An algebraic proof of Alon’s Combinatorial Nullstellensatz *

Nisheeth K. Vishnoi †

Abstract

In [1], Alon proved the following: Let k be a field and $f \in k[x_1, x_2, \ldots, x_n]$. Given non-empty subsets $S_1, \ldots, S_n \subseteq k$, for $1 \leq i \leq n$, define $g_i(x_i) = \prod_{s \in S_i} (x_i - s)$. If f vanishes on $S_1 \times \cdots \times S_n$, then $f = \sum_{i=1}^n h_i g_i$, for some $h_i \in k[x_1, \ldots , k_n]$, $1 \leq i \leq n$. In this note we give an algebraic proof of the same fact which uses some basic ideas from commutative algebra.

1 Introduction

Let k be a field and let $f \in k[x_1, x_2, \ldots, x_n]$. In [1], Alon proved the following important result which has surprising applications.

Theorem 1. (Combinatorial Nullstellensatz [1]) Given nonempty subsets $S_1, \ldots, S_n \subseteq k$, for $1 \leq i \leq n$, define $g_i(x_i) = \prod_{s \in S_i} (x_i - s)$. If f vanishes on $S_1 \times \cdots \times S_n$, then $f = \sum_{i=1}^n h_i g_i$, for some $h_i \in k[x_1, \ldots, k_n]$, $1 \leq i \leq n$.

The numerous applications of this Theorem motivated us to give another proof. Notice that the Theorem is a stronger form of Hilbert’s nullstellensatz for the specific case (refer [2]). Before we proceed to give the algebraic proof of Theorem 1, we need some preliminary definitions. Let A be a commutative ring with identity. An ideal I of a ring A is a subset of A which is an additive subgroup of A and, if $a \in A$ and $x \in I$, then $ax \in I$. An ideal M of a ring A is said to be maximal if $M \neq A$ and there is no proper ideal U of A which strictly contains M. If I, J are ideals of A. Then the sum, product and radical ideals are defined as follows

$$I + J := \{a + b \mid a \in I, b \in J\},$$

$$I \cdot J := \{ab \mid a \in I, b \in J\},$$

$$\sqrt{I} := \{a \in A \mid \exists n \geq 1 \text{ s.t. } a^n \in I\}.$$
\[IJ := \left\{ \sum_{i=1}^{m} a_i b_i \mid a_i \in I, b_i \in J, \text{ for some } m \geq 0 \right\}, \quad (2) \]
\[\sqrt{I} := \{ f \mid f^m \in I, \ m \geq 0 \}. \]

These can be seen to be ideals of \(A \). If \(I = \sqrt{I} \), then \(I \) is called a radical ideal. If \(I + J = A \), then \(I \) and \(J \) are said to be coprime. Note that two distinct maximal ideals are coprime.

Proposition 2. Let \(A \) be a ring, if \(I_1, \ldots, I_m \) are pairwise coprime, then
\[I_1 I_2 \cdots I_m = I_1 \cap \cdots \cap I_m. \]

The proof of this can be found in [2]. If \(k \) is a field, and given a set of polynomials \(h_1, \ldots, h_m \in k[x_1, \ldots, x_n] \), denote by \(V(h_1, \ldots, h_m) \), the variety or the set of common zeros of \(h_1, \ldots, h_m \) in \(k^n \) and by \(\langle h_1, \ldots, h_m \rangle \), the ideal generated by \(h_1, \ldots, h_m \).

2 The algebraic proof

Proof of Theorem 1. Let \(k, S_i, g_i, \) for \(1 \leq i \leq n \) and \(f \) be as in Theorem 1. Denote by \(\Omega = V(g_1, \ldots, g_n) = S_1 \times \cdots \times S_n \). We are given that \(\Omega \subseteq V(f) \). Let \(\alpha := (a_1, \ldots, a_n) \in \Omega \) and the maximal ideal associated to it in \(k[x_1, \ldots, x_n] \), \(M_\alpha = \langle x_1 - a_1, \ldots, x_n - a_n \rangle \).

For \(\alpha \in \Omega \), if \(f \) is not in \(M_\alpha \) then there exists \(P_1, P_2 \in k[x_1, \ldots, x_n] \) such that \(P_1 f + P_2 M_\alpha = 1 \). Then \((P_1 f + P_2 M_\alpha)(a_1, \ldots, a_n) = 0 \neq 1 \), a contradiction. Thus \(f \in M_\alpha \), \(\forall \alpha \in \Omega \). Thus \(f \in \cap_{\alpha \in \Omega} M_\alpha \). By proposition 2, \(\prod_{\alpha \in \Omega} M_\alpha = \cap_{\alpha \in \Omega} M_\alpha \). Thus \(f \in \prod_{\alpha \in \Omega} M_\alpha \). We claim that
\[\prod_{\alpha \in \Omega} M_\alpha \subseteq \langle g_1(x_1), \ldots, g_n(x_n) \rangle. \]

By definition
\[\prod_{\alpha \in \Omega} M_\alpha = \left\{ \sum_{j=1}^{m} \prod_{\alpha \in \Omega} h^{(j)}_{\alpha}, \text{ for some } m \geq 0 \right\}, \]
where each \(h^{(j)}_{\alpha} \), for \(\alpha = (a_1, \ldots, a_n) \), is of the form
\[h^{(j)}_{\alpha}(x_1, \ldots, x_n) = p_1^{(j)}(x_1 - a_1) \cdots p_m^{(j)}(x_n - a_n), \]
for \(p_j^{(j)} \in k[x_1, \ldots, x_n] \). Let \(p \in \prod_{\alpha \in \Omega} M_\alpha \). Then \(p = \sum_{j=1}^{m} \prod_{\alpha \in \Omega} h^{(j)}_{\alpha} \).

It will be sufficient to show that for any \(1 \leq j \leq m \),
\[\prod_{\alpha \in \Omega} h^{(j)}_{\alpha} \in \langle g_1(x_1), \ldots, g_n(x_n) \rangle. \]

We drop the superscript \((j) \) for simplicity. Let \(h = \prod_{\alpha \in \Omega} h_{\alpha} \). It is easy to see as in the expansion of \(h \), each term must be of the type
\(qg(x_i) \) for some \(i \) and some \(q \in k[x_1, \ldots, x_n]. \) Thus \(h \in \langle g_1, \ldots, g_n \rangle. \) Hence

\[
f \in \cap_{a \in \Omega} M_a = \prod_{a \in \Omega} M_a \subseteq \langle g_1, \ldots, g_n \rangle.
\]

Note that we have shown that \(\langle g_1, \ldots, g_n \rangle \) is a radical ideal.

References
