
Approximation Algorithms and Hardness of Approximation April 12, 2013

Lecture 13

Lecturer: Alantha Newman Scribes: Akos Lukovics

1 Sparsest Cut and Metric Embeddings

In this lecture, we will describe an O(log n)-approximation algorithm for the sparsest cut problem.
We note that the best known approximation guarantee for this problem is currently O(

√
logn). (See

[ARV04].) Here, we will see an algorithm whose main tool is metric embeddings.
Given a graph G = (V,E) and a partition of the vertices (S, V \ S), we define:

ΦG(S) :=

1

|E|E(S, V \ S)
2

V 2 |S| · |V \ S| , (1)

where E(S, V \ S) indicates the number of edges crossing the partition. Note that the numerator is the
total fraction of the edges that cross the cut, and the denominator is the total fraction of pairs of vertices
that cross the cut. The sparsity Φ(G) of a graph G is given by the minimum sparsity over all possible
cuts:

Φ(G) := min
S⊂V

ΦG(S). (2)

Let A denote the adjacency matrix for the graph G. The quantity ΦG(S) can be rewritten using an
indicator function of a cut

1S(i) =

{

1 if i ∈ S,

0 otherwise,

as

ΦG(S) =
|V |2
2|E| ·

∑

i,j Aij |1S(i)− 1S(j)|
∑

i,j |1S(i)− 1S(j)|
.

Note that for any fixed graph, the quantity |V |2/(2|E|) is fixed. Thus, we could also try to approximate
the quantity:

∑

i,j Aij |1S(i)− 1S(j)|
∑

i,j |1S(i)− 1S(j)|
.

This will not change any of the results we present in this lecture. Computing ΦG(S) is known to be
NP-hard. We will always use n = |V |.

1.1 LP Relaxation

A semimetric on a set X is a function f : X ×X → R, such that for all x, y, z ∈ X :

• f(x, y) ≥ 0,

• f(x, x) = 0,

• f(x, y) = f(y, x),

• f(x, z) ≤ f(x, y) + f(y, z).
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Note that the cut metric dS(i, j) = |1S(i) − 1S(j)| is a semimetric on V . We can therefore relax the
problem of computing Φ(G) by replacing the cut metric with a semimetric. We obtain the following
relaxation (originally due to Leighton and Rao), which we will refer to as LR(G).

LR(G) = min
|V |2
2|E| ·

∑

i,j Aij · d(i, j)
∑

i,j d(i, j)
(3)

d : V × V → R, (4)

d is a semimetric. (5)

We can see that LR(G) provides a lower bound on Φ(G) since, as previously stated, a cut metric is a
semimetric. We will also see that Φ(G) ≤ LR(G) · O(log n) and we will give an algorithm to find a cut
demonstrating this upper bound.
The current formulation of LR(G) is not linear. However, it is possible to rewrite it as an equivalent

linear program. That is, a solution d will be optimal and feasible for both the following LP and LR(G).

min
∑

i,j

Aijd(i, j)

subject to:
∑

i,j

d(i, j) =
|V |2
2|E| ,

d(i, k) ≤ d(i, j) + d(j, k),

d(i, j) ≥ 0.

To see why the two are equivalent, note that for any optimal solution d, we can assume that the equality
∑

i,j d(i, j) =
|V |2

2|E| holds. If it did not hold, it could be increased by scaling d, such that it holds and this

would not change the value of LR(G). Thus, the normalization factor and the denominator will cancel
each other out, so that the value of LR(G) equals the objective function of our LP. We can therefore
find an solution (semimetric) for LR(G) in polynomial time.

1.2 l1-Embedding

We have relaxed the distance function in the form of dS(i, j) = |1S(i)− 1S(j)| to an arbitrary distance
function. We will now consider an intermediate relaxation, in which we allow distance functions that
can be realized by an embedding of vertices into an ℓ1-space.
For a vector x ∈ R

m, the ℓ1-norm is defined as the following mapping from R
m to R: ||x||1 =

∑m

i |xi|.
This norm makes Rm into a metric space with the ℓ1-distance function: ||x− y||1 =

∑m

i |xi − yi|. It is
a simple exercise to show that this distance function satisfies the requirements of a semimetric.
We will redefine LR(G) as an optimization problem of finding an embedding f : V → R

m such that:

Φ′(G) = inf
f :V→Rm

|V |2
2|E| ·

∑

i,j Aij ||f(i)− f(j)||1
∑

i,j ||f(i)− f(j)||1
.

Theorem 1 For every G, Φ′(G) = Φ(G). Also, there exists a polynomial time algorithm that, given a
mapping f : V → R

m, finds a cut S ⊂ V such that:

∑

u,v Auv|1S(u)− 1S(v)|
∑

u,v |1S(u)− 1S(v)|
≤

∑

u,v Auv||f(u)− f(v)||1
∑

u,v ||f(u)− f(v)||1
.

Note that Φ′(G) ≤ Φ(G) because if we let S∗ ⊂ V denote the sparsest cut, we can set f(i) = 1S∗(i) for
all i ∈ V . Now we will proceed to give an algorithmic proof of Theorem 1. We will use the following
fact.
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Fact 2 For ai, bi ≥ 0 :
∑m

i=1
ai

∑m

i=1
bi

≥ min
i

ai
bi
. (6)

Proof Rewrite each ai term as ai = xibi. (If bi = 0, then set xi to be arbitrarily large. In this
case, if ai 6= 0, then ai > xibi.) Clearly, the i

∗ minimizing the fraction will also minimize xi. Thus,

∀j : xi∗ ≤ xj . We can rewrite the ratio of the sums as
∑

j
aj

∑
j
bj

≥
∑

j
xjbj

∑
j
bj

≥
∑

j
xi∗bj∑
j
bj
. The two sides of

the inequality are equal iff ∀j : xi∗ = xj , otherwise ai∗/bi∗ is strictly smaller than the ratio of the sums.

Let us apply Fact 2 to the inequality from Theorem 1.
∑

u,v Au,v||f(u)− f(v)||1
∑

u,v ||f(u)− f(v)||1
=

∑

i

∑

u,v Au,v|fi(u)− fi(v)|
∑

i

∑

u,v |fi(u)− fi(v)|
≥ min

i

∑

u,v Au,v|fi(u)− fi(v)|
∑

u,v |fi(u)− fi(v)|
.

Let i∗ denote the index that minimizes this fraction. Define a function g : V → R such that g() is a
scaled/shifted version of fi() in which maxv g(v)−minv g(v) = 1.1

Next we pick a threshold t uniformly at random from the interval [minv g(v),maxv g(v)]. We define
the set St = {v : g(v) ≤ t}. Note that the probability of r being included in the set St is Pr(r ∈ St) =
maxv g(v)− g(r). It follows that E[1St

(u)] = 1 · Pr(u ∈ St). Thus,

E[|1St
(u)− 1St

(v)|] = |(maxwg(w)− g(v)) − (maxwg(w)− g(u))| = |g(u)− g(v)|.

Thus, we obtain:
∑

u,v Au,v||f(u)− f(v)||1
∑

u,v ||f(u)− f(v)||1
≥ min

i

∑

u,v Au,v|fi(u)− fi(v)|
∑

u,v |fi(u)− fi(v)|
=

∑

u,v Au,v|g(u)− g(v)|
∑

u,v |g(u)− g(v)|

=

∑

u,v Au,vE[|1St
(u)− 1St

(v)|]
∑

u,v E[|1St
(u)− 1St

(v)|] =

E

[

∑

u,v Au,v|1St
(u)− 1St

(v)|
]

E

[

∑

u,v |1St
(u)− 1St

(v)|
] .

The last steps follow from linearity of expectation. We note that we can actually find a set S∗ such that
that:

∑

u,v Au,v|1S∗(u)− 1S∗(v)|
∑

u,v |1S∗(u)− 1S∗(v)| ≤
E

[

∑

u,v Au,v|1St
(u)− 1St

(v)|
]

E

[

∑

u,v |1St
(u)− 1St

(v)|
] ≤

∑

u,v Au,v||f(u)− f(v)||1
∑

u,v ||f(u)− f(v)||1
. (7)

To see this, let at =
∑

u,v Au,v|1St
(u)− 1St

(v)| and let bt =
∑

u,v |1St
(u)− 1St

(v)|. Then we have:

E[at]

E[bt]
≤ C,⇒ (8)

E[at] ≤ C ·E[bt]. (9)

1Note that the fraction is invariant under scaling and shifting fi() by non-zero factors α and β, respectively:
∑

u,v Au,v|fi(u)− fi(v)|
∑

u,v |fi(u)− fi(v)|
=

∑
u,v Au,v|αfi(u) + β − αfi(v) − β|
∑

u,v |αfi(u) + β − αfi(v) − β|
=

α
∑

u,v Au,v|fi(u)− fi(v)|

α
∑

u,v |fi(u)− fi(v)|
.
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We note that E[bt] is positive. Equation (9) implies that there is some set St for which (9) holds. We
note that there are actually only n choices for t that give different cuts. (For example, choosing any t
between g(u) and g(w), where g(w) is the closest value to g(u), yields the same cut.) Thus, if we try
n values of t, we will find at least one set St for which (9) holds. Setting S

∗ = St for this value of t, it
follows that (7) holds for this set S∗, and this concludes the proof of Theorem 1.

1.3 Bourgain’s Theorem

Theorem 3 (Bourgain) Let d : V × V → R be a semimetric on V . Then there exist a mapping
f : V → R

m s.t. ∀u, v ∈ V : ||f(u) − f(v)||1 ≤ d(u, v) ≤ ||f(u) − f(v)||1 · c · logn, where c > 0 is an
absolute constant. Moreover, mapping f can be found efficiently with high probability.

Theorem 3 implies Φ(G) ≤ logn · LR(G):

LR(G) =
|V |2
2|E| ·

∑

u,v Auvd(u, v)
∑

u,v d(u, v)
≥ |V |2

2|E| ·
∑

u,v Auv||f(u)− f(v)||1
c · logn∑

u,v ||f(u)− f(v)||1
≥ 1

c · lognΦ(G).

Before we prove Theorem 3, we note the following fact, which will be useful. Embeddings of finite sets
into ℓ1 can be equivalently characterized as probabilistic embeddings into the real line.

Fact 4 For every finite set V , dimension m, and mapping F : V → R
m, there is a finitely supported

distribution D over functions f : V → R, such that ∀u, v ∈ V :

Ef∼D[|f(u)− f(v)|] = ||F (u)− F (v)||.

Conversely, for every finitely supported distribution D over function f : V → R, there is a dimension m
and a mapping F : V → R

m such that ∀u, v ∈ V :

Ef∼D[|f(u)− f(v)|] = ||F (u)− F (v)||.

Proof For the first part, consider F (v) = (F1(v), F2(v), . . . , Fm(v)). Define D to be the uniform
distribution over the m functions of the form x → m · Fi(x). It clearly fulfills the desired property:
Ef∼D[|f(u)− f(v)|] = ∑

i 1/m · |mFi(u)−mFi(v)| = ||F (u)− F (v)||1.

For the second part, suppose the distribution D is composed of the functions fi, each occuring
with probability pi. Then we define a function F (u) = (p1f1(u), p2f2(u), . . . , pmfm(u)). F (u) fulfills the
required property: ||F (u)−F (v)||1 =

∑

i |pifi(u)−pifi(v)| =
∑

i pi|fi(u)−fi(v)| = Ef∼D[|f(u)−f(v)|].

Thus, it is sufficient to construct probabilistic embeddings into the real line. To apply Fact 4 con-
structively, we require that the support of the distribution D has a polynomial size. One approach to
finding such a probabilistic embedding f : V → R is to choose r ∈ V uniformly at random and for each
u ∈ V , let f(u) = d(r, u). However, there are simple examples in which for some pairs of vertices u, v,
E[|f(u)− f(v)|] = d(u, v)/n, while for other pairs of vertices u, v, E[|f(u)− f(v)|] d(u, v). For instance,
consider a set of vertices in which eat pair is at a distance 1. Then add a single additional vertex that
is at distance 2 from all other vertices.
One way around this problem is to consider embeddings that are defined using distances to subsets

of elements. The next fact pertains to such embeddings.

Fact 5 Let d : V × V → R be a semimetric, and A ⊆ V a non-empty subset. Define a mapping
fA : V → R as fA(u) = minr∈A d(r, u). Then ∀u, v ∈ V : |fA(u)− fA(v)| ≤ d(u, v).

Proof Let a and b be points s.t. d(a, u) = fA(u), d(b, v) = fA(v). By the minimality of d(b, v) and
triangle inequality: d(b, v) ≤ d(a, v) ≤ d(u, v) + d(u, a). Thus, |fA(u) − fA(v)| = |d(a, u) − d(b, v)| ≤
|d(a, u)− d(u, v)− d(u, a)| = d(u, v).
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If we define a function fA(u) = minr∈A d(r, u), Facts 4 and 5 imply that EA∼D[|fA(u) − fA(v)|]
lower bounds d(u, v). In order upper bound d(u, v) by c · logn · EA∼D[|fA(u) − fA(v)|], we want that
ED sinA[|fA(u) − fA(v)|] is not too much smaller than d(u, v). What properties do we want from the
subset A ⊂ V ? For each u, v such that d(u, v) is “large”, let a, b denote the closest elements in A to u, v,
respectively. We want that a is close to u and b is far from v, or vice-versa. This will ensure that the
distance between u and v after embedding is also large. In fact, roughly speaking, if we could ensure
that, for each u, v, this happens with some probability, we would have a good embedding. This is not
always possible, but we can show that the following method of choosing subsets is sufficient to prove
Bourgain’s Theorem.

Theorem 6 For a finite set of points V , consider a distribution D over subsets of V sampled by uni-
formly picking a scale t ∈ {0, 1, . . . , logn}. Each v ∈ V is then picked to be in A with probability 2−t.
Let d : V × V → R be a semimetric. Then, the following holds for some constant c > 0:

∀u, v ∈ V : EA∼D[|fA(u)− fA(v)|] ≥
1

c · lognd(u, v).

Proof For each t, let rut be the distance from vertex u to its 2t-th closest point with respect to
distances d(u, v) (u is the 1 = 20-th closest such vertex). So, the number of vertices having a distance
less than rut from u is strictly less than 2t and the number of vertices having a distance less than or
equal to rut is greater than or equal to 2

t. In other words,

|{w : d(u,w) < rut}| < 2t, (10)

|{w : d(u,w) ≤ rut}| ≥ 2t. (11)

Let t∗ be the scale such that both rut∗ < d(u, v)/3 and rvt∗ < d(u, v)/3, and at least one of
rvt∗+1 ≥ d(u, v)/3, rvt∗+1 ≥ d(u, v)/3 holds.

Now we define ru′
t = min{rut, d(u, v)/3} and rv′t = min{rvt, d(u, v)/3}.

Claim 7 There exists a constant c such that for every scale t ∈ {0, 1, . . . , t∗},

EA∼Dt
[|fA(u)− fA(v)|] ≥ c · (ru′

t+1 + rv′t+1 − ru′
t − rv′t).

Proof We will show that there are two disjoint events and each one occurs with probability at least c.

(i) |fA(u)− fA(v)| ≥ ru′
t+1 − rv′t,

(ii) |fA(u)− fA(v)| ≥ rv′t+1 − ru′
t.

Event (i) occus when A avoids set S1 = {z : d(u, z) < ru′
t+1} and intersects S2 = {z : d(v, z) ≤ rv′t}.

The set S1 has size |S1| < 2t+1 and the set S2 has size |S2| ≤ 2t. Note that the sets S1 and S2 are
disjoint.
What is the probability that A avoids S1? It is at most (1− 1

2t
)2

t ∼ 1

e
. What is the probability that

A intersects S2? It is at most 1− (1− 1

2t
)2t ∼ 1− 1

e
. So with probability at least some constant c, event

(i) occurs:
|fA(u)− fA(v)| ≥ fA(u)− fA(v) ≥ ru′

t+1 − rv′t.

Using an analogous argument, we can see that Event (ii) occurs if A avoids set T1 = {z : d(u, z) ≤
rv′t+1} and A intersects T2 = {z : d(u, z) ≤ ru′

t}. Since |T1| < 2t+1 and |T2| ≤ 2t, we can see that with
some constant probability, event (ii) occurs:

|fA(u)− fA(v)| ≥ fA(v)− fA(u) ≥ rv′t+1 − ru′
t.
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As the two events are disjoint, and both happen with some probability at least c,

EA∼Dt
[|fA(u)− fA(v)|] ≥ c · (ru′

t+1 + rv′t+1 − ru′
t − rv′t)

must hold.

Using our claim and averaging over all scales, we have:

EA∼D[|fA(u)− fA(v)|] ≥ 1

t∗

t∗
∑

i=0

c · (ru′
i+1 + rv′i+1 − ru′

i − rv′i) (12)

≥ c · (ru′
t∗+1 + rv′t∗+1 − ru′

0 − rv′0) (13)

≥ c

logn+ 1
· d(u, v)

3
. (14)

This concludes the proof of Theorem 6.

Note that there are 2n possible subsets of V that will each occur as A with some probability. We
require that the number of subsets we actually use is only polynomial in n. However, using a Chernoff
Bound, we can show that it suffices to sample O(log3 n) subsets of V using the procedure described in
Theorem 6, and use these sets as the support of the probability distribution D.
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