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ABSTRACT
One of the classic results in scheduling theory is the 2-
approximation algorithm by Lenstra, Shmoys, and Tardos
for the problem of scheduling jobs to minimize makespan on
unrelated machines, i.e., job j requires time pij if processed
on machine i. More than two decades after its introduction
it is still the algorithm of choice even in the restricted model
where processing times are of the form pij ∈ {pj ,∞}. This
problem, also known as the restricted assignment problem, is
NP-hard to approximate within a factor less than 1.5 which
is also the best known lower bound for the general version.

Our main result is a polynomial time algorithm that es-
timates the optimal makespan of the restricted assignment
problem within a factor 33/17+ε ≈ 1.9412+ε, where ε > 0 is
an arbitrarily small constant. The result is obtained by up-
per bounding the integrality gap of a certain strong linear
program, known as configuration LP, that was previously
successfully used for the related Santa Claus problem. Sim-
ilar to the strongest analysis for that problem our proof is
based on a local search algorithm that will eventually find a
schedule of the mentioned approximation guarantee, but is
not known to converge in polynomial time.

Categories and Subject Descriptors
F.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling

General Terms
Theory

1. INTRODUCTION
Scheduling on unrelated machines is the model where we

are given a set J of jobs to be processed without interrup-
tion on a set M of unrelated machines, where the time a
machine i ∈ M needs to process a job j ∈ J is specified
by a machine and job dependent processing time pij ≥ 0.
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When considering a scheduling problem the most common
and perhaps most natural objective function is makespan
minimization. This is the problem of finding a schedule,
also called an assignment, σ : J 7→M so as to minimize the
time maxi∈M

P
j∈σ−1(i) pij required to process all the jobs.

A classic result in scheduling theory is Lenstra, Shmoys,
and Tardos’ 2-approximation algorithm for this basic prob-
lem [13]. Their approach is based on several nice structural
properties of the extreme point solutions of a natural linear
program and has become a text book example of such tech-
niques (see, e. g., [19]). Complementing their positive result
they also proved that the problem is NP-hard to approxi-
mate within a factor less than 1.5 even in the restricted case
when pij ∈ {pj ,∞} (i. e., when job j has processing time
pj or ∞ for each machine). This problem is also known
as the restricted assignment problem and, although it looks
easier than the general version, the algorithm of choice has
been the same 2-approximation algorithm as for the general
version.

Despite being a prominent open problem in scheduling
theory, there has been very little progress on either the up-
per or lower bound since the publication of [13] over two
decades ago. One of the biggest hurdles for improving the
approximation guarantee has been to obtain a good lower
bound on the optimal makespan. Indeed, the considered
linear program has been useful for generalizations such as
introducing job and machine dependent costs [16, 17] but is
known to have an integrality gap of 2 − 1/|M| even in the
restricted case. We note that Shchepin and Vakhania [15]
presented a rounding achieving this gap slightly improving
upon the approximation ratio of 2.

In a relatively recent paper, Ebenlendr et al. [6] over-
came this issue in the special case of the restricted assign-
ment problem where a job can be assigned to at most two
machines. Their strategy was to add more constraints to
the studied linear program, which allowed them to prove
a 1.75-approximation algorithm for this special case that
they named Graph Balancing. The name arises naturally
when interpreting the restricted assignment problem as a
hypergraph with a vertex for each machine and a hyperedge
Γ(j) = {i ∈M : pij = pj} for each job j ∈ J that is incident
to the machines it can be assigned to. As pointed out by the
authors of [6] it seems difficult to extend their techniques to
hold for more general cases. In particular, it can be seen
that the considered linear program has an integrality gap of
2 when we allow jobs that can be assigned to 3 machines.

In this paper we overcome this obstacle by considering
a certain strong linear program, often referred to as con-

617



figuration LP. In particular, we obtain the first asymptotic
improvement on the approximation factor of 2.

Theorem 1. There is a polynomial time algorithm that
estimates the optimal makespan of the restricted assignment
problem within a factor of 33/17 + ε ≈ 1.9412 + ε, where
ε > 0 is an arbitrarily small constant.

We note that our proof gives a local search algorithm to also
find a schedule with performance guarantee 33

17
but it is not

known to converge in polynomial time.
Our techniques are based on the recent development on

the related Santa Claus problem. In the Santa Claus prob-
lem we are given the same input as in the considered schedul-
ing problem but instead of wanting to minimize the maxi-
mum we wish to maximize the minimum, i. e., to find an
assignment σ so as to maximize mini∈M

P
j∈σ−1(i) pij . The

playful name now follows from associating the machines with
kids and jobs with presents. Santa Claus’ problem then be-
comes to distribute the presents so as to make the least
happy kid as happy as possible.

The problem was first considered under this name by
Bansal and Sviridenko [3]. They formulated and used the
configuration LP to obtain anO(log log log |M|/ log log |M|)-
approximation algorithm for the restricted Santa Claus prob-
lem, where pij ∈ {pj , 0}. They also proved several structural
properties that were later used by Feige [7] to prove that the
integrality gap of the configuration LP is in fact constant
in the restricted case. The proof is based on repeated use
of Lovász local lemma and was only recently turned into a
polynomial time algorithm [9].

The approximation guarantee obtained by combining [7]
and [9] is a large constant and the techniques do not seem
applicable to the considered problem. This is because the
methods rely on structural properties that are obtained by
rounding the input and such a rounding applied to the schedul-
ing problem would rapidly eliminate any advantage obtained
over the current approximation ratio of 2. Instead, our tech-
niques are mainly inspired by a paper of Asadpour et al. [1]
who gave a tighter analysis of the configuration LP for the re-
stricted Santa Claus problem. More specifically, they proved
that the integrality gap is lower bounded by 1/4 by designing
a local search algorithm that eventually finds a solution with
the mentioned approximation guarantee, but is not known
to converge in polynomial time.

Similar to their approach, we formulate the configuration
LP and show that its integrality gap is upper bounded by
33/17 by designing a local search algorithm. As the configu-
ration LP can be solved in polynomial time up to any desired
accuracy [3], this implies Theorem 1. Although we cannot
prove that the local search converges in polynomial time, our
results imply that the configuration LP gives a polynomial
time computable lower bound on the optimal makespan that
is strictly better than two. We emphasize that all the results
related to hardness of approximation remain valid even for
estimating the optimal makespan.

Before proceeding, let us mention that unlike the restricted
assignment problem, the special case of uniform machines
and that of a fixed number of machines are both significantly
easier to approximate and are known to admit polynomial
time approximation schemes [10, 11, 12]. Also scheduling
jobs on unrelated machines to minimize weighted comple-
tion time instead of makespan has a better approximation
algorithm with performance guarantee 1.5 [14]. The Santa

Claus problem has also been studied under the name Max-
Min Fair Allocation and there have been several recent re-
sults for the general version of the problem (see e.g. [2, 4,
5]).

Compared to [1], our analysis is more complex and relies
on the special structure of the dual of the linear program.
To illustrate the main techniques, we have therefore chosen
to first present the analysis for the case of only two job sizes
(Section 3) followed by the general case in Section 4.

2. PRELIMINARIES
As we consider the restricted case with pij ∈ {pj ,∞},

without ambiguity, we refer to pj as the size of job j. For
a subset J ′ ⊆ J we let p (J ′) =

P
j∈J ′ pj and often write

p(j) for p({j}), which of course equals pj .
We now give the definition of the configuration LP for

the restricted assignment problem. Its intuition is that a
solution to the scheduling problem with makespan T assigns
a set of jobs, referred to as a configuration, to each machine
of total processing time at most T . Formally, we say that
a subset C ⊆ J of jobs is a configuration for a machine
i ∈M if it can be assigned without violating a given target
makespan T , i.e., C ⊆ {j : i ∈ Γ(j)} and p(C) ≤ T . Let
C(i, T ) be the set of configurations for machine i ∈ M with
respect to the target makespan T . The configuration LP has
a variable xi,C for each configuration C for machine i and
two sets of constraints:

[C-LP]
X

C∈C(i,T )

xi,C ≤ 1 i ∈M

X
C3j

X
i

xi,C ≥ 1 j ∈ J

x ≥ 0

The first set of constraints ensures that each machine is as-
signed at most one configuration and the second set of con-
straints says that each job should be assigned (at least) once.

Note that if [C-LP] is feasible with respect to some tar-
get makespan T0 then it is also feasible with respect to all
T ≥ T0. Let OPTLP denote the minimum over all such
values of T . Since an optimal schedule of makespan OPT
defines a feasible solution to [C-LP] with T = OPT , we
have OPTLP ≤ OPT . To simplify notation we will assume
throughout the paper that OPTLP = 1 and denote C(i, 1)
by C(i). This is without loss of generality since it can be
obtained by scaling processing times.

Although [C-LP] might have exponentially many variables,
it can be solved (and OPTLP can be found by binary search)
in polynomial time up to any desired accuracy ε > 0 [3]. The
strategy of [3] is to design a polynomial time separation ora-
cle for the dual and then solve it using the ellipsoid method.
To obtain the dual, we associate a dual variable yi with
i ∈ M for each constraint from the first set of constraints
and a dual variable zj with j ∈ J for each constraint from
the second set of constraints. Assuming that the objective
of [C-LP] is to maximize an objective function with zero
coefficients then gives the dual:
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Dual of [C-LP] min
X
i∈M

yi −
X
j∈J

zj

yi ≥
X
j∈C

zj i ∈M, C ∈ C(i)

y, z ≥ 0

Let us remark that, given a candidate solution (y∗, z∗), the
separation oracle has to find a violated constraint if any in
polynomial time and this is just m knapsack problems: for
each i ∈ M solve the knapsack problem with capacity 1
and an item with weight pj and profit zj for each j ∈ J
with i ∈ Γ(j). By rounding job sizes as explained in [3], we
can thus solve [C-LP] in polynomial time up to any desired
accuracy.

3. OVERVIEW OF TECHNIQUES: JOBS OF
TWO SIZES

We give an overview of the main techniques used by con-
sidering the simpler case when we have jobs of two sizes:
small jobs of size ε and big jobs of size 1. Already for
this case all previously considered linear programs have an
integrality gap of 2. In contrast we show the following
for [C-LP].

Theorem 2. If an instance of the scheduling problem only
has jobs of sizes ε ≥ 0 and 1 then [C-LP] has integrality gap
at most 5/3 + ε.

Throughout this section we let R = 2/3 + ε. The proof
strategy is to design a local search algorithm that returns a
solution with makespan at most 1 +R, assuming the [C-LP]
is feasible. The algorithm starts with a partial schedule σ
with no jobs assigned to any machine. It will then repeatedly
call a procedure, summarized in Algorithm 1, that extends
the schedule by assigning a new job until all jobs are as-
signed. When assigning a new job we need to ensure that
σ will still have a makespan of at most 1 + R. This might
require us to also update the schedule σ by moving already
assigned jobs. For an example, consider Figure 1 where we
have a partial schedule and wish to assign a new big job
jnew. In the first step we try to assign jnew to M1 but dis-
cover that M1 has too high load, i.e., the set of jobs assigned
to M1 have total processing time such that assigning jnew
to M1 would violate the target makespan 1 +R. Therefore,
in the second step we try to move jobs from M1 to M2 but
M2 has also too high load. Instead, we try to move jnew
to M3. As M3 already has a big job assigned we need to
first reassign it. We try to reassign it to M4 in the fourth
step. In the fifth step we manage to move small jobs from
M4 to M3, which makes it possible to also move the big job
assigned to M3 to M4 and finally assign jnew to M3.

Valid schedule and move.
As alluded to above, the algorithm always maintains a

valid partial schedule by moving already assigned jobs. Let
us formally define these concepts.

Definition 1. A partial schedule is an assignment σ :
J 7→ M ∪ {TBD} with the meaning that a job j with
σ(j) = TBD is not assigned. A partial schedule is valid
if each machine i ∈ M is assigned at most one big job and
p(σ−1(i)) ≤ 1 +R.

That i is assigned at most one big job is implied here by
p(σ−1(i)) ≤ 1 + R but will be used for the general case
in Section 4. Note also that with this notation a normal
schedule is just a partial schedule σ with σ−1(TBD) = ∅.

Definition 2. A move is a tuple (j, i) of a job j ∈ J and
a machine i ∈ Γσ(j), where Γσ(j) = Γ(j) \ {σ(j)} denotes
the machines to which j can be assigned apart from σ(j).

The main steps of the algorithm are the following. At the
start it will try to choose a valid assignment of jnew to a
machine, i.e., that can be made without violating the target
makespan. If no such assignment exists then the algorithm
adds the set of jobs that blocked the assignment of jnew to
the set of jobs we wish to move. It then repeatedly chooses
a move of a job j from the set of jobs that is blocking the
assignment of jnew. If the move of j is valid then this will
intuitively make more space for jnew. Otherwise the set of
jobs blocking the move of j is added to the list of jobs we
wish to move and the procedure will in the next iteration
continue to move jobs recursively.

To ensure that we will be able to eventually assign a new
job jnew it is important which moves we choose. The algo-
rithm will choose between certain moves that we call poten-
tial moves, defined so as to guarantee (i) that the procedure
terminates and that (ii) if no potential move exists then we
shall be able to prove that the dual of [C-LP] is unbounded,
contradicting the feasibility of the primal. For this reason,
we need to remember to which machines we have already
tried to move jobs and which jobs we wish to move. We
next describe how the algorithm keeps track of its history
and how this affects which move we choose. We then de-
scribe the types of potential moves that the algorithm will
choose between.

Tree of blockers.
To remember its history, Algorithm 1 has a dynamic tree
T of so-called blockers that “block” moves we wish to do.
Blockers of T have both tree and linear structure. The linear
structure is simply the order in time the blockers were added
to T . To distinguish between the two we will use child and
parent to refer to the tree structure; and after and before
to refer to the linear structure. We also use the convention
that the blockers B0, B1, . . . , Bt of T are indexed according
to the linear order.

Definition 3. A blocker B is a tuple that contains a sub-
set J (B) ⊆ J of jobs and a machineM(B) that takes value
⊥ if no machine is assigned to the blocker.

To simplify notation, we refer to the machines and jobs in
T by M(T ) and J (T ), respectively. We will conceptually
distinguish between small and big blockers and useMS(T )
andMB(T ) to refer to the subsets ofM(T ) containing the
machines in small and big blockers, respectively. To be pre-
cise, this convention will add a bit to the description of a
blocker so as to keep track of whether a blocker is small or
big.

The algorithm starts by initializing the tree T with a spe-
cial small blocker B as root. Blocker B is special in the
sense that it is the only blocker with no machine assigned,
i.e., M(B) = ⊥. Its job set J (B) includes the job jnew we
wish to assign. The next step of the procedure is to repeat-
edly try to move jobs, until we can eventually assign jnew.

619



1 2 3

4 5 6

M1 M2

M3

M1 M2M1

M2M1

M4M3 M4M3 M4M3

M2M1 M2M1

jnew jnew jnew

jnew jnew

Figure 1: Possible steps when moving jobs to assign a new job jnew. Big and small jobs depicted in dark and
light grey, respectively.

During its execution, the procedure also updates T based
on which move that is chosen so that

1. MS(T ) contains those machines to which the algo-
rithm will not try to move any jobs;

2. MB(T ) contains those machines to which the algo-
rithm will not try to move any big jobs;

3. J (T ) contains those jobs that the algorithm wishes to
move.

Potential moves.
For a move (j, i) to be useful it should be of some job

j ∈ J (T ) as this set contains those jobs we wish to move
to make space for the unassigned job jnew. In addition, the
move (j, i) should have a potential of succeeding and be to a
machine i where j is allowed to be moved according to T . We
refer to such moves as potential moves and a subset of them
as valid moves. The difference is that for a potential move
to succeed it might be necessary to recursively move other
jobs whereas a valid move can be done immediately. With
this intuition, let us now define these concepts formally.

Definition 4. A move (j, i) of a job j ∈ J (T ) is a

potential small move: if j is small and i 6∈ MS(T );

potential big-to-small move: if j is big, i 6∈ M(T ), p(Si) ≤
R, and no big job is assigned to i;

potential big-to-big move: if j is big, i 6∈ M(T ), p(Si) ≤
R, and a big job is assigned to i;

where Si = {j ∈ σ−1(i) : j is small with Γσ(j) ⊆MS(T )}.
A potential move (j, i) is valid if the update σ(j)← i results
in a valid schedule.

Note that Si refers to those small jobs assigned to i with
no potential moves with respect to the current tree. The
condition p(Si) ≤ R for big moves enforces that we do not
try to move big jobs to machines where the load cannot

decrease to at most R without removing a blocker already
present in T . The algorithm’s behavior depends on the type
of the chosen potential move, say (j, i) of a job j ∈ J (B)
for some blocker B:

• If (j, i) is a valid move then the schedule is updated by
σ(j)← i. Moreover, T is updated by removing B and
all blockers added after B. This will allow us to prove
that the procedure terminates with the intuition being
that B blocked some move (j′, i′) that is more likely
to succeed now after j was reassigned.

• If (j, i) is a potential small or big-to-small move that
is not valid then the algorithm adds a small blocker
BS as a child to B that consists of the machine i and
contains all jobs assigned to i that are not already in
T . Note that after this, since BS is a small blocker no
other jobs will be tried to be moved to i. The intuition
of this being that assigning more jobs to i would make
it less likely to be able to assign j to i in the future.

• If (j, i) is a potential big-to-big move then the algo-
rithm adds a big blocker BB as child to B that consists
of the machine i and the big job that is assigned to i.
Since BB is a big blocker this prevents us from trying
to assign more big jobs to i but at the same time allow
us to try to assign small jobs. The intuition being that
this will not prevent us from assigning j to i if the big
job currently assigned to i is reassigned.

We remark that the rules on how to update T are so that
a job can be in at most one blocker whereas a machine can
be in at most two blockers (this happens if it is first added
in a big blocker and then in a small blocker).

Returning to the example in Figure 1, we can see that
after Step 4, T consists of the special root blocker with two
children, which in turn have a child each. Machines M1,M2

and M4 belong to small blockers whereas M3 belongs to a
big blocker. Moreover, the moves chosen in the first, second,
and the third step are big-to-small, small, and big-to-big,
respectively, and from Step 5 to 6 a sequence of valid moves
is chosen.
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Values of moves.
In a specific iteration there might be several potential

moves available. For the analysis it is important that they
are chosen in a specific order. Therefore, we assign a vector
in R2 to each move and Algorithm 1 will then choose the
move with minimum lexicographic value.

Definition 5. If we let Li = σ−1(i) then a potential
move (j, i) has value

Val(j, i) =

8>><>>:
(0, 0) if valid,
(1, p(Li)) if small move,
(2, p(Li)) if big-to-small,
(3, 0) if big-to-big,

Note that as the algorithm chooses moves of minimum
lexicographic value, it always chooses a valid move if avail-
able and a potential small move before a potential move of
a big job.

The algorithm.
Algorithm 1 summarizes the algorithm discussed above

in a concise definition. Given a valid partial schedule σ
and an unscheduled job jnew, we prove that the algorithm
preserves a valid schedule by moving jobs until it can assign
jnew. Repeating the procedure by choosing a unassigned
job in each iteration until all jobs are assigned then yields
Theorem 2.

3.1 Analysis
Since the algorithm only updates σ if a valid move was

chosen we have that the schedule stays valid throughout the
execution. It remains to verify that the algorithm terminates
and that there always is a potential move to choose.

Before proceeding with the proofs, we need to introduce
some notation. When arguing about T we will let

• Tt be the subtree of T induced by the blockers
B0, B1, . . . , Bt;

• S(Tt) = {j ∈ J : j is small with Γσ(j) ⊆MS(Tt)}
and often refer to S(T ) by simply S; and

• Si(Tt) = σ−1(i) ∩ S(Tt) (often refer to Si(T ) by Si).

The set S(Tt) contains the set of small jobs with no poten-
tial moves with respect to Tt. Therefore no job in S(Tt) has
been reassigned since Tt became a subtree of T , i.e., since
Bt was added. We can thus omit the dependence on σ when
referring to S(Tt) and Si(Tt) without ambiguity. A related
observation that will be useful throughout the analysis is
the following. No job in a blocker B of T has been reas-
signed after B was added since that would have caused the
algorithm to remove B (and all blockers added after B).

We now continue by first proving that there always is a
potential move to choose if [C-LP] is feasible followed by the
proof that the procedure terminates in Section 3.1.2.

3.1.1 Existence of potential moves
We prove that the algorithm never gets stuck if the [C-LP]

is feasible.

Lemma 1. If [C-LP] is feasible then Algorithm 1 can al-
ways choose a potential move.

Proof. Suppose that the algorithm has reached an iter-
ation where no potential move is available. We will show
that this implies that the dual of [C-LP] is unbounded and
we can thus deduce as required that the primal is infeasible
in the case of no potential moves.

As each solution (y, z) of the dual can be scaled by a scalar
α to obtain a new solution (αy, αz), any solution such thatP
i∈M yi <

P
j∈J zj implies unboundedness. We proceed

by defining such a solution (y∗, z∗):

z∗j =

8><>:
2/3 if j ∈ J (T ) is big,

pj = ε if j ∈ J (T ) ∪ S is small,

0 otherwise,

and

y∗i =

(
1 if i ∈MS(T ),P
j∈σ−1(i) z

∗
j otherwise.

Let us first verify that (y∗, z∗) is indeed a feasible solution.

Claim 1. Assuming no potential moves are available, (y∗, z∗)
is a feasible solution.

Proof of claim 1. We need to verify that y∗i ≥
P
j∈C z

∗
j

for each i ∈ M and each C ∈ C(i). Recall that the total
processing time of the jobs in a configuration is at most 1.
Also observe that z∗j = 0 for jobs not in J (T ) ∪ S and we
can thus omit such jobs when verifying the constraints.

Since z∗j ≤ pj for all j ∈ J , we have that no constraint
involving the variable y∗i for i ∈MS(T ) is violated. Indeed
for such a machine i we have y∗i = 1 and

P
j∈C(i) z

∗
j ≤P

j∈C(i) pj ≤ 1 for any C ∈ C(i).
As a small job j ∈ J (T ) with a move (j, i) is a potential

move if i 6∈ MS(T ) and no such moves exist by assumption,
no small jobs in J (T ) can be moved to machines in M \
MS(T ). Also, by definition, no small jobs in S can be moved
to a machine i 6∈ MS . This together with the fact that
a big job jB has processing time 1 and is thus alone in a
configuration gives us that a constraint involving y∗i for i 6∈
MS(T ) can only be violated if y∗i < z∗jB = 2/3.

As a machine i ∈MB(T ) has a big job assigned, we have
that for those y∗i ≥ 2/3. Now consider the final case when
i 6∈ M(T ). If a big job in J (T ) has a move to i then since it
is not a potential move p(Si) > R ≥ 2/3. As z∗j = pj = ε for
small jobs, we have then y∗i =

P
j∈σ−1(i) z

∗
j ≥ p(Si) ≥ 2/3,

as required.
We can thus conclude that no constraint is violated and

(y∗, z∗) is a feasible solution.

Having proved that (y∗, z∗) is a feasible solution, the proof
of Lemma 1 is now completed by showing that the value of
the solution is negative.

Claim 2. We have that
P
i∈M y∗i <

P
j∈J z

∗
j .

Proof of claim 2. By the definition of y∗,X
i∈M

y∗i =
X

i∈MS(T )

1 +
X

i6∈MS(T )

X
j∈σ−1(i)

z∗j (1)

We proceed by bounding
P
i∈MS(T ) 1 from above byX

i∈MS(T )

X
j∈σ−1(i)

z∗j .

621



Algorithm 1 SimpleExtendSchedule(σ, jnew)

1: Initialize T with the root J (B) = {jnew} and M(B) = ⊥
2: while σ(jnew) is TBD do
3: Choose a potential move (j, i) with j ∈ J (T ) of minimum lexicographic value
4: Let B be the blocker in T such that j ∈ J (B)
5: if (j, i) is valid then
6: Update the schedule by σ(j)← i
7: Update T by removing B and all blockers added after B
8: else if (j, i) is either a potential small move or a potential big-to-small move then
9: Add a small blocker BS as child to B with M(BS) = i and J (BS) = σ−1(i) \ J (T )

10: else {(j, i) is a big-to-big move}
11: Let jB be the big job such that σ(jB) = i
12: Add a big blocker BB as a child to B with J (BB) = {jB} and M(BB) = i
13: end if
14: end while
15: return σ

Let B0, B1, . . . , B` be the blockers of T and consider a small
blocker Bt for some t = 1, . . . , `. By the definition of Al-
gorithm 1, Bt was added in an iteration when either a po-
tential small or big-to-small move (j0, it) was chosen with
M(Bt) = it. Suppose first that (j0, it) was a potential small
move. Then as it was not valid, p(j0) + p(σ−1(it)) > 1 +R.
This inequality together with the fact that it is assigned at
most one big job jB gives us that if (j0, it) is a small move
then X

j∈σ−1(it)

z∗j = p(σ−1(it))−
`
p(jB)− z∗jB

´
≥ 4

3
. (2)

On the other hand, if (j0, it) is a potential big-to-small
move then as it was not valid

2

3
< R < p(σ−1(it)) =

X
j∈σ−1(it)

z∗j , (3)

where the equality follows from that it is only assigned small
jobs (since we assumed (j0, it) was a big-to-small move).

From (2) and (3) we can see that
P
i∈MS(T ) 1 is bounded

from above by
P
i∈MS(T )

P
j∈σ−1(i) z

∗
j if the number of small

blockers added because of small moves is greater than the
number of small blockers added because of big-to-small moves.

We proceed by proving this by showing that if Bt is a small
blocker added because of a potential big-to-small move then
Bt+1 must be a small blocker added because of a small move.
Indeed, the definition of a potential big-to-small move (j0, it)
and the fact that it was not valid imply that

p (Sit(Tt)) ≤ R and p
`
σ−1(it)

´
> R.

As there are no big jobs assigned to it (using that (j0, it)
was a big-to-small move), the above inequalities give us that
there is always a potential small move of a small job assigned
to it with respect to Tt. In other words, we have that Bt
was not the last blocker added to T and as small poten-
tial moves have the smallest lexicographic value (apart from
valid moves), Bt+1 must be a small blocker added because
of a small move. We can thus “amortize” the load of Bt+1

to increase the load of Bt. Indeed, if we letM(Bt+1) = it+1

then (2) and (3) yield
P
j∈σ−1(it)

z∗j +
P
j∈σ−1(it+1) z

∗
j ≥ 2.

Pairing each small blocker Bt added because of a big-
to-small moves with the small blocker Bt+1 added because
of a small move as done above allows us to deduce that

|MS(T )| ≤
P
i∈MS(T )

P
j∈σ−1(i) z

∗
j . Combining this in-

equality with (1) yieldsX
i∈M

y∗i ≤
X
i∈M

X
j∈σ−1(i)

z∗j =
X
j∈J

z∗j − z∗jnew
<
X
j∈J

z∗j ,

as required.

We have proved that there is a solution (y∗, z∗) to the dual
that is feasible (Claim 1) and has negative value (Claim 2)
assuming there are no potential moves. In other words, the
[C-LP] cannot be feasible if no potential moves can be chosen
which completes the proof of the lemma.

3.1.2 Termination
We continue by proving that Algorithm 1 terminates. As

the algorithm only terminates when a new job is assigned,
Theorem 2 follows from Lemma 2 together with Lemma 1
since then we can, as already explained, repeat the proce-
dure until all jobs are assigned.

The intuition that the procedure terminates, assuming
there always is a potential move, is the following. As ev-
ery time the algorithm chooses a potential move that is not
valid a new blocker is added to the tree and as each ma-
chine can be in at most 2|M| blockers, we have that the al-
gorithm must choose a valid move after at most 2|M| steps.
Such a move will perhaps trigger more valid moves and each
valid move makes a potential move previously blocked more
“likely”. We can now guarantee progress by measuring the
“likeliness” in terms of the lexicographic value of the move.

Lemma 2. Assuming there is always a potential move to
choose, Algorithm 1 terminates.

Proof. To prove that the procedure terminates we as-
sociate a vector, for each iteration, with the dynamic tree
T . We will then show that the lexicographic order of these
vectors decreases.

The vector associated to T is defined as follows. Let
B0, B1, . . . , B` be the blockers of T . With blocker Bi we
will associate the value vector, denoted by Val(Bi), of the
move that was chosen in the iteration when Bi was added.
The vector associated with T is then simply

(Val(B0),Val(B1), . . . ,Val(B`),∞).
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If the algorithm adds a new blocker then the lexicographic
order clearly decreases as the vector ends with ∞. It re-
mains to verify what happens when blockers are removed
from T . In that case let the algorithm run until it chooses a
potential move that is not valid or terminates. As blockers
will be removed in each iteration until it either terminates or
chooses a potential move that is not valid we will eventually
reach one of these cases. If the algorithm terminates we are
obviously done.

Instead, suppose that starting with σ and T the algorithm
does a sequence of steps where blockers are removed until
we are left with an updated schedule σk, a tree of blockers
Tk with k+ 1 < ` blockers, and a potential move (j′, i′) that
is not valid is chosen. As a blocker B is removed if a blocker
added earlier is removed, we have that Tk equals the subtree
of T induced by B0, B1, . . . , Bk.

We will thus concentrate on comparing the lexicographic
value of (j′, i′) with that of Bk+1. Recall that Val(Bk+1)
equals the value of the move that was chosen when Bk+1

was added, say (jt, ik+1) for jt ∈ J (Bt) with 1 ≤ t ≤ k and
M(Bk+1) = ik+1.

A key observation is that since blocker Bk+1 was removed
but not Bk, the most recent move was of a job jk+1 ∈
J (Bk+1) and we have σ(jk+1) = ik+1 and σk(jk+1) 6= ik+1.
Moreover, as (jt, ik+1) was a potential move when Bk+1

was added, it is a potential move with respect to Tk (us-
ing that Sik+1 (Tk) has not changed). Using these observa-
tions we now show that the lexicographic value of (jt, ik+1)
has decreased. As the algorithm always chooses the move
of minimum lexicographic value, this will imply Val(j′, i′) <
Val(Bk+1) as required.

If (jt, ik+1) was a small or big-to-small move then Bk+1

was a small blocker. As no jobs were moved to ik+1 after
Bk+1 was added, p(σ−1

k (ik+1)) < p(σ−1(ik+1)) and we have
that the lexicographic value of (jt, ik+1) has decreased.

Otherwise if (jt, ik+1) was a big-to-big move then jk+1

must be a big job. As we only have jobs of two sizes, the
move of the big job jk+1 implies that (jt, ik+1) now is a valid
move which contradicts the assumption that the algorithm
has chosen a potential but not valid move (j′, i′).

We have thus proved that the vector associated to T al-
ways decreases. As there are at most 2|M| blockers in T
(one small and one big blocker for each machine) and a vec-
tor associated to a blocker can take a finite set of values, we
conclude that the algorithm terminates.

4. PROOF OF MAIN RESULT
In this section we extend the techniques presented in Sec-

tion 3 to prove our main result, i.e., that there is a polyno-
mial time algorithm that estimates the optimal makespan of
the restricted assignment problem within a factor of 33

17
+ε ≈

1.9412 + ε, where ε > 0 is an arbitrarily small constant.
More specifically, we shall show the following theorem which
clearly implies Theorem 1. The small loss of ε is as men-
tioned because the known polynomial time algorithms only
solve [C-LP] up to any desired accuracy.

Theorem 3. The [C-LP] has integrality gap at most 33
17

.

Throughout this section we let R = 16
17

. The proof follows
closely the proof of Theorem 2, i.e., we design a local search
algorithm that returns a solution with makespan at most
1+R, assuming the [C-LP] is feasible. The strategy is again

to repeatedly call a procedure, now summarized in Algo-
rithm 2, that extends a given partial schedule by assigning
a new job while maintaining a valid schedule. Recall that a
partial schedule is valid if each machine i ∈M is assigned at
most one big job and p(σ−1(i)) ≤ 1+R, where now R = 16

17
.

We note that a machine is only assigned at most one big job
will be a restriction here.

Since we allow jobs of any sizes we need to define what
big and small jobs are. In addition, we have medium jobs
and partition the big jobs into large and huge jobs.

Definition 6. A job j is called big if pj ≥ 11/17, medium
if 11/17 > pj > 9/17, and small if pj ≤ 9/17. Let the sets
JB ,JM ,JS contain the big, medium, and small jobs, respec-
tively. We will also call a big job j huge if pj ≥ 14/17 and
otherwise large.

The job sizes are chosen so as to optimize the achieved ap-
proximation ratio with respect to the analysis and were ob-
tained by solving a linear program.

We shall also need to extend and change some of the con-
cepts used in Section 3. The final goal is still that the pro-
cedure shall choose potential moves so as to guarantee (i)
that the procedure terminates and that (ii) if no potential
move exists then we shall be able to prove that the dual of
[C-LP] is unbounded.

The main difficulty compared to the case in Section 3 of
two job sizes is the following. A key step of the analysis in
the case with only small and big jobs was that if small jobs
blocked the move of a big job then we guaranteed that one
of the small jobs on the blocking machine had a potential
small move. This was to allow us to amortize the load when
analyzing the dual. In the general case, this might not be
possible when a medium job is blocking the move of a huge
job. Therefore, we need to introduce a new conceptual type
of blockers called medium blockers that will play a similar
role as big blockers but instead of containing a single big job
they contain at least one medium job that blocks the move
of a huge job. Rather unintuitively, we allow for technical
reasons large but not medium or huge jobs to be moved to
machines in medium blockers.

Let us now point out the modifications needed starting
with the tree T of blockers.

Tree of blockers.
Similar to Section 3, Algorithm 2 remembers its history by

using the dynamic tree T of blockers. As already mentioned,
it will now also have medium blockers that play a similar
role as big blockers but instead of containing a single big
job they contain a set of medium jobs. We use MM (T )
to refer to the subset of M(T ) containing the machines in
medium blockers.

As in the case of two job sizes, Algorithm 2 initializes tree
T with the special small blocker as root that consists of the
job jnew. The next step of the procedure is to repeatedly
choose valid and potential moves until we can eventually as-
sign jnew. During its execution, the procedure now updates
T based on which move that is chosen so that

1. MS(T ) contains those machines to which the algo-
rithm will not try to move any jobs;

2. MB(T ) contains those machines to which the algo-
rithm will not try to move any huge, large, or medium
jobs;
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3. MM (T ) contains those machines to which the algo-
rithm will not try to move any huge or medium jobs;

4. J (T ) contains those jobs that the algorithm wishes to
move.

We can see that small jobs are treated as in Section 3,
i.e., they can be moved to all machines apart from those
in MS(T ). Similar to big jobs in that section, huge and
medium jobs can only be moved to a machine not inM(T ).
The difference lies in how large jobs are treated: they are
allowed to be moved to machines not in M(T ) but also to
those machines only in MM (T ).

Potential moves.
As before a potential move (j, i) will be called valid if the

update σ(j) ← i results in a valid schedule, but the defini-
tion of potential moves needs to be extended to include the
different job sizes. The definition for small jobs remains un-
changed: a move (j, i) of a small job j ∈ J (T ) is a potential
small move if i 6∈ MS(T ). A subset of the potential moves
of medium and large jobs will also be called potential small
moves.

Definition 7. A move (j, i) of a medium or large job
j ∈ J (T ) satisfying i 6∈ M(T ) if j is medium and i 6∈
MB(T ) ∪MS(T ) if j is large is a potential

small move: if i is not assigned a big job.

medium/large-to-big: if i is assigned a big job.

Note that the definition takes into account the convention
that large jobs are allowed to be assigned to machines not
inMB(T )∪MS(T ) whereas medium jobs are only allowed
to be assigned to machines not in M(T ). The reason for
distinguishing between whether i is assigned a big (huge or
large) job will become apparent in the analysis. The idea is
that if a machine i is not assigned a big job then if it blocks
a move of a medium or large job then the dual variables z∗

will satisfy
P
j∈σ−1(i) z

∗
j ≥ 1, which we cannot guarantee if i

is assigned a big job since when setting the dual variables we
will round down the sizes of big jobs which might decrease
the sum by as much as 6/17.

It remains to define the potential moves of huge jobs.

Definition 8. A move (j, i) of a huge job j ∈ J (T ) to a
machine i 6∈ M(T ) is a potential

huge-to-small move: if no big job is assigned to i and p(j)+
p(Si ∪Mi) ≤ 1 +R;

huge-to-big move: if a big job is assigned to i and p(j) +
p(Si ∪Mi) ≤ 1 +R;

huge-to-medium move: if p(j) + p(Si) ≤ 1 + R and p(j) +
p(Si ∪Mi) > 1 +R;

where Si = {j ∈ σ−1(i) : j is small with Γσ(j) ⊆ MS(T )}
and Mi = JM ∩ σ−1(i).

Again Si denotes the set of small jobs assigned to i with
no potential moves with respect to the current tree. The set
Mi contains the medium jobs currently assigned to i. Moves
huge-to-small and huge-to-big correspond to the moves big-
to-small and big-to-big in Section 3, respectively. The con-
straint p(j) + p(Si ∪ Mi) ≤ 1 + R says that such a move

should only be chosen if it can become valid by not moving
any medium jobs assigned to i. The additional move called
huge-to-medium covers the case when moving the medium
jobs assigned to i is necessary for the move to become valid.

Similar to before, the behavior of the algorithm depends
on the type of the chosen potential move. The treatment
compared to that in Section 3 of valid moves and potential
small moves is unchanged; the huge-to-small move is treated
as the big-to-small move; and the medium/large-to-big and
huge-to-big moves are both treated as the big-to-big move
were in Section 3. It remains to specify what Algorithm 2
does in the case when a potential huge-to-medium move
(that is not valid) is chosen, say (j, i) of a job j ∈ J (B) for
some blocker B. In that case the algorithm adds a medium
blocker BM as child to B that consists of the machine i and
the medium jobs assigned to i. This prevents other huge or
medium jobs to be assigned to i. Also note that constraints
p(j) + p(Si) ≤ 1 + R and p(j) + p(Si ∪Mi) > 1 + R imply
that there is at least one medium job assigned to i.

We remark that the rules on how to update T is again so
that a job can be in at most one blocker whereas a machine
can now be in at most three blockers (this can happen if it is
first added in a medium blocker, then in a big blocker, and
finally in a small blocker).

Values of moves.
As in Section 3, it is important in which order the moves

are chosen, Therefore, we assign a value vector to each po-
tential move and Algorithm 2 chooses then, in each iteration,
the move with smallest lexicographic value.

Definition 9. If we let Li = σ−1(i) then a potential
move (j, i) has value

Val(j, i) =

8>>>>><>>>>>:

(0, 0) if valid,
(p(j), p(Li)) if small move,
(2, 0) if medium/large-to-big,
(3, p(Li)) if huge-to-small,
(4, 0) if huge-to-big,
(5, |Li ∩ JM |) if huge-to-medium.

Note that as before, the algorithm chooses a valid move if
available and a potential small move before any other po-
tential move. Moreover, it chooses the potential small move
of the smallest job available.

The algorithm.
Algorithm 2 summarizes the algorithm concisely using the

concepts described previously. Given a valid partial sched-
ule σ and an unscheduled job jnew, we shall prove that it
preserves a valid schedule by moving jobs until it can assign
jnew. Repeating the procedure until all jobs are assigned
then yields Theorem 3.

4.1 Analysis
As Algorithm 1 for the case of two job sizes, Algorithm 2

only updates the schedule if a valid move is chosen so it
follows that the schedule stays valid throughout the execu-
tion. It remains to verify that the algorithm terminates and
that the there always is a potential move to choose. Due
to space constraints we only sketch these proofs and refer
the interested reader to the full version [18] for the formal
proofs.
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Algorithm 2 ExtendSchedule(σ, jnew):

1: Initialize T with the root J (B) = {jnew} and M(B) = ⊥
2: while σ(jnew) is TBD do
3: Choose a potential move (j, i) with j ∈ J (T ) of minimum lexicographic value
4: Let B be the blocker in T such that j ∈ J (B)
5: if (j, i) is valid then
6: Update the schedule by σ(j)← i
7: Update T by removing B and all blockers added after B
8: else if (j, i) is either a potential small or huge-to-small move then
9: Add a small blocker BS as child to B with M(BS) = i and J (BS) = σ−1(i) \ J (T );

10: else if (j, i) is either a potential large/medium-to-big or huge-to-big move then
11: Let jB be the big job such that σ(jB) = i
12: Add a big blocker BB as a child to B in T with J (BB) = {jB} and M(BB) = i
13: else {(j, i) is a potential huge-to-medium move}
14: Add a medium blocker BM as child to B with M(BM ) = i and J (BM ) = σ−1(i) ∩ JM
15: end if
16: end while
17: return σ

The analysis is similar to that of the simpler case but
involves more case distinctions. When arguing about T we
again let

S = {j ∈ J : j is small with Γσ(j) ⊆MS(T )}

be the small jobs with no potential moves with respect to T .
We start by sketching the proof that the algorithm always
can choose a potential move if [C-LP] is feasible.

Lemma 3. If [C-LP] is feasible then Algorithm 2 can al-
ways pick a potential move.

Proof Sketch. Suppose that the algorithm has reached
an iteration where no potential move is available. Similar
to the proof of Lemma 1 we will show that this implies that
the dual is unbounded and hence the primal is not feasible.
We will do so by defining a solution (y∗, z∗) to the dual withP
i∈M y∗i <

P
j∈J z

∗
j . Define z∗ and y∗ by

z∗j =

8>>><>>>:
11/17, if j ∈ J (T ) is big,

9/17, if j ∈ J (T ) is medium,

pj , if j ∈ J (T ) ∪ S is small,

0, otherwise.

and

y∗i =

(
1 if i ∈MS(T ),P
j∈σ−1(i) z

∗
j otherwise.

A natural interpretation of z∗ is that we have rounded down
processing times where big jobs with processing times in
[11/17, 1] are rounded down to 11/17; medium jobs with
processing times in [9/17, 11/17] are rounded down to 9/17;
and small jobs are left unchanged.

The proof of the lemma is now completed by showing that
(y∗, z∗) is a feasible solution (Claim 3) and that the objective
value is negative (Claim 4).

Claim 3. Assuming no potential moves are available, (y∗, z∗)
is a feasible solution.

The proof of this claim is similar to the proof of Claim 1,
i.e., we can verify that y∗i ≥

P
j∈C z

∗
j for each i ∈ M and

each C ∈ C(i) by considering the different cases when i be-
longs to a small blocker, medium blocker, big blocker, and
no blocker.

Having verified that (y∗, z∗) is a feasible solution, the
proof is now completed by showing that the value of the
solution is negative.

Claim 4. We have that
P
i∈M y∗i <

P
j∈J z

∗
j .

The proof of this claim is similar to the proof of Claim 2. In
particular, it follows by bounding

P
i∈MS(T ) 1 from above

by X
i∈MS(T )

X
j∈σ−1(i)

z∗j .

The key step is to pair each small blocker added because of
a huge-to-small move with a small blocker added because of
a small move. This is done in a similar manner (although
with a more time consuming case distinction) as done in the
proof of Claim 2 to pair small blockers added because of big-
to-small moves with small blockers added because of small
moves.

The proofs of the above claims then imply that [C-LP]
cannot be feasible if no potential moves can be chosen, as
required by the lemma.

As the algorithm only terminates when a new job is as-
signed, Theorem 3 follows from the lemma below together
with Lemma 3 since then we can, as already explained, re-
peat the procedure until all jobs are assigned.

Lemma 4. Assuming there is always a potential move to
choose, Algorithm 2 terminates.

The proof follows by exactly the same reasoning as in the
proof of Lemma 2 with a couple of more cases and can be
found in the full version of the paper [18].

5. CONCLUSIONS
We have shown that the configuration LP gives a polyno-

mial time computable lower bound on the optimal makespan
that is strictly better than two. Our techniques are mainly
inspired by recent developments on the related Santa Claus
problem and gives a local search algorithm to also find a
schedule of the same performance guarantee, but is not known
to converge in polynomial time.
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Similar to the Santa Claus problem, this raises the open
question whether there is an efficient rounding of the config-
uration LP that matches the bound on the integrality gap
(see also [8] for a comprehensive discussion on open problems
related to the difference between estimation and approxima-
tion algorithms). Another interesting direction is to improve
the upper or lower bound on the integrality gap for the re-
stricted assignment problem: we show that it is no worse
than 33/17 and it is only known to be no better than 1.5
which follows from the NP-hardness result. One possibility
would be to find a more elegant generalization of the tech-
niques, presented in Section 3 for two job sizes, to arbitrary
processing times (instead of the exhaustive case distinction
presented in this paper).

To obtain a tight analysis, it would be natural to start
with the special case of graph balancing for which the 1.75-
approximation algorithm by Ebenlendr et al. [6] remains the
best known. We remark that the restriction pij ∈ {pj ,∞}
is necessary as the integrality gap of the configuration LP
for the general case is known to be 2 even if a job can be
assigned to at most 2 machines [20].
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