Lower Bounds for Sampling

Peter Bartlett CS and Statistics UC Berkeley

EPFL Open Problem Session. July 2020

How hard is sampling?

Problem:

Given oracle access to a potential $f: \mathbb{R}^d \to \mathbb{R}$ (e.g., $x \mapsto f(x), \nabla f(x)$) generate samples from $p^*(x) \propto \exp(-f(x))$.

Positive results

(Dalalyan, 2014)

For smooth, strongly convex f, after $n = \Omega(d/\epsilon^2)$ gradient queries, overdamped Langevin MCMC has $||p_n - p^*||_{TV} \le \epsilon$.

There are results of this flavor for stochastic gradient Langevin algorithms, underdamped Langevin algorithms, Metropolis-adjusted, nonconvex f, etc.

Lower bounds?

Problem:

Generate samples from \mathbb{R}^d with density

$$p^*(x) \propto \exp(-f(x)),$$

with f smooth, strongly convex.

Niladri Chatterji

Phil Long

Information protocol

- ullet Algorithm ${\cal A}$ is given access to a stochastic gradient oracle ${\cal Q}$
- When the oracle is queried at a point y it returns

$$z = \nabla f(y) + \xi,$$

where ξ is *unbiased* noise, *independent* of the query point y, with $\|\xi\| < d\sigma^2$

ullet The algorithm ${\cal A}$ is allowed to make n adaptive queries to the oracle

An information-theoretic lower bound

Theorem

For all d, σ^2 , $n \ge \sigma^2 d/4$ and for all $\alpha \le \sigma^2 d/(256n)$,

$$\inf_{\mathcal{A}} \sup_{Q} \sup_{p^*} \|\operatorname{Alg}[n; Q] - p^*\|_{\operatorname{TV}} = \Omega\left(\sigma\sqrt{\frac{d}{n}}\right),$$

where the p^* supremum is over α -log smooth, $\alpha/2$ -strongly log-concave distributions over \mathbb{R}^d .

Hence, α is constant and $n = O(\sigma^2 d) \implies$

the worst-case total variation distance is larger than a constant.

For α, σ constant, matches upper bounds for stochastic gradient Langevin (Durmus, Majewski and Miasojedow, 2019).

Proof idea

- Restrict to a finite parametric class (Gaussian) and a stochastic oracle that adds Gaussian noise.
- Like a classical comparison of statistical experiments:
 Relate the minimax TV distance to a difference of risk of two estimators, one that sees the algorithm's samples and one that sees the true distribution.
- Use Le Cam's method: relate estimation to testing.

Open questions

- What if the noise has added structure?
 For example, what if the potential function is sum-decomposable and the oracle returns a gradient over a mini-batch of functions?
- Lower bounds for sampling with oracle access to the exact gradients?

Some lower bounds for related problems:

- Luis Rademacher and Santosh Vempala. Dispersion of mass and the complexity of randomized geometric algorithms. 2008.
- Rong Ge, Holden Lee, and Jianfeng Lu. Estimating normalizing constants for log-concave distributions: Algorithms and lower bounds. 2019.