO4 is at least 2.
Let (N, E) be a complete r-uniform hypergraph. (An r-uniform

hypergraph is a pair (N, E)where N is a finite set, and E is a family
of r-element subsets of N . The elements of N are called nodes, and
the elements of E are called hyperedges. An r-uniform hypergraph
(N, E) is complete if E is the family of all

( n
r

)
r-element subsets of

N .) We construct an instance of PD ‖
∑
wjCj as follows. Each node

j ∈ N corresponds to a job. Each hyperedge i ∈ E corresponds to
a machine, so m =

( n
r

)
. For each i ∈ M and j ∈ N , the processing

time pij is 1 if j is in hyperedge i, and 0 otherwise. All jobs have unit
weight. Note that in any feasible schedule without unnecessary
idle time, everymachine processes jobs only during the first r time
units.
We first show that in any feasible schedule without idle time,

there are at least n−r+1 jobs that complete at time r . We consider
two cases.

1. There are at most r − 2 jobs that complete at or before time r − 1.
Therefore, at least n − r + 2 jobs complete at time r , which
directly implies the claim.

2. There are at least r − 1 jobs that complete at or before time r − 1.
Let A be a set of r−1 jobs that complete at or before time r−1.
Since (N, E) is a complete r-uniform hypergraph, for any job
j ∈ N\A, we have thatA∪{j} is a hyperedge in (N, E). Since there
are r − 1 jobs in A, this implies that every job j ∈ N \ A cannot
complete until at least time r on the machine corresponding to
the hyperedge A ∪ {j}. Since |N \ A| = n − r + 1, there are at
least n− r + 1 jobs that complete at time r .

LetOPTdenote the optimal value of this instance. It follows from
the above observation that OPT ≥ r(n− r + 1). Now consider the
following solution to LO4:

δjk = 1/2 for all j, k ∈ N : j 6= k,

Cj = max
i∈M

{ ∑
k∈N:k6=j

pikδkj + pij

}
for all j ∈ N.
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It is straightforward to show that this solution is feasible. Also, note
that Cj = (r − 1)/2 + 1, and so OPTLO4 ≤ n(r + 1)/2. Letting
r = n3/4, we have that

OPT
OPTLO4

≥
2n3/4(n− n3/4 + 1)
n(n3/4 + 1)

,

which approaches 2 as n goes to infinity.
The result now follows from Lemma 2.2. �

3. A combinatorial 2-approximation algorithm

In this section, we present a simple combinatorial 2-
approximation algorithm for PD ‖

∑
wjCj. Our algorithm can be

seen as a primal–dual algorithm, or as a greedy algorithm start-
ing from the end of the schedule. Unlike the LP-based approxima-
tion algorithms mentioned in Section 2.4, our algorithm does not
require the solution of a linear program; in fact, our algorithm re-
quires O(n(m + n)) elementary operations. Although it does not
require solving the linear program CT2, we use this linear program
and its dual in the analysis of our algorithm. Note that the dual of
CT2 is

max
∑
i∈M

∑
S⊆N
fi(S)yi,S (5a)

s.t.
∑
i∈M
pij

∑
S⊆N:j∈S

yi,S = wj for all j ∈ N, (5b)

yi,S ≥ 0 for all i ∈ M, S ⊆ N. (5c)

Our algorithm works as follows. We find a permutation schedule
by starting at the end of the schedule. We determine the last job to
be scheduled by observing that its completion time is achieved on
the machine with the maximum load when all jobs are scheduled;
we choose the job with the minimum weight-to-processing time
ratio on that machine. We adjust the weights of the other jobs to
ensure dual feasibility, and proceed in determining the next-to-last
job in a similarmanner. A full description of the algorithm is below.
We assume that all jobs require positive processing time on at least
one machine; in other words,

for all j ∈ N, pij > 0 for at least one i ∈ M. (6)

Note that this assumption is made without loss of generality: we
can set aside the jobs that require zero processing time on all
machines in a preprocessing step, and then schedule these jobs at
the beginning of the permutation schedule for the remaining jobs
constructed by the algorithm below.

Algorithm 3.1. Input: instance of PD ‖
∑
wjCj: number of jobs

n; number of machinesm; processing times pij ∈ R≥0 for
all i ∈ M and j ∈ N; weightswj ∈ R≥0 for all j ∈ N .

Output: permutation schedule of jobs σ : {1, . . . , n} → N .

1. Initialize:
a. J ← N (unscheduled jobs)
b. Li ←

∑
j∈N pij for all i ∈ M (load of machine i)

c. w̄j ← wj for all j ∈ N (adjusted weights)
2. For k = n, n− 1, . . . , 2, 1:
a. µ ← argmaxi∈M Li (determine machine on which job σ(k)
completes)

b. σ(k)← argminj∈J{w̄j/pµ,j} (determine job σ(k))
c. θ ← w̄σ(k)/pµ,σ(k)
w̄j ← w̄j − θ · pµ,j for all j ∈ J (adjust weights)

d. Li ← Li − pi,σ (k) for all i ∈ M (update machine loads)
e. J ← J \ {σ(k)} (update unscheduled jobs)
When computing µ and σ(k), break ties arbitrarily.

To show the performance guarantee of Algorithm 3.1, we need
the following useful property of the set function fi, first proved
by Schulz [17] in the context of completion-time-variable LP
relaxations for other scheduling problems.
Lemma 3.2 ([17]). For any i ∈ M, and S ⊆ N, we have that (
∑
j∈S

pij)2 ≤
(
2− 2

n+1

)
fi(S).

Now we show the main result of this section.

Theorem 3.3. Algorithm 3.1 is a
(
2− 2

n+1

)
-approximation algo-

rithm for PD ‖
∑
wjCj.

Proof. For ease of notation, letµ(k) denote the machineµ chosen
in Step 2a at iteration k, let θ(k) denote the value θ computed in
Step 2c at iteration k, and let w̄j(k) denote the adjusted weights w̄j
computed in Step 2c at iteration k for all j ∈ N . In addition, let J(k)
denote the set of unscheduled jobs J at the beginning of iteration k;
that is, J(k) = {σ(1), . . . , σ (k)}.
Define the following dual solution: for all i ∈ M and S ⊆ N ,

yi,S =
{
θ(k) if i = µ(k), S = J(k) for some k = 1, . . . , n,
0 otherwise.

We show that y = (yi,S)i∈M,S⊆N is a feasible solution to the dual
linear program (5a)–(5c). Since wj ≥ 0 for all j ∈ N , Steps 1c,
2a and 2b, along with the assumption (6) imply that θ(n) is well-
defined and that in fact, θ(n) ≥ 0. In addition, at any iteration
k = 2, . . . , n, the choice of σ(k) in Step 2b implies that w̄j(k) ≥ 0
for all j ∈ J(k). It follows by Steps 2a and 2b and the assumption (6)
that for k = 1, . . . , n−1, θ(k) is well-defined and in fact, θ(k) ≥ 0.
Therefore, y is well-defined and satisfies (5c). Next, observe that at
every iteration k = 1, . . . , n,

w̄j(k) = wj −
n∑
l=k

pµ(l),jθ(l) for all j ∈ J(k).

It follows that y satisfies the constraints (5b), since for any job σ(k)
with k = 1, . . . , n, we have∑
i∈M

pi,σ (k)
∑

S⊆N:σ(k)∈S

yi,S =
n∑
l=k

pµ(l),σ (k)yµ(l),J(l)

=

n∑
l=k

pµ(l),σ (k)θ(l) = wσ(k) − w̄σ(k)(k)
(i)
= wσ(k),

where (i) holds since Steps 2b and 2c imply that w̄σ(k)(k) = 0 for
all k = 1, . . . , n.
We now show that the schedule constructed by the algorithm

is a (2−2/(n+1))-approximation. Note that the completion times
(Cj)j∈N under the permutation schedule produced by the algorithm
satisfy Cσ(1) ≤ Cσ(2) ≤ · · · ≤ Cσ(n), and by Steps 2a and 2b,
Cσ(k) =

∑
j∈J(k) pµ(k),j =

∑k
j=1 pµ(k),σ (j) for all k = 1, . . . , n. Let

(CLPj )j∈N be anoptimal solution toCT2, and let (C
∗

j )j∈N be anoptimal
completion time vector. The objective value of the permutation
schedule produced by the algorithm is∑
j∈N

wjCj =
∑
j∈N

(∑
i∈M

pij
∑
S⊆N:j∈S

yi,S

)
Cj

=

∑
i∈M

∑
S⊆N

yi,S
∑
j∈S

pijCj =
n∑
k=1

yµ(k),J(k)
∑
j∈J(k)

pµ(k),jCj

=

n∑
k=1

yµ(k),J(k)
k∑
j=1

pµ(k),σ (j)Cσ(j)

(ii)
≤

n∑
k=1

yµ(k),J(k)

(
Cσ(k)

k∑
j=1

pµ(k),σ (j)

)

(iii)
=

n∑
k=1

yµ(k),J(k)

(
k∑
j=1

pµ(k),σ (j)

)2
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(iv)
≤

(
2−

2
n+ 1

) n∑
k=1

yµ(k),J(k)fµ(k)(J(k))

(v)
≤

(
2−

2
n+ 1

)∑
j∈N

wjCLPj ≤
(
2−

2
n+ 1

)∑
j∈N

wjC∗j ,

where (ii) holds since Cσ(k) ≥ Cσ(j) for all j = 1, . . . , k, (iii) holds
since Cσ(k) =

∑k
j=1 pµ(k),σ (j), (iv) holds by Lemma 3.2, and (v) holds

since y is feasible in (5a)–(5c).
Finally, we analyze the running time of the algorithm. The

algorithm runs through an initialization and n iterations. Each
step in the initialization of the algorithm takes at most nm
elementary operations. Each step in each iteration of the algorithm
takes either at most m elementary operations or at most n
elementary operations. Therefore, the algorithm requires O(n(m+
n)) elementary operations. �

The above analysis of the performance guarantee of Algo-
rithm 3.1 is tight. Consider the following instance with m = n,
and

pij =

{n
i
if j ≤ i,

0 otherwise
for all i = 1, . . . , n and j = 1, . . . , n.

All jobs haveunitweight. It is straightforward to show that the total
completion time of the permutation schedule (n, n − 1, . . . , 2, 1)
is n(n + 1)/2. On the other hand, suppose that Algorithm 3.1,
when computing µ and σ(k), breaks ties by always choosing the
machine or job with the highest index. It turns out that when
using this tiebreaking rule, Algorithm 3.1 outputs the permutation
schedule (1, . . . , n) which has a total completion time of n2.
Therefore, using the objective value of the permutation schedule
(n, n − 1, . . . , 2, 1) as an upper bound on the optimal value, the
performance guarantee of Algorithm 3.1 cannot be better than
2− 2/(n+ 1).

4. Hardness of approximation

In this section, we give lower bounds on the approximability
of the problem PD ‖

∑
Cj (all jobs have unit weight), both un-

der the standard assumption P 6= NP, as well as under the in-
creasingly prevalent additional assumption that the Unique Games
Conjecture [9] holds. In order to show these inapproximability re-
sults, we make use of the following theorems on the inapprox-
imability of the maximum cardinality independent set problem on
r-uniformhypergraphs. (An independent set of an r-uniformhyper-
graph (N, E) is a subset I ofN such that i\I 6= ∅ for every hyperedge
i ∈ E.)

Theorem 4.1 ([5]). For any γ ∈ (0, 1) and δ ∈ (0, 1/2), the
following problem is NP-hard: given an r-uniform hypergraph G =
(N, E) with r ≥ 3, decide whether

(i) G contains an independent set of size greater than or equal to
(1− 1

r−1 − δ)|N|, or
(ii) all independent sets of G have size strictly less than γ |N|.

Theorem 4.2 ([10]). Assuming the Unique Games Conjecture is true,
for any γ ∈ (0, 1) and δ ∈ (0, 1/2), the following problem is NP-
hard: given an r-uniform hypergraph G = (N, E) with r ≥ 2, decide
whether

(i) G contains an independent set of size greater than or equal to
(1− 1

r − δ)|N|, or
(ii) all independent sets of G have size strictly less than γ |N|.

Using the above results, we can show the following.
Theorem 4.3. (a) PD ‖
∑
Cj is hard to approximate within a factor

of 6/5− ε for any ε > 0, unless P = NP.
(b) Assuming the Unique Games Conjecture is true, PD ‖

∑
Cj is hard

to approximate within a factor of 4/3 − ε for any ε > 0, unless
P = NP.

Proof. First, we show (a). Let G = (N, E) be an r-uniform hyper-
graph. We construct an instance of PD ‖

∑
Cj as we did in the

proof of Theorem 2.3: each node j ∈ N corresponds to a job, and
each hyperedge i ∈ E corresponds to a machine. For each i ∈ M
and j ∈ N , the processing time pij is 1 if j is in hyperedge i, and 0
otherwise. As before, in any feasible schedulewithout unnecessary
idle time, everymachine processes jobs only during the first r time
units. The key observation is as follows: I ⊆ N is an independent
set in G if and only if each job in I can be completed by time r − 1.
Let OPT denote the optimal value of this instance of PD ‖

∑
Cj.

Suppose that condition (i) from Theorem 4.1 holds. Let I be such an
independent set. By the observation in the previous paragraph, we
know that all jobs in I can be completed by time r − 1, and that all
the remaining jobs N \ I can be completed by time r . Therefore, in
this case,

OPT ≤ (r − 1) ·
(
1−

1
r − 1

− δ

)
|N| + r ·

(
1
r − 1

+ δ

)
|N|

=

(
(r − 1)+

1
r − 1

+ δ

)
|N|.

Now suppose that condition (ii) from Theorem 4.1 holds. This im-
plies that in any schedule, at least (1− γ )|N| jobs are forced to be
completed at time r . Therefore, in this case,

OPT ≥ 1 · γ |N| + r · (1− γ )|N| = (r − (r − 1)γ )|N|.

It follows that a
( r(r−1)
(r−1)2+1

− ε
)
-approximation algorithm for PD ‖∑

Cj can solve the decision problem in Theorem 4.1. When r = 3,
we have that r(r−1)

(r−1)2+1
= 6/5.

Using the above ideas in conjunction with Theorem 4.2, and by
setting r = 2, one can show (b). �
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