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Algebraic Complexity

Rough Plan

Lecture 1: Models of  computation, Complexity Classes, 

Reductions and Completeness, Connection to Boolean 

world, Structural Results

Lecture 2: Lower Bounds, Partial Derivative Method, 

Shifted Partial Derivatives

Lecture 3: Polynomial Identity Testing,  Hardness-

Randomness tradeoffs

Lecture 4: Limitations, Future Directions
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The Basics
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Algebraic Complexity

Plan

• Introduction:

– Basic definitions

– Motivation

• Valiant’s work:

– VP, VNP

– Reductions

– Completeness
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Algebraic Complexity

Why consider Algebraic Complexity

Natural problems are algebraic:

• Linear algebra:

– Solving a linear system of  equations

– Computing Determinant

– FFT

• Polynomial Factorization

– List decoding of  Reed-Solomon codes

• Usually computed using Arithmetic Circuits 

– input treated as field elements, basic arithmetic operations at 

unit cost
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Algebraic Complexity

Boolean Circuits

Our holy grail: Prove NP  P/poly

Show that certain problems (e.g., graph-coloring) cannot 

be decided by small Boolean circuits
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Algebraic Complexity

Arithmetic Circuits

Field:  𝔽 (e.g., 𝔽2, ℚ, ℝ, ℂ,𝔽2,…)

Variables: x1,...,xn

Gates: +, ×

Every gate computes a 

polynomial in 𝔽[x1,...,xn]

Example: (x1 ⋅ x2) ⋅ (x2 + 1)

Size = number of  wires

Depth = length of  longest input-output path

Degree = max degree of  internal gates
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In Example:

❑ Size = 6

❑ Depth = 2

❑ Degree = 3



Algebraic Complexity

Arithmetic Formulas

Same, except underlying graph is a tree
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Algebraic Complexity

Bounded depth circuits

 circuits: depth-2 circuits with + at the top and  at the 

bottom. Size s circuits compute s-sparse polynomials

 circuits: depth-3 circuits with + at the top,  at the 

middle and + at the bottom. Compute sums of  products of  

linear functions. I.e. a sparse polynomial composed with a 

linear transformation

 circuits: depth-4 circuits. 

Compute sums of  products of  sparse polynomials

February 14, 20209



Algebraic Complexity

 circuits

 circuits: depth-2 circuits with + at the top and  at the 

bottom. Size s circuits compute s-sparse polynomials

Example: (-e)x1⋅xn + 2x1⋅x2⋅x7 + 5(xn)
2
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Algebraic Complexity

x1 x7
x1 x2xn

× ×

+

×

2
5-e

+ + + + +

π-2 ¼

 circuits

 circuits: + at the top,  at the middle and + at the 
bottom: compute sums of  products of  linear functions

Example: (-e)⋅(-2x1+xn)⋅(x1+πx2+¼x7) + … 
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Algebraic Complexity

Algebraic Branching Programs

Edges labeled by constants/variables

Path computes product of  labels

ABP computes sum over paths
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Algebraic Complexity

Basic Relations

“Theorem”: Formula ≤ ABP ≤ Circuits ≤ quasi-poly 

Formula
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Algebraic Complexity

Basic Relations

“Theorem”: Formula ≤ ABP ≤ Circuits ≤ quasi-poly 

Formula

Theorem: if  f  computed by a size s formula then f  is 

computed by an ABP with s edges
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Algebraic Complexity

Basic Relations

“Theorem”: Formula ≤ ABP ≤ Circuits ≤ quasi-poly 

Formula

Theorem: if  f  computed by a size s formula then f  is 

computed by an ABP with s edges

Theorem: If  f  is computed by an ABP with s edges then f  

computed by an arithmetic circuits of  size O(s).
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Algebraic Complexity

Basic Relations

“Theorem”: Formula ≤ ABP ≤ Circuits ≤ quasi-poly 

Formula

Theorem: if  f  computed by a size s formula then f  is 

computed by an ABP with s edges

Theorem: If  f  is computed by an ABP with s edges then f  

computed by an arithmetic circuits of  size O(s).

Proof: By induction on structure (both cases).
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Algebraic Complexity

Basic Relations

“Theorem”: Formula ≤ ABP ≤ Circuits ≤ quasi-poly 

Formula

Theorem: if  f  computed by a size s formula then f  is 

computed by an ABP with s edges

Theorem: If  f  is computed by an ABP with s edges then f  

computed by an arithmetic circuits of  size O(s).

Proof: By induction on structure (both cases).

Theorem: “Circuits can be made shallow” i.e. VP=VNC2

(more on that later)
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Algebraic Complexity

Arithmetic vs. Boolean circuits

Boolean circuits compute Boolean functions: x = x ∧ x = x ∨ x

Arithmetic circuits compute syntactic objects:

x≠x2 as polynomials, even over 𝔽2

Note: if  𝔽 infinite then f=g as polynomials iff f=g as functions

Convention: We only consider families {fn} s.t. deg(fn)=poly(n) 

– In the Boolean world every function is a multilinear 

polynomial

– For circuits and inputs with polynomial bit complexity 

output is also of  polynomial bit complexity
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Algebraic Complexity

Why Arithmetic Circuits?

• Most natural model for computing polynomials

• For many problems (e.g. Matrix Multiplication, DFT) best 
algorithm is an arithmetic circuit

• Great algorithmic achievements:

– Fourier Transform

– Matrix Multiplication

– Polynomial Factorization

• Structured model (compared to Boolean circuits) P vs. NP may 
be easier (also true in a formal way)

• Personal view: offers the most natural approach to P vs. NP
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Algebraic Complexity

Important Problems

• Designing new algorithms:

– Õ(n2) for Matrix Multiplication?

– Understanding P

• Proving lower bounds:

– Find  a polynomial (e.g. Permanent) that requires super-

polynomial size or super-logarithmic depth

– Analog of  NC vs. #P 

• Derandomizing Polynomial Identity Testing:

– Understanding the power of  randomness

– Analog of  P vs. RP, BPP 
February 14, 202020



Algebraic Complexity

Plan

✓ Introduction:

– Basic definitions

– Motivation

• Valiant’s work:

– VP, VNP

– Reductions

– Completeness
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Algebraic Complexity

Complexity Classes – Valiant’s work

Efficient computations: A family{fn}is in VP if  there exists 

a polynomial s:ℕ → ℕ such that

– #vars(fn), deg(fn) < s(n)

– fn computed by size s(n) arithmetic circuit

Example: {Detnxn} is in VP

Example: {x2
n
} is not in VP (but has a small circuit)

Similar definition (except degree bound) to P/poly

Note: accurate definition is VP𝔽 as field may matter
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Complexity Classes – VNP

Recall: L={Ln}∊NP if  there is R(x,y)∊P such that 

x∊ Ln ⟺ ∨y R(x,y) = True 

Def: A family {fn}∊VNP if  there is {gn}∊VP such that

𝑓𝑛 𝑥1, … , 𝑥𝑛 = ෍

𝑦∈{0,1}^𝑡

𝑔𝑛(𝑥1, … , 𝑥𝑛, 𝑦1, … , 𝑦𝑡)

where t is polynomial in n

Example: Perm(X)= σ𝜎 ς𝑖 𝑥𝑖,𝜎(𝑖) ∈ VNP

𝑃𝑒𝑟𝑚 𝑋 = Σ𝑦∈ 0,1 𝑛 Π𝑖 2𝑦𝑖 − 1 Π𝑗(𝑥𝑗,1𝑦1 + ⋯ + 𝑥𝑗,𝑛 𝑦𝑛)

Thumb rule: 𝑓 = Σ𝑒𝑐𝑒Π𝑖𝑥𝑖
𝑒𝑖 in VNP if  𝑐𝑒 efficiently 

computable given e
February 14, 202023



Algebraic Complexity

Completeness and Reductions

Reductions: {fn} reduces to {gn} if  for some polynomial t(n) 
fn(x1,…,xn) = gt(n)(y1,…,yt(n)) 

where yi ∊{x1,…,xn,}∪𝔽. 

I.e., we substitute variables and field elements to the variables of  
g and get f  (also called projection)

Theorem [Valiant]: Perm is complete for VNP (except over 
characteristic 2)

Theorem [Mahajan-Vinay]: Det is complete for “ABPs”

Valiant’s hypothesis: VP ≠ VNP

Extended hypothesis: Perm is not a projection of  Detquasi-poly

Theorem [Mignon-Ressayre, Cai-Chen-Li]: 

If  Det(A) = Perm(X) then dim(A) = Ω(n2)
February 14, 202024



Algebraic Complexity

Cook’s versus Valiant’s Hypothesis

Theorem [Valiant]: 0/1 Perm is complete for #P

Building on PH ⊆ P#P and VP=VNC2 we get

Theorem [Ibarra-Moran, von zur Gathen, Bürgisser]:

• If  VP=VNP over ℂ then (under GRH)
NC3/poly = P/poly = NP/poly = PH/poly

• If  VP=VNP over 𝔽p then 
NC2/poly = P/poly = NP/poly = PH/poly

And, in either cases, PH=Σ2

My take: NP ⊈ P/poly implies VP ≠ VNP so we better start 
with the Algebraic world 
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Algebraic Complexity

Summary - introduction

• Models: Formula ≤ ABP ≤ Circuits ≤ quasi-poly 

Formula. Also saw ΣΠ, ΣΠΣ circuits

• Complexity Classes:  VP, VNP

• Reductions and Completeness: IMM, Det for ABPs, 

Perm for VNP

• Valiant’s hypothesis: Perm does not have poly size 

circuits

• Extended hypothesis: Perm is not a projection of  a 

quasi-poly-sized determinant 
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Algebraic Complexity

Plan

• Homogenization

• Divisions?

• Depth Reduction

– VP=VNC2

– Reduction to depth 4

• Baur Strassen theorem (computing first order partial 

derivatives)
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Algebraic Complexity

Homogenization

Def: f  is homogeneous if  all monomials have same total 
degree (e.g., Det. Perm)

Def: Formula/ABP/Circuit is homogeneous if  every gate 
computes a homogeneous polynomial

Theorem (Homogenization): f  of  degree r has size s 
circuit(ABP) then f  has size O(r2s) homogeneous circuit 
(ABP) computing its homogeneous components 

Proof  idea: Split every gate to r+1 gates where k’th copy 
computes homogeneous part of  degree k

Open: Homogenizing formulas efficiently (known for degree 
O(log s) [Raz])

February 14, 202029



Algebraic Complexity

Divisions

Getting rid of  divisions [Strassen]: If  degree-r f  computed in 

size-s using divisions then f  computed by poly(r,s)-size with 

no divisions

Proof  idea: 

– transform circuit to one with a single division gate at top 

(by splitting each gate to numerator and denominator)

– w.l.og. (by translating variables and rescaling) f  = g/(1-h)

where h has no free term

– f=g(1+h+h2+…+hr+…) can stop after hr and then 

compute relevant homogeneous parts

February 14, 202030



Algebraic Complexity

Depth Reduction

Theorem (Balancing formulas): f  has size s formula then f  
has depth O(log s) formula

Proof  idea: Similar to balancing trees or Boolean formulas

Theorem [Valiant-Skyum-Berkowitz-Rackoff]: VP=VNC2.
Any size s, deg r circuit can be transformed to a size poly(s,r), 
deg r, depth log(s)⋅log(r) circuit

(very rough) Proof  idea: use induction to write each gate as 

fv = σ𝑖=1
𝑠 gi1⋅gi2⋅gi3⋅gi4⋅gi5, 

where deg(gij) ≤ r/2, and {gij}computed in poly(s)-size
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Algebraic Complexity

Depth Reduction – all the way down

Theorem: [Agrawal-Vinay, Gupta-Kamath-Kayal-Saptharishi]: 

Homogeneous f  of  degree r has size s circuits then

• f  has homogeneous ΣΠΣΠ[ 𝑟] circuit of  size 𝑠𝑂( 𝑟)

• (over ℂ) f  has depth-3 circuit of  size 𝑠𝑂( 𝑟)

Corollary: exponential lower bounds for hom. depth 4 or 

depth 3 give exponential lower bounds for general circuits

Proof  idea: As before each gate is fv = σ𝑖=1
𝑠 gi1⋅gi2⋅gi3⋅gi4⋅gi5

where deg(gij ) ≤ r/2.  As long as some gij has degree larger 

than 𝑟 replace it with a similar expression. Process 

terminates with a ΣΠΣΠ[ 𝑟] circuit
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Algebraic Complexity

Baur-Strassen theorem

Theorem [Baur-Strassen]: If  f  has size s, depth d circuit 

then ∂f/∂x1… , ∂f/∂xn have size O(s), depth O(d) circuit.

Proving lower bound for computing n polynomials as hard 

as proving a lower bound for a single polynomial.

Proof  idea: structural induction and derivative rules

Open: What about computing {∂2f/∂xk∂xm}k,m? 

If  in size O(s), then Matrix Multiplication has O(n2) 

algorithm (consider xt∙A∙B∙y)

Open: What about computing {∂2f/∂xk∂xk}k? 
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Summary – structural results

• Homogenization – wlog circuits are homogeneous

• Divisions: no need for those

• VP=VNC2

• Depth reduction: Exponential lower bounds for 

homogeneous depth 4 circuits imply exponential lower 

bounds for general circuits

• Baur-Strassen: Computing first order partial derivatives 

with no extra cost
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Lower Bounds
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Algebraic Complexity

Plan

• Survey of  known lower bounds

• Some proofs:

– General lower bounds

• Strassen’s nlog(n) lower bound

• n2 lower bound for ABPs/Formulas

– Bounded depth circuits

• Approximation method for ΣΠΣ circuits over 𝔽p

– Partial derivative method and applications

• ΣΠΣ circuits

• Multilinear formulas

– Shifted partial derivatives method

• Application for ΣΠΣΠ circuits
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General lower bounds

Counting arguments (dimension arguments): Most degree n 
polynomials require exponential sized circuits (even with 0/1 
coefficients)

Counting arguments: most linear transformations require Ω(n2) 
operations

Theorem [Strassen]: Ω(n∙log r) lower bound for computing 
(simultaneously) x1

r,x2
r, …,xn

r

Theorem[Baur–Strassen]: same for x1
r +…+ xn

r

No lower bounds for constant degree polynomials

Theorem: [Kalorkoti, Kumar, Chatterjee-Kumar-She-Volk]
Ω(nr) lower bound for formulas/ABPs

February 14, 202037
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Lower Bounds for Small Depth Circuits
(recall exponential bounds for Boolean AC0[p])

Depth-2 is trivial (sum of  monomials)

Over 𝔽2 [Razborov,Smolensky] classical lower bounds hold

[Grigoriev-Karpinski, Grigorev-Razborov]: exp. lower bounds for 
ΣΠΣ circuits over 𝔽p (approximation method)

[Nisan-Wigderson]: exp. lower bounds for homogeneous/low 
degree ΣΠΣ circuits

[S-Wigderson, Kayal-Saha-Tavenas]: quadratic cubic lower 

bounds over ℚ, ℂ for ΣΠΣ circuits 

Open: strong lower bounds for depth-3 circuits over ℚ, ℂ

Recall: by [Gupta-Kamath-Kayal-Saptharishi] exponential lower 

bounds for depth-3 may be hard…
February 14, 202038
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Lower Bounds for Small Depth Circuits
(recall exponential bounds for Boolean AC0[p])

Recall: [Agrawal-Vinay, Gupta-Kamath-Kayal-Saptharishi]: f  
has size s homogeneous circuit then f  has 

ΣΠΣΠ[ 𝑟] homogeneous circuit of  size 𝑠𝑂( 𝑟)

[Gupta-Kamath-Kayal-Saptharishi, … ]: 𝑠Ω( 𝑟) lower 

bounds for homogeneous ΣΠΣΠ[ 𝑟] circuits

Lower bounds fall short of  implying lower bound for general 
circuit (constant in exponent too small!) 

Even “worse” [Fourier-Limaye-Malod-Srinivasan,Kumar-
Saraf]: lower bounds hold for easy polynomials, e.g., IMM

[Raz]: n1+O(1/d) lower bound for depth d circuits
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Multilinear Models

Gates compute multilinear/homogeneous polynomials

[Raz]: DET,PERM require quasi-poly mult. formulas

mult-NC1 ⊊ mult-NC2

[Raz-Yehudayoff]: exp(nΩ(1/d)) bounds for depth d

multilinear circuits

[Raz-S-Yehudayoff, Alon-Kumar-Volk]: n2 lower bound 

for multilinear circuits
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Algebraic Complexity

Plan

✓ Survey of  known lower bounds

• Some proofs:

– General lower bounds

• Strassen’s nlog(n) lower bound

• n2 lower bound for ABPs/Formulas

– Bounded depth circuits

• Approximation method for ΣΠΣ circuits over 𝔽p

– Partial derivative method and applications

• ΣΠΣ circuits

• Multilinear formulas

– Shifted partial derivatives method

• Application for ΣΠΣΠ circuits
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Strassen’s lower bound

Recall: Ω(nlog r) lower bound for x1
r, x2

r, …, xn
r

Bézout’s Theorem: f1,…, fk polynomials in x1,…,xn of  

degrees r1,…, rk. For every b1,…, bk in 𝔽 the number of  

solutions to f1(x1,…,xn) = b1,…, fk(x1,…,xn) = bk

is infinite or at most r1∙…∙rk

Example: fi = xi
r, bi = 1, i=1,…,n. 

The number of  solutions is rn over ℂ

February 14, 202042
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Strassen’s lower bound

Assume a circuit of  size s for x1
r, x2

r, …, xn
r

Associate a variable yv with every gate v

For each gate v = u op w set an equation yv – (yu op yw) = 0

For an input v set yv – xv = 0

For an output v set, in addition, yv = 1

Any solution (in x,y) to the system gives a solution to 
{xi

r = 1} and vice versa.

By Bézout at most 2s solutions (finite number of  solutions and 
s equations of  degree at most 2 each) 

Hence 2s  rn (can replace s by # of  multiplications) 

Note: cannot get bound better than nlog r
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Kumar’s lower bound for homogeneous ABPs

Recall: ABP computes sum (over paths) of  products of  labels 

on path

Edges labeled by linear forms

Homogeneous ABP: vertices compute homogeneous polys

Note: Vertices in level j compute degree j polynomials

February 14, 202044
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Kumar’s lower bound for homogeneous ABPs

gv computed by [s,v] and hv by [v,t] (v in layer j, Lj)

Then, 𝑓 = σ𝑣 𝑖𝑛 𝐿𝑗
𝑔𝑣 ∙ ℎ𝑣

Main Lemma: if  𝑥1
𝑟 + 𝑥2

𝑟 + ⋯ 𝑥𝑛
𝑟 = σ𝑖=1

𝑚 𝑔𝑖 ∙ ℎ𝑖 all are 

homogeneous and non constant then m≥n/2

Proof  idea: Common zero of  {gi,hi} is a zero of  (x1
r-1,…,xn

r-1). 

Only one zero so result follows by dimension arguments

Note: n/2 lower bound also for Determinantal complexity
February 14, 202045
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Plan

✓ Survey of  known lower bounds

• Some proofs:

✓ General lower bounds

✓ Strassen’s nlog(n) lower bound

✓ n2 lower bound for ABPs/Formulas

– Bounded depth circuits

• Approximation method for ΣΠΣ circuits over 𝔽p

– Partial derivative method and applications

• ΣΠΣ circuits

• Multilinear formulas

– Shifted partial derivatives method

• Application for ΣΠΣΠ circuits
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Approximation method for ΣΠΣ circuits 

[Grigoriev-Karpinski, Grigoriev-Razborov]: lower bounds over 

𝔽p (a-la Razborov-Smolensky for AC0[p] circuits):

– If  a multiplication gate contains n½ linearly independent 

functions then it is 0, except with probability exp(-n½)

– A function in k linear functions has degree < pk

– Hence, a circuit with s multiplication gates computes a 

polynomial that is s∙exp(- n½) close to a degree O(n½)

polynomial

– Correlation bounds for Mod(q) give exp(n½) lower bound

Question: But what about char 0?
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Plan

✓ Survey of  known lower bounds

• Some proofs:

✓ General lower bounds

✓ Strassen’s nlog(n) lower bound

✓ n2 lower bound for ABPs/Formulas

✓ Approximation method for ΣΠΣ circuits over 𝔽p

– Partial derivative method and applications

• ΣΠΣ circuits

• Multilinear formulas

– Shifted partial derivatives method

• Application for ΣΠΣΠ circuits
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Partial Derivative Method [Nisan]

[Nisan-Wigderson] exponential lower bounds for 
homogeneous (or low degree) depth 3 circuits

[S-Wigderson] n2 lower bound for depth 3 circuits

[Raz]: Det,Perm require quasi-poly multilinear Formulas

[Raz]: multilinear-NC1 ⊊ multilinar-NC2

[Raz-Yehudayoff]: exp(nΩ(1/d)) bounds for depth d
multilinear Circuits

[Raz-S-Yehudayoff, Alon-Kumar-Volk]: n2 lower bound 
for multilinear circuits
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Partial Derivatives as Complexity Measure

Def: ∂=k(f)= {∂kf/∂xi1
∂xi2

…∂xik
} = set of  all partial 

derivatives of  f  of  order k. 

Def: μk f = dim(span(∂=k(f))

In words, take all partial derivatives of  order k of  f  and 

compute the dimension of  their span

Intuition: not easy to create “uncorrelated” partial derivatives

Example: f  = Det(X)

∂=k(f) = {Det(XI,J) : |I| = |J| = n-k}

μk(f) = dim(span(∂=k(f)) = ()2
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Basic Properties of  Partial Derivatives

Recall: μk(f) = dim(span(∂=k(f))

Basic properties:

• μk f + g ≤ μk f + μk g

• μk f ∙ g ≤ σt μt f ∙ μk−t g

• μk(ℓr) ≤ 1 (∂kℓr/∂xi
1
∂xi

2
…∂xik= c ∙ ℓr−k)

• μk ςi=1
r ℓi ≤

r
k

(spanned by all products of  r-k of  

the linear functions)
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Lower Bounds for ∧ circuits

∧ circuits compute polynomials of  the form

f = ෍

i=1

s

ℓi
r

Claim: μk f ≤ s

Proof: μk(ℓ
r) ≤ 1 and subadditivity.

Corollary: Any ∧ circuit computing x1 ⋅ x2 ⋯ xn has 

size exp(Ω n )
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Lower Bounds for homogeneous  circuits

Homogeneous  circuits compute polynomials of  the 
form

f = ෍

i=1

s

ෑ

j=1

r

ℓi,j

Claim: μk f ≤ s ⋅
r
k

Proof: μk ςi=1
r ℓi ≤

r
k

and subadditivity

Corollary [Nisan-Wigderson]: Any homogeneous 
circuit computing Det/Perm has size exp(Ω(n)) 
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Lower Bounds for  circuits

Let σn
r x = σ T =r ςi∈T xi

Theorem [S-Wigderson]:  size of  σn
log(n)

x is ෩Ω (n2)

Proof: If  more than n/10 multiplication gates of  degree at 
least n/10 then we are done. Otherwise, there exists a 
subspace V of  dimension 0.9n such that restricted to V, 

σn
log(n)

x has small circuit of  degree at most n/10.

Claim: μr σn
2r x |V ≥

0.9n
r

Claim: μr σ ς σ |V ≤
n/10

r
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Upper Bounds for  circuits

Theorem [Ben-Or]:  size of  σn
r x is O(n2)

Proof: Evaluate f(y)=(y+x1)…(y+xn) at n+1 points, then 
take the appropriate linear combination to get the 
coefficient of  yn-r which is σn

r x

Submodel of   circuits [S]: f = σs
r(ℓ1, … , ℓs) f  is a 

restriction of  σs
r x to an n dimensional subspace (can 

compute any f  like that)

[Kayal-Saha-Tavens]:  ෩Ω (n2) lower bound for an explicit 
multilinear polynomial in VNP

Open: Prove super quadratic lower bounds
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Upper Bounds for  circuits

Recall [Ryser]:  Perm X
= Σy∈ 0,1 n Πi 2yi − 1 Πj(xj,1y1 + ⋯ + xj,n yn)

This is a  circuit of  size exp(n). What about Det?

Recall [Gupta-Kamath-Kayal-Saptharishi]:  f  has size s 

circuits (over ℂ) then f  has  circuit of  size sO( r)

Corollary: Det has  complexity exp(෩O n ) 

Only known construction via [GKKS].

Open: A “nice”  circuit for Det
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Plan

✓ Survey of  known lower bounds

• Some proofs:

✓ General lower bounds

✓ Strassen’s nlog(n) lower bound

✓ n2 lower bound for ABPs/Formulas

✓ Approximation method for ΣΠΣ circuits over 𝔽p

– Partial derivative method and applications

✓ΣΠΣ circuits

• Multilinear formulas

– Shifted partial derivatives method

• Application for ΣΠΣΠ circuits
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Partial Derivative Matrix [Nisan]

f  a multilinear polynomial over {y1,...,ym} ⊔ {z1,...,zm} 

Def: Mf =  2m dimensional matrix:

Rows indexed by multilinear monomials in {y1,...,ym}

Columns indexed by multilinear monomials in {z1,...,zm}

Mf(p,q) = coefficient of  p∙q in f

μy|z(f) = rank(Mf)

Note: μy|z(f) ≤ 2m

Def: f  is full rank if  μy|z(f) = 2m
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Examples

f(y,z) = 1+ay+bz+abyz

μy|z(f) = 1

f(y1,y2,z1,z2) = 

1 + y1y2 - y1z1z2

μy|z(f) = 2

February 14, 202059
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Basic facts for a multilinear f

• If  f  depends on only k variables in {y1,...,ym} then 

μy|z(g) ≤ 2k

• If   f  = g + h then

μy|z(f) ≤ μy|z(g) + μy|z(h) 

• If   f  = g⋅h then

μy|z(f) = μy|z(g) ⋅ μy|z(h) 

• Corollary: If  f  = L1⋅L2⋅ …⋅Lk = product of  linear 

functions then μy|z(f) ≤ 2k
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Unbalanced Gates

Yf = variables in {y1,...,ym} that f  depends on

Zf = variables in {z1,...,zm} that f  depends on

Def: f is k-unbalanced if  |#Yf - #Zf| ≥ k

A gate v is k-unbalanced if  it computes a k-unbalanced function

Main observation: If   f=gh and either g or h are k-unbalanced

then μy|z(f)  2m-k

Proof:  W.l.o.g. |Yg|-|Zg|≥k.  Hence, |Zh|-|Yh|≥ k and

μy|z(f) =μy|z(g) ⋅ μy|z(h)  min(2|Zg|2 |Yh|, 2|Yg|2|Zh|)  2m-k
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Lower bounds for multilinear formulas

Cor: if  every top product gate has 

k-unbalanced child then 

μy|z(Φ) ≤ s⋅2m-k

Thm [Raz]: with probability |Φ|∙m-Ω(logm), after a random 

partition {x1,...,x2m} = {y1,...,ym} ⊔ {z1,...,zm} every child of  

root is m-unbalanced 

Cor: If  |Φ| < mO(logm) then μy|z(Φ) < |Φ|⋅2m- m

Cor: If  f full rank (for most partitions) then any multilinear 

formula for f  has size mΩ(logm)

Open: Separation of  multilinear and non-multilinear formula size
February 14, 202062
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Limitation of  Partial Derivative method

Consider Σ⋀ΣΠ[2] circuits computing polynomials of  the 

form Q1
r+…+Qs

r, where each Qi is quadratic

What is the complexity of  the monomial f=x1·…·xn in 

this model? Intuitively, shouldn’t be easy to compute

We already saw μk f =
n
k

However, for g = x1
2+…+xn

2 we have μk g ≥
n
k

Thus, partial derivative method fail to give meaningful 

bounds even for Σ⋀ΣΠ[2] circuits
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Plan

✓ Survey of  known lower bounds

• Some proofs:

✓ General lower bounds

✓ Strassen’s nlog(n) lower bound

✓ n2 lower bound for ABPs/Formulas

✓ Approximation method for ΣΠΣ circuits over 𝔽p

✓ Partial derivative method and applications

✓ΣΠΣ circuits

✓Multilinear formulas

– Shifted partial derivatives method

• Application for ΣΠΣΠ circuits
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Shifted Partial Derivatives

Complexity measure introduced by [Kayal]:

Def: μk
ℓ f = dim(span(തxℓ ∙ 𝜕=𝑘 𝑓 )

In words, take all partial derivatives of  order k of  f, 
multiply each of  them by every possible monomial of  
degree ≤ ℓ and compute the dimension of  the span

Example: g=x2, f  = xy

• തx1 ∙ 𝜕=1 g = {1,x,y}·{x2} = {x2,x3,x2y}

• തx1 ∙ 𝜕=1 f : {1,x,y}·{x,y} = {x,y, x2,xy, y2}

• μ1
1 g =3, μ1

1 f =5
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Basic properties:

• μk
ℓ f + g ≤ μk

ℓ f + μk
ℓ g

• μk
ℓ (x1 ∙ ⋯ ∙ xn) ≥

n
k

n − k + ℓ
n − k

• Proof: Consider only product by monomials supported on the 

variables that survived the derivative 

• Claim: For any degree r polynomial f

μk
ℓ f ≤ min

n + k
n

n + ℓ
n

,
n + r − k + ℓ

n

• Proof: First term bounds the possible number of  different 

derivatives and different number of  shifts. The second is the 

dimension of  degree r-k+ℓ polynomials

• Fact: tight for a random f
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Bounds for Σ⋀ΣΠ[b] circuits 

Claim: For deg(Q)=b: μk
ℓ (Qr) ≤

n + (b − 1)k + ℓ
n

Proof: order k’ derivative of  Qr are of  the form Qr-k’·g where 

deg(g)=(b-1)k’. Hence, all polynomials in തxℓ ∙ 𝜕k Qr

are Qr-k·g where deg(g) ≤ (b-1)k+ℓ

Cor: f  computed by Σ⋀ΣΠ[b] with top fan-in s then

μk
ℓ (f) ≤ s

n + (b − 1)k + ℓ
n

Theorem [Kayal]: Σ⋀ΣΠ[b] complexity of  x1·…·xn is 2Ω(n/b)

Proof: Take ℓ= bn and k= ε·n/b
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Bounds for ΣΠ[a]ΣΠ[b] circuits 

Claim: For deg(Qi)=b: μk
ℓ (Q1 ∙ ⋯ ∙ Qa) ≤

a
k

n + (b − 1)k + ℓ
n

Proof: Each term is of  the form Qi1·… Qi{a-k’}· g where 
deg(g) = (b-1)k’+ℓ

Cor: f  computed by ΣΠ[a]ΣΠ[b] with top fan-in s then

μk
ℓ (f) ≤ s

a
k

n + (b − 1)k + ℓ
n

Cor: best bound is  
min

n+k
n

n+ℓ
n

,
n+r−k+ℓ

n

s
a
k

n+(b−1)k+ℓ
n

Cor: For a=b= r, ℓ = O
n r

log n
, k= ε· r a lower bound of  nΩ( r)
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Separating VP and VNP?

Just proved: Best possible lower bound is  of  nΩ( r)

Recall: homogeneous f  in VP then f  has a homogeneous 

ΣΠ[ r]ΣΠ[ r] circuit of  size nO( r)

Dream approach for VP vs. VNP: Prove a lower bound of  

nΩ( r) for a polynomial in VNP and improve the depth 

reduction just a little bit 
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Dream come true?

Theorem [Gupta-Kamath-Kayal-Saptharishi]: 

μk
ℓ (Permn, Detn) ≥

n + k
2k

n2 − 2k + ℓ − 1
ℓ

, 

bound tight for Det

Cor: their ΣΠ[ n]ΣΠ[ n] complexity is exp(Ω( n))

Goal: Better lower bounds for PERM (or f  in VNP) and 
better depth reduction!

Theorem [Kayal-Saha-Saptharishi]: any ΣΠ[O( n)]ΣΠ[ n]

circuit for NWε n has size nΩ n

Great source of  optimism, just improve depth reduction for 
VP
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Well…

Theorem [Fourier-Limaye-Malod-Srinivasan]: 

for 𝑟 ≤ 𝑛𝛿 , IMMr has ΣΠ[ 𝑟]ΣΠ[ 𝑟] complexity 𝑛Ω( 𝑟)

Cor: Depth reduction cannot be improved

Theorem [Kumar-Saraf]: 

∀logn ≪ t ≤ r/40 there is f  computed by hom. ΣΠΣΠ[𝑡]

formula such that any hom. ΣΠΣΠ[
𝑡

20
]

circuit computing it 

requires size 𝑛Ω( 𝑟/𝑡)

Cor: Depth reduction really cannot be improved
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The NW polynomial

Exponent vectors form an error correcting code:

𝑁𝑊𝑘 𝑥1,1, … , 𝑥𝑛,𝑛 = ෍

deg 𝑝 <𝑘

ෑ

𝑖∈𝔽𝑛

𝑥𝑖,𝑝(𝑖)

Main point [Chilara-Mukhopadhyay]: Monomials are “far 
away” hence, at most one monomial survives an order k 
derivative – easy to lower bound shifted partial dimension

Cor: For s=#Mon(NWk) and N=n2= #vars(NWk)

number of  distinct monomials in തxℓ ∙ 𝜕=𝑘 𝑁𝑊𝑘 at least 

𝑠
𝑁 + ℓ

𝑁
−

𝑠
2

𝑁 + ℓ − 𝑛 − 𝑘
𝑁

Open: is {NWk} complete for VNP?
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Plan

✓ Survey of  known lower bounds

✓ Some proofs:

✓ General lower bounds

✓ Strassen’s nlog(n) lower bound

✓ n2 lower bound for ABPs/Formulas

✓ Approximation method for ΣΠΣ circuits over 𝔽p

✓ Partial derivative method and applications

✓ΣΠΣ circuits

✓Multilinear formulas

✓ Shifted partial derivatives method

✓Application for ΣΠΣΠ circuits
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Plan

• Basic definitions and motivation

• Universality of  PIT

– Equivalence to deterministic polynomial factorization

• Hardness vs. Randomness 

– PIT implies lower bounds and vice versa

• Survey of  known results

• PIT for 

– σς circuits

– σ⋀σ circuits

– σςσ circuits – the rank method

• Summary 
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Polynomial Identity Testing

February 14, 202076

Randomized algorithm [Schwartz, Zippel, DeMillo-Lipton]: 

evaluate f at a random point

Goal: A deterministic algorithm (i.e. a proof)

Input: Arithmetic circuit computing f
Problem: Is f  = 0 ?

x1x2 xn

f(x1,...,xn)

+
×

×

Note: x2 – x is the zero function over 𝔽2 but not the 

zero polynomial!
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Black Box PIT = Hitting Set

February 14, 202077

Input: A Black-Box circuit computing f.

f(a1,...,an)(a1,...,an)
+
×

×
f(b1,...,bn)(b1,...,bn)

Problem: Is f  = 0 ?

[Schwart-Zippel-DeMilo-Lipton]: Evaluate at a random point

Goal: deterministic algorithm (a.k.a. Hitting Set):

Set H s.t. if  f≠0 then ∃a∊H s.t. f(a) ≠ 0

x1x2 xn
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Existence of  a small hitting set

Infinite many circuits so counting arguments don’t work

But, set of  poly-size circuit generates a ``simple’’ variety 
(polynomial identified with vectors of  coefficients)

Theorem [Heintz-Sieveking]: The set of  n-variate degree-r 
polynomials computed in size s, defines a variety of  dimension  
(n+s)2 and degree (sr)^(n+s)2

Theorem [Heintz-Schnorr]: A random subset of  [sr2] of  size 
O((s+n)2) is a hitting set whp.

Proof  idea: Each “bad point” reduces dimension of  variety by 
1 (adds another constraint). Bound on degree is used when we 
reach dimension 0
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Motivation

• Natural and fundamental problem

• Strong connection to circuit lower bounds

• Algorithmic importance:

– Primality testing [Agrawal-Kayal-Saxena]

– Randomized Parallel algorithms for finding perfect matching 
[Karp-Upfal-Wigderson, Mulmuley-Vazirani-Vazirani]

– Deterministic algorithms for Perfect Matching in depth 
poly(log n) (and quasi-poly time) [Fenner-Gurjar-Thierauf, 
Svensson-Tarnawski]

• New approaches to derandomization in the Boolean setting

• PIT appears the most general derandomization problem
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Motivation

• Natural and fundamental problem

• Strong connection to circuit lower bounds

• Algorithmic importance:

– Primality testing [Agrawal-Kayal-Saxena]

– Randomized Parallel algorithms for finding perfect matching 
[Karp-Upfal-Wigderson, Mulmuley-Vazirani-Vazirani]

– Deterministic algorithms for Perfect Matching in depth 
poly(log n) (and quasi-poly time) [Fenner-Gurjar-Thierauf, 
Svensson-Tarnawski]

• New approaches to derandomization in the Boolean setting

• PIT appears the most general derandomization problem
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Plan

✓ Basic definitions and motivation

• Universality of  PIT

– Equivalence to deterministic polynomial factorization

• Hardness vs. Randomness 

– PIT implies lower bounds and vice versa

• Survey of  known results

• PIT for 

– σς circuits

– σ⋀σ circuits

– σςσ circuits – the rank method

• Summary 
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Universality of  PIT

PIT is in coRP. Is it the most general language there?

Which other problems are in RP/BPP ???

Parallel algorithm for Perfect matching (PIT) in RNC

Languages coming from group theory
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Example: Polynomial factorization

Given circuit for f  = f1∙f2 output circuits for f1,f2

A priori not clear such circuits exist

[Kaltofen]: Circuits exist and efficient randomized 

algorithm for constructing them!

[Kaltofen-Trager]: Also in the black-box model

Open: Are restricted models (bounded depth circuits, 

formulas, ABPs) close to taking factors?

Question: What is the cost of  derandomizing polynomial 

factorization?
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Factorization vs. PIT

Claim: f(x)=0 iff f(x) + yz is reducible

Corollary: Deterministic factorization implies 

deterministic PIT

What about the other direction?

[S-Volkovich,Kopparty-Saraf-S]: Deterministic PIT 

implies deterministic factorization

Main idea: Carefully go over factorization algorithm and 

notice that randomization is used only to argue about 

nonzeroness of  polynomials that have poly size circuits
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Plan

✓ Basic definitions and motivation

✓ Universality of  PIT

✓ Equivalence to deterministic polynomial factorization

• Hardness vs. Randomness 

– PIT implies lower bounds and vice versa

• Survey of  known results

• PIT for 

– σς circuits

– σ⋀σ circuits

– σςσ circuits – the rank method

• Summary 
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Hardness vs. Randomness

Black Box PIT

February 14, 202086

White Box PIT

Lower bounds [Kabanets-
Impagliazzo]

a-la [Nisan-
Wigderson]

Trivial

[Kabanets-

Impagliazzo]

[Heintz-

Schnorr]

Theorem: subexp PIT implies lower bounds, and 

exp lower bounds ⇒ BB-PIT in quasi-P
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BB PIT implies lower bounds

[Heintz-Schnorr]: BB PIT in P implies lower bounds

Proof: |H|=nO(1) hitting set for a class 𝒞. Find a nonzero 

(multilinear) polynomial, f, with log|H|=O(log n) 

variables vanishing on H. It follows that f  requires 

exponential circuits from 𝒞

Gives lower bounds for f computable in PSPACE

Conjecture [Agrawal]: 

H={(y1,…, yn) : yi=yki mod r, y,k,r < s20} is a hitting set 

for size s circuits
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WB PIT implies lower bounds

[Kabanets-Impagliazzo]: subexp WB PIT implies lower 

bounds

Proof  idea: 

• [Impagliazzo-Kabanets-Wigderson]: NEXP⊆P/poly 

⟹ NEXP⊆P#P

• If  PERM has poly-size circuits then guess one. Verify 

the circuit using PIT and self  reducibility (expansion by 

row). 

Implies NEXP⊆ P#P ⊆ NSUBEXP in contradiction
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[Kabanets-Impagliazzo]: lower bounds imply BB PIT

Proof  idea: If  f  exponentially hard apply NW-design:

– S1,…,Sn ⊆ [t=O(log2n)]

– |Si ⋂ Sj| ≤ log n

Let G(x)=(f(x|S1),…, f(x|Sn)) map 𝔽t to 𝔽n

Claim: If  nonzero p has poly size circuit then p∘G nonzero

Proof: p(y1,…,yn) nonzero but p(f(x|S1),…, f(x|Sn)) zero. 

Wlog p(f(x|S1),…, f(x|Sn-1),yn) nonzero. 

Thus (yn-f(x|Sn)) a factor of  p(f(x|S1),…, f(x|Sn-1),yn). 

By NW-design property polynomial has small circuit. By 

[Kaltofen], (yn-f(x|Sn)) has small circuit in contradiction (pick t 

to match lower bound on f) ∎

Evaluating G on (r∙deg(f))t many points give a hitting set. 
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Extreme Hardness vs. Randomness

Theorem [Guo-Kumar-Saptharishi-Solomon]: Suppose for 
every s, ∃explicit hitting set of  size ((s + 1)k-1) for k-variate 
polynomials of  individual degree ≤ s that are computable by 
size s circuits

Then there is an explicit hitting set of  size sO(k2) for the class 
of  s-variate polynomials, of  degree s, that are computable by 
size s circuits

In other words: Saving one point over trivial hitting set for 
polynomials with O(1) many variables enough to solve PIT

Proof  Idea: Hitting set ⟹ Hard polynomial ⟹ Hitting set 
(via a variant of  the KI generator)
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Plan

✓ Basic definitions and motivation

✓ Universality of  PIT

✓ Equivalence to deterministic polynomial factorization

✓ Hardness vs. Randomness 

✓ PIT implies lower bounds and vice versa

• Survey of  known results

• PIT for 

– σς circuits

– σ⋀σ circuits

– σςσ circuits – the rank method

• Summary 
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Deterministic algorithms for PIT

∑∏ circuits (a.k.a., sparse polys), BB in poly time 

[BenOr-Tiwari, Grigoriev-Karpinski, Klivans-Spielman,…]

σ⋀σ circuits, BB in nloglog(n) time [Forbes-Saptharishi-S]

∑[k]∏∑ circuits 

– BB in time nO(k) [Dvir-S,Kayal-Saxena,Karnin-S,Kayal-

Saraf,Saxena-Seshadhri]

– Multilinear in sub-exponential time, for subexponential k

[Oliveira-S-Volk] (implies nearly best lower bounds)

Multilinear ∑[k]∏∑∏ [Karnin-Mukhopadhyay-S-Volkovich, Saraf-

Volkovich] BB in time spoly(k)

Read-Once (skew) determinants [Fenner-Gurjar-Thierauf, Svensson-

Tarnawski] BB in time n(log n)2
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Deterministic algorithms for PIT

Read-Once Algebraic Branching Programs

– White-Box in polynomial time [Raz-S]

– Black box in quasi-poly time [Forbes-S, Forbes-Saptharishi-S, 

Agrawal-Gurjar-Korwar-Saxena, Gurjar-Korwar-Saxena]

– Application to derandomization of  Noether’s normalization 

lemma, central in Geometric Complexity Theory program of  

Mulmuley

Read-k multilinear formulas / Algebraic Branching Programs 

[S-Volkovich, Anderson-van Melkebeek-Volkovich, Anderson-Forbes-

Saptharishi-S-Volk]

– Subexponential WB for read-k ABPs

– Poly/quasi-poly for read-k Formulas (WB/BB)
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Why study restricted models?

• [Agrawal-Vinay,Gupta-Kamath-Kayal-Saptharishi] PIT for ∑∏∑ 

(or homogeneous ∑∏∑∏) circuits implies PIT for general depth

• roABPs: natural analog of  Boolean roBP which capture RL

• Read-once determinants: new deterministic parallel algorithm for 

perfect matching.

• Gaining insight into more general questions: 

– Intuitively: lower bounds imply PIT

– Multilinear formulas: super polynomial bounds [Raz] but no 

PIT algorithms

– PIT gives more information than lower bounds.

• Interesting math: Extensions of  Sylvester-Gallai type theorems
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✓ PIT implies lower bounds and vice versa
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PIT for  circuits

f = ΣeceΠixi
ei with polynomialy many monomials

[Klivans-Speilman]: use xi ← yci to map x-monomials 1-1

Set ci = ci mod p (p prime larger than r)

ҧ𝑥 ҧ𝑒 is mapped to y^∑eic
i (mod p) = y^e(c) (mod p)

If  ∀e≠e’, e(c) ≠ e’(c) then monomials are mapped 1-1

If  s monomials then s2 differences, each of  degree ≤ r, going 

over all choices of  c in [rs2] gives a good map

Each possible c gives a low-degree univariate in y, evaluating at 

enough points gives the hitting set. Size O(r3s2).

February 14, 202096



Algebraic Complexity

PIT for ∧ circuits 

Theorem: If leading monomial of  f  has m variables then 
dimension of  partial derivatives of  f  is at least 2m

Corollary: If  f  computed in size s then its leading monomial 
has at most log(ns) many variables. 

Black Box PIT: 

– “Guess” log(ns) variables. Set all other variables to zero.

– Interpolate resulting polynomial.

Theorem:  Gives a hitting set of  size deglog(ns).

Theorem [Forbes-Saptharishi-S]: By combining with PIT for 
roABP can get hitting set of  size sloglogs.

Open: Polynomial time BB algorithm. ([Raz-S] gives WB)
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PIT for  circuits 

How does an identity look like?

If  M1 + … + Mk = 0 then

Multiplying by a common factor:

xiM1 + … + xiMk = 0

Adding two identities:

(M1 + … + Mk ) + (T1 + … + Tk’) = 0

How do the most basic identities look like?

Basic: cannot be “broken” to pieces (minimal) and no 

common linear factors (simple)
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 identities

C = M1 + … + Mk Mi = j=1...di
Li,j

Rank: dimension of  space spanned by {Li,j}

Can we say anything meaningful about the rank?

Theorem [Dvir-S]: If  C  0 is a basic identity then 

dim(C) ≤ Rank(k,r) = (log(r))k

White-Box Algorithm: find partition to sub-circuits of  low 

dimension (after removal of  g.c.d.) and brute force verify 

that they vanish.

Improved (nr)O(k) algorithm by [Kayal-Saxena]
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Black-Box PIT for  circuits

Black-Box Algorithm [Karnin-S]:  Intuitively, if  we project 

the inputs to a “low” dimensional space in a way that does 

not collapse the dimension below Rank(k,r) then identity 

should not become zero

Theorem [Gabizon-Raz]: ∃ "small" explicit set of  D-
dimensional subspaces V1,...,Vm such that for every space 
of  linear functions L, for most i:
dim(L|Vi

) = min(dim(L),D)

In other words: the linear functions in L remain as 
independent as possible on Vi

February 14, 2020100
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Corollary: ∀i C|Vi
has low "rank“ ⟹ C has low "rank"

February 14, 2020101

Black-Box PIT for  circuits

If  C has high rank then by [Gabizon-Raz], for 

some i, C|Vi has high rank.
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Corollary: ∀i C|Vi
has low "rank“ ⟹ C has low "rank"

Corollary: if  ∀ i, C|Vi
 0 then C has structure (i.e. C is 

sum of  circuits of  low “rank”)

February 14, 2020102

Black-Box PIT for  circuits

If  C is not a sum of  low rank circuits then for 

some i, C|Vi is not a sum of  low rank circuits. This 

contradicts the structural theorem.
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Corollary: ∀i C|Vi
has low "rank“ ⟹ C has low "rank"

Corollary: if  ∀ i, C|Vi
 0 then C has structure (i.e. C is 

sum of  circuits of  low “rank”) 

Theorem: if  ∀i, C|Vi
 0 then C  0.

February 14, 2020103

Black-Box PIT for  circuits

C is sum of  low rank subcircuits 

 Vi s.t. rank of  subcircuits remain the same.  C|Vi is 

zero  each subcircuit vanishes on Vi  subcircuits

compute the zero polynomial.
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Corollary: ∀i C|Vi
has low "rank“ ⟹ C has low "rank"

Corollary: if  ∀ i, C|Vi
 0 then C has structure (i.e. C is 

sum of  circuits of  low “rank”) 

Theorem: if  ∀i, C|Vi
 0 then C  0.

Algorithm: For every i, brute force compute C|Vi

Time: poly(n)rdim(Vi) = poly(n)rO(Rank(k,r))

February 14, 2020104

Black-Box PIT for  circuits
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 identities

Lesson 1: depth 3 identities are very structured

Lesson 2: Rank is an important invariant to study

Improvements [Kayal-Saraf,Saxena-Seshadri]:

Finite field,   klog(r) < Rank(k,r) < k3log(r)

Over char 0,   k < Rank(k,r) < k2log(k)

Improves [Dvir-S] + [Karnin-S] (plug and play)

Best PIT [Saxena-Seshadri]: BB-PIT in time (nr)O(k) (proof  

inspired by rank techniques)

February 14, 2020105
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L1 L2 ... Li ... Lj ... Lr

L'1 L'2 ... L'i ... L'j ... L’r

M1 =

M2 =

Fact: linear functions are irreducible polynomial.

Corollary: C ≡ 0 then M1, M2 have same factors.

Corollary:  matching i → (i) s.t. Li ~ L'(i)

Bounding the rank

February 14, 2020106

Basic observation: Consider C = M1 + M2
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Bounding the rank

• Claim: Rank(3,r) = O(log(r))

February 14, 2020107

Sketch: cover all linear 

functions in log(r) steps, where 

at m’th step: 

• dim of  cover is O(m)

• (2m) functions in span

0
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Plan

✓ Basic definitions and motivation

✓ Universality of  PIT

✓ Equivalence to deterministic polynomial factorization

✓ Hardness vs. Randomness 

✓ PIT implies lower bounds and vice versa

✓ Survey of  known results

✓ PIT for 

✓ σς circuits

✓ σ⋀σ circuits

✓ σςσ circuits – the rank method

• Summary 
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Proofs – tailored for the model

Proofs usually use `weakness’ inherent in model

• Depth 2: few monomials. Substituting yci to xi we can isolate

different monomials

• Read-Once ABP: Polynomial has few linearly independent partial 

derivatives [Nisan]. Keep track of  a basis for derivatives to do PIT

• (k): setting a linear function to zero reduces top fan-in. If  k=2

then multiplication gates must be the same. Calls for induction

• Multilinear (k): in some sense `combination’ of  sparse 

polynomials and multilnear (k)

• Read-Once-Formulas: subformula of  root contains ½ of  variables

February 14, 2020109
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Summary

• PIT natural derandomization problem

• Equivalent to proving lower bounds

• Results for restricted models

• Open:

– PIT for multilinear formulas

– Improved PIT for multilinear depth 3 

– Poly time PIT for ∧ circuits

– Closure of  classes (ABPs, formulas) under factorization

February 14, 2020110



Limitations and Approaches

February 14, 2020Algebraic Complexity111
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Plan

• Limitations:

– Limitations of  (shifted) Partial Derivative Method

– Natural Proofs for Arithmetic Circuits

– The case of   circuits

• Approaches:

– Matrix Rigidity

– Elusive Polynomial Maps

– Geometric Complexity Theory (GCT)

• Summary and open problems

February 14, 2020112
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Complexity Measure

Recall: 

• μk(f) = dim(span(∂=k(f))

• μk f + g ≤ μk f + μk g

• μk(ℓ
r) ≤ 1

Note: {ℓr} additive building blocks of  ∧ circuits

Subadditivity implies: size∧(f)≥ μk f /μk ℓr

A barrier: when μk f cannot be much larger than 

μk(simple building block)

February 14, 2020113
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Abstracting the partial derivative method

(shifted) Partial derivative method: construct a huge 

matrix whose entries are linear functions in the coefficient 

of  underlying polynomial. Rank of  matrix is the measure

Example: f=xy+1

𝑥𝑦 𝑥 𝑦 1

𝑓
𝜕𝑓/𝜕𝑥
𝜕𝑓/𝜕𝑦

𝜕2𝑓/𝜕𝑥𝜕𝑦

=

𝑥𝑦 + 1
𝑦
𝑥
1

=

1 0
0 0

0 1
1 0

0 1
0 0

0 0
0 1

February 14, 2020114
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Abstract rank method

“Rank Method” = Linear map to matrices: 

L : Polynomials ➝ Matmm(𝔽)

Example: ℓr = σ 𝑎𝑖 𝑥𝑖
𝑟 = σ ҧ𝑒

𝑟
ҧ𝑒

ത𝑎 ҧ𝑒𝑥 ҧ𝑒

L(ℓr) = σ ҧ𝑒
𝑟

ҧ𝑒
ത𝑎 ҧ𝑒𝐿(𝑥 ҧ𝑒) = σ ҧ𝑒

𝑟
ҧ𝑒

ത𝑎 ҧ𝑒𝑀 ҧ𝑒

L(ℓr) = matrix with entries homogeneous polynomials in 

ത𝑎

Measure: μL(f) = rank(L(f))

February 14, 2020115
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Lower bounds via abstract rank method

“Model” = Set of  simple polynomials S that span all 

polynomials

Example: S={ℓr} (for ∧ circuits)

Example: S={ςi=1
r ℓi} (for  circuits)

Example : S={gi1⋅gi2⋅gi3⋅gi4⋅gi5}, deg(gij ) ≤ r/2 (for 

general circuits)

Best lower bound in the model: sizemodel(f)≥ μL(f)/μL(S)

Barrier: when this ratio cannot be too large

February 14, 2020116
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Barrier on rank method

Theorem [Efremenko-Garg-Oliveira-Wigderson]: Rank 

method cannot prove more than Ω 𝑛 𝑟ہ 2/ۂ lower bound 
for homogeneous  circuits (similar bound also for 
∧ circuits)

Cor: rank method cannot prove 8n lower bound on MM 
(best known lower bound is 3n-o(n) [S, Landsberg])

Note: for a random polynomial we expect 
complexity to be Ω(nr-1/r) (by counting degrees of  
freedom)

Recall: For the symmetric polynomial σn
r x the lower 

bound obtained via partial derivative method is Ω(nr/2/2r)

February 14, 2020117
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Proof  Idea for ∧ circuits

Recall: L(ℓr) is a matrix with entries homogeneous 
monomials in the coefficients of  ℓ:

L(ℓr) = σ ҧ𝑒
𝑟

ҧ𝑒
ത𝑎 ҧ𝑒𝐿(𝑥 ҧ𝑒) = σ ҧ𝑒

𝑟
ҧ𝑒

ത𝑎 ҧ𝑒𝑀 ҧ𝑒

ρ = maximum rank of  L(ℓr) 

= rank of  σ ҧ𝑒
𝑟

ҧ𝑒
ത𝑎 ҧ𝑒𝑀 ҧ𝑒 as a matrix over 𝔽 ത𝑎

(when entries viewed as polynomials in ത𝑎)

Maximal possible rank = maximal rank in span{L(ℓr)}

Main idea: show that L(ℓr) are structured matrices and so 
is their span

February 14, 2020118
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Upper bounding the rank

Recall: L(ℓr) = σ ҧ𝑒
𝑟

ҧ𝑒
ത𝑎 ҧ𝑒𝑀 ҧ𝑒 has rank at most ρ

Can decompose over field of  fractions (in ത𝑎)

𝐿 ℓ𝑟 = ෍

𝑖=1

𝜚
1

𝑝 ത𝑎
𝑣𝑖 ത𝑎 ⨂𝑢𝑖 ത𝑎

where 𝑣𝑖 ത𝑎 ,𝑢𝑖 ത𝑎 vectors with entries polynomial in ത𝑎, 

and 𝑝 ത𝑎 is a polynomial

We now perform Strassen’s trick to get rid of  divisions!

February 14, 2020119
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𝐿 ℓ𝑟 = ෍

𝑖=1

𝜚
1

𝑝 ത𝑎
𝑣 ത𝑎 ⨂𝑢 ത𝑎

𝐿 ℓ𝑟 = ෍

𝑖=1

𝜚
1

1 − ෤𝑝 ത𝑎
𝑣 ത𝑎 ⨂𝑢 ത𝑎

= ෍

𝑖=1

𝜚

(1 + ෤𝑝 ത𝑎 + ෤𝑝2 ത𝑎 + ෤𝑝3 ത𝑎 + ⋯ )𝑣 ത𝑎 ⨂𝑢 ത𝑎

Homogeneity implies

𝐿 ℓ𝑟 = 𝐻𝑟 ෍

𝑖=1

𝜚

෤𝑣𝑖 ത𝑎 ⨂𝑢 ത𝑎

February 14, 2020120
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𝐿 ℓ𝑟 = 𝐻𝑟 ෍

𝑖=1

𝜚

෤𝑣𝑖 ത𝑎 ⨂𝑢 ത𝑎

= ෍

𝑖=1

𝜚

෍

𝑗=0

𝑟

𝐻𝑗( ෤𝑣𝑖 ത𝑎 ) ⨂𝐻𝑟−𝑗(𝑢𝑖 ത𝑎 )

Main point: one of  the vectors has degree at most 
𝑟

2

Cor: summand is A+B where columns of  A (rows of  B) 

belong to a fixed space of  dimension 
𝑛 +

𝑟

2
𝑟

2
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Plan

• Limitations:

✓Limitations of  (shifted) Partial Derivative Method

– Natural Proofs for Arithmetic Circuits

– The case of   circuits

• Approaches:

– Matrix Rigidity

– Elusive Polynomial Maps

– Geometric Complexity Theory (GCT)

• Summary and open problems
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Natural proofs

[Razborov-Rudich] A property P of  Boolean functions 

(truth tables) is natural if:

Useful against 𝒞: If  P(f) = 1 then we get a lower bound for 

circuits from 𝒞 computing f

Constructivity: There is a 2poly(n) sized circuit for computing 

P(f) (input is truth table of  f)

Largeness: For “many” functions f, P(f) = 1

[Razborov-Rudich]: All known lower bounds are natural

[Razborov-Rudich]: If  PRFGs exist in 𝒞 then no strong 

lower bounds for 𝒞 (e.g. 𝒞 = TC0)
February 14, 2020123
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Natural proofs barrier for arithmetic circuits?

Consider multilinear polynomials, given by list of  coefficients

A property (polynomial) P is natural if  

– Constuctivity: there is a 2poly(n) sized arithmetic circuit for 
computing P(f)

– Usefulness: P(f) ≠ 0 implies lower bounds on f

Note: All known proofs are natural

Example: having high partial derivative rank can be verified 
using determinant

Def: P is 𝒟 natural against 𝒞 if  P computed by circuits from 𝒟
and implies lower bounds for computing f  in 𝒞

February 14, 2020124
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Succinct hitting sets

Def: 𝒞 is succinct hitting set for 𝒟 if  coefficient vectors of  

polynomials computed in 𝒞 form a hitting set for 𝒟

Note: We consider log(n)-variate polynomials in 𝒞 and get 

hitting set for n-variate polynomials in 𝒟

Observation [Grochow-Kumar-Saks-Saraf, Forbes-S-Volk]: No 

𝒟 natural property against 𝒞, if  𝒞 is succinct hitting set for 𝒟

Conj: coefficient-lists of  multilinear polynomial in VP hit VP 

(if  true – no natural proofs for VP≠VNP)

Theorem [Forbes-S-Volk]: except of  ro-Det all known hitting 

sets can be tweaked to multilinear--succinct

Cor: Lower bounds on complexity of  polynomials defining VP

February 14, 2020125
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Plan

• Limitations:

✓Limitations of  (shifted) Partial Derivative Method

✓Natural Proofs for Arithmetic Circuits

– The case of   circuits

• Approaches:

– Matrix Rigidity

– Elusive Polynomial Maps

– Geometric Complexity Theory (GCT)

• Summary and open problems
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Barrier for Lower Bounds for  circuits

Recall: [S-Wigderson,Kayal-Saha-Tavenas] lower bound 

for  circuits showed there exist Ω(n) many 

multiplication gates each of  degree Ω(n) (Ω(n2))

Proof  idea: restrict to a subspace to make high degree 

gate vanish and then use (shifted) partial derivative 

measure on remaining circuit

Note: this approach cannot prove that there are more 

than n multiplication gates

Question: is there a reason for such a barrier?

February 14, 2020127
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Approximating polynomials

Def: g algebraically approximates f  if f(x)=g(ε,x) + ε·h(ε,x), 

where monomials in h have degree > deg(f)

Theorem [Kumar]: every degree r polynomial can be 

approximated by  circuit with r+1 multiplication gates

“Cor”: algebraic (continuous) measures cannot prove that 

more than r+1 multiplication gates are needed

Rationale: if  a measure μ is small for every circuit with r+1 

gates then it is small also for the limit. Thus, every 

polynomial has small μ complexity

February 14, 2020128
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Plan

• Limitations:

✓Limitations of  (shifted) Partial Derivative Method

✓Natural Proofs for Arithmetic Circuits

✓The case of   circuits

• Approaches:

– Matrix Rigidity

– Elusive Polynomial Maps

– Geometric Complexity Theory (GCT)

• Summary and open problems
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Matrix Rigidity

Def: matrix A is (r,s)-rigid if  we need to change more than 
s entries to reduce rank to r

Whenever A=B+C either rank(B) > r or C contains more 
than s nonzero entries

Theorem [Valiant]: If  A is (n/loglog n, n1+ε)-rigid then no 
linear circuit of  size O(n) and depth O(log n) can 
compute f(x)=Ax

Counting arguments: most matrices (Ω(n),O(n2))-rigid

Applications: Circuit complexity, lower bounds for data 
structures, locally decodable codes, …

February 14, 2020130



Algebraic Complexity

Theorem [Friedman, Shokrollahi-Spielman-Stemann]: 

super regular matrices are (r, n2/r·log(n/r))-rigid

Proof  idea: Some rxr submatrix is not touched

Theorem [Alman-Williams, Dvir-Liu]: Hadmard like 

matrices not rigid enough

Theorem [Alman-Chen]: Using an NP oracle can 

construct 2log 𝑛1/4
, Ω 𝑛2 -rigid matrix

Note: new result by Orr et al.

Open: Find an explicit rigid matrix

Open: an explicit (n-1,Ω(n))-matrix
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Plan

• Limitations:

✓Limitations of  (shifted) Partial Derivative Method

✓Natural Proofs for Arithmetic Circuits

✓The case of   circuits

✓Approaches:

✓Matrix rigidity

– Elusive Polynomial Maps

– Geometric Complexity Theory (GCT)

• Summary and open problems
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Elusive polynomial mappings

Def [Raz]: f=(f1,…,fm): 𝔽n → 𝔽m is (s,r)-elusive if  for every 

g=(g1,…,gm): 𝔽s → 𝔽m, where deg(gi)  r, 

Image(f)  Image(g)

Theorem [Raz]: If f  is (s,2)-elusive for m=n(1) and s>m0.9, 

then super-polynomial lower bounds for f

Note: the moment curve (in 1 variable) is (m-1,1)-elusive for 

every m
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Universal circuit

Def: circuit for degree r is in normal form if  

– 2r alternating layers

– Edges go between layers

– Each constant gate has fan-out 1

Easy: each circuit can be made normal with poly blow up

Claim: for size s and degree r ∃ universal circuit U in x and 
y=(y1,…,ys) such that

– size(U) = poly(r,s)

– every size s normal circuit in x is obtained by assigning 
values to y vars
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Circuits as polynomial maps

Note: Output of  U is a polynomial in x,y. View it as a 

polynomial in x whose coefficients are polynomials in y

⇒ U defines a map Γ: 𝔽s → 𝔽m for m=
n + r

n
mapping y to coefficient polynomials of  x-monomials

Claim: Γ has degree 2r-1

Proof: each y variable used once in a layered circuit

Claim: if  f  has size s then f  in image of  Γ

Proof: follows from universality of  U
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Elusive maps

Cor: If  G: 𝔽n → 𝔽m is (s,2r-1)-elusive then for some α, 

G(α) defines a hard polynomial (requires size > s)

Cor: if  for every α, G(α) in VNP then can separate VP 

from VNP like that

Note: to claim about (s,2)-elusive maps need to use depth-

reduction tricks
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Plan

• Limitations:

✓Limitations of  (shifted) Partial Derivative Method

✓Natural Proofs for Arithmetic Circuits

✓The case of   circuits

✓Approaches:

✓Matrix Rigidity

✓Elusive Polynomial Maps

– Geometric Complexity Theory (GCT)

• Summary and open problems
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Geometric complexity theory

Recall: want to show Perm is not a projection of  Det

Action of  matrices on polynomials: (A◦f)(x)=f(A·x)

Goal: show Permn not in orbit of  Detm

Fact: the orbit of  Det under matrices = closure of  orbit of  
Det under GL (invertible matrices)

Fact: if  Perm not in orbit then there is F (that takes as input 
coefficient vectors), such that F vanishes on (closure of) orbit 
of  Det but not on Perm

Note: similar to Farkas lemma in linear programming

GCT approach [Mulmuley-Sohoni]: look for such polynomial 
using representation theory of  GL

February 14, 2020138
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Why representation theory?

Separating F comes from a vector space 𝒱 of  polynomials 
acting on coefficient vectors

Can view GL action on coefficient vectors as action on 
polynomials from 𝒱: (A◦F)(f) = F(At◦f) (representation)

Consider all such F that vanish on the orbit of  Det 
(Perm). They form a subrepresentation (linear subspace 
on which GL acts)

GCT approach: prove that these subrepresentations
coming from the orbits of  Det and Perm are different and 
conclude the existence of  a separating F
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Algebraic Complexity

Multiplicities

Conj [Mulmuley-Sohony]: Action of  GL on orbit of  Det has 
more irreducible representations than its action on orbit of  
Perm

Idea used by [Bürgisser-Ikenmeyer] to prove lower bounds for 
border rank of  MM

Theorem [Ikenmeyer-Panova,Bürgisser-Ikenmeyer-Panova]: 
They have the same set of  irreducible representation. Even 
∧ circuits have the same set

New approach: prove that some irreducible representation 
appears more (higher multiplicity) over Perm than over Det

Recently implemented by [Ikenmeyer-Kandasamy] to separate 
a monomial from ∧
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Summary

1. Basic definitions and structure results

2. Lower Bound techniques

3. PIT,  hardness-randomness tradeoffs

4. Limitations, approaches

Model simpler than Boolean circuits, offers more chances 

to prove “big” results, classical math fits more naturally, 

many many open problems
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Some more open problems

• Prove super polynomial lower bounds for bounded depth 

circuits over 𝔽3

• Prove super quadratic lower bounds for 𝜎d(L1,…, Lm)

• Exponential lower bound for multilinear formulas

• Separate multilinear and non-multilinear formula size

• Separate multilinear ABPs from multilinear circuits

• Super-poly lower bound for multilinear circuits

• Are formulas/ABPs/bounded-depth-circuits closed to 

taking factors? 
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Some more open problems

• What is the complexity of  PIT: given H how hard is it to 

verify that H is a hitting set. Currently in EXPSPACE

• Results for read-once ABPs much better than in the 

Boolean world. Can techniques be used there?

• Theory of  [Khovanskii] gives analogs of  Bezout’s theorem 

for sparse polynomials over ℝ (sparsity replaces degree). 

Improve quantitative results. Would solve long standing 

open problems (PIT and algorithms)

• Reconstruction of  arithmetic circuits

• …
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Additional reading

[Bürgisser-Clausen-
Shokrollahi]: Algebraic 
Complexity Theory

[S-Yehudayoff]: Arithmetic 
Circuits: a survey of  recent 
results and open questions

[Saptharishi]: A selection of  
lower bounds in arithmetic 
circuit complexity

[Blaser-Ikenmeyer]: 
Introduction to geometric 
complexity theory (lecture 
notes)
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Some more photos
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