# Crash course on Algebraic Complexity 

Amir Shpilka
Tel Aviv University

## Rough Plan

Lecture 1: Models of computation, Complexity Classes, Reductions and Completeness, Connection to Boolean world, Structural Results

Lecture 2: Lower Bounds, Partial Derivative Method, Shifted Partial Derivatives

Lecture 3: Polynomial Identity Testing, HardnessRandomness tradeoffs

Lecture 4: Limitations, Future Directions

## The Basics

## Plan

- Introduction:
- Basic definitions
- Motivation
- Valiant's work:
- VP, VNP
- Reductions
- Completeness


## Why consider Algebraic Complexity

Natural problems are algebraic:

- Linear algebra:
- Solving a linear system of equations
- Computing Determinant
- FFT
- Polynomial Factorization
- List decoding of Reed-Solomon codes
- Usually computed using Arithmetic Circuits
- input treated as field elements, basic arithmetic operations at unit cost


## Boolean Circuits

Our holy grail: Prove NP $\not \subset \mathrm{P} /$ poly
Show that certain problems (e.g., graph-coloring) cannot be decided by small Boolean circuits


## Arithmetic Circuits



## Arithmetic Formulas

Same, except underlying graph is a tree


## Bounded depth circuits

$\Sigma \Pi$ circuits: depth -2 circuits with + at the top and $\times$ at the bottom. Size s circuits compute s-sparse polynomials
$\Sigma \Pi \Sigma$ circuits: depth- 3 circuits with + at the top, $\times$ at the middle and + at the bottom. Compute sums of products of linear functions. I.e. a sparse polynomial composed with a linear transformation
$\Sigma П \Sigma \Pi$ circuits: depth-4 circuits.
Compute sums of products of sparse polynomials

## $\Sigma \Pi$ circuits

$\Sigma \Pi$ circuits: depth -2 circuits with + at the top and $\times$ at the bottom. Size s circuits compute s-sparse polynomials
Example: $(-\mathrm{e}) \mathrm{x}_{1} \cdot \mathrm{x}_{\mathrm{n}}+2 \mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdot \mathrm{x}_{7}+5\left(\mathrm{x}_{\mathrm{n}}\right)^{2}$


## $\Sigma П \Sigma$ circuits

$\Sigma \Pi \Sigma$ circuits: + at the top, $\times$ at the middle and + at the bottom: compute sums of products of linear functions Example: $(-\mathrm{e}) \cdot\left(-2 \mathrm{x}_{1}+\mathrm{x}_{\mathrm{n}}\right) \cdot\left(\mathrm{x}_{1}+\pi \mathrm{x}_{2}+1 / 4 \mathrm{x}_{7}\right)+\ldots$


## Algebraic Branching Programs



Edges labeled by constants/variables
Path computes product of labels
ABP computes sum over paths = product of labeled transition matrices (as in graph powering)

## Basic Relations

"Theorem": Formula $\leq \mathrm{ABP} \leq$ Circuits $\leq$ quasi-poly Formula

## Basic Relations

"Theorem": Formula $\leq \mathrm{ABP} \leq$ Circuits $\leq$ quasi-poly Formula

Theorem: if $f$ computed by a size s formula then $f$ is computed by an ABP with s edges

## Basic Relations

"Theorem": Formula $\leq \mathrm{ABP} \leq$ Circuits $\leq$ quasi-poly Formula

Theorem: if f computed by a size s formula then f is computed by an ABP with s edges

Theorem: If f is computed by an ABP with s edges then f computed by an arithmetic circuits of size $\mathrm{O}(\mathrm{s})$.

## Basic Relations

"Theorem": Formula $\leq \mathrm{ABP} \leq$ Circuits $\leq$ quasi-poly Formula

Theorem: if f computed by a size s formula then f is computed by an ABP with s edges

Theorem: If f is computed by an ABP with s edges then f computed by an arithmetic circuits of size $\mathrm{O}(\mathrm{s})$.

Proof: By induction on structure (both cases).

## Basic Relations

"Theorem": Formula $\leq \mathrm{ABP} \leq$ Circuits $\leq$ quasi-poly Formula

Theorem: if $f$ computed by a size s formula then $f$ is computed by an ABP with s edges

Theorem: If $f$ is computed by an ABP with s edges then f computed by an arithmetic circuits of size $\mathrm{O}(\mathrm{s})$.

Proof: By induction on structure (both cases).
Theorem: "Circuits can be made shallow" i.e. VP=VNC² (more on that later)

## Arithmetic vs. Boolean circuits

Boolean circuits compute Boolean functions: $\mathrm{x}=\mathrm{x} \wedge \mathrm{x}=\mathrm{x} \vee \mathrm{x}$ Arithmetic circuits compute syntactic objects:

$$
x \neq x^{2} \text { as polynomials, even over } \mathbb{F}_{2}
$$

Note: if $\mathbb{F}$ infinite then $\mathrm{f}=\mathrm{g}$ as polynomials iff $\mathrm{f}=\mathrm{g}$ as functions
Convention: We only consider families $\left\{f_{n}\right\}$ s.t. $\operatorname{deg}\left(f_{n}\right)=\operatorname{poly}(n)$

- In the Boolean world every function is a multilinear polynomial
- For circuits and inputs with polynomial bit complexity output is also of polynomial bit complexity


## Why Arithmetic Circuits?

- Most natural model for computing polynomials
- For many problems (e.g. Matrix Multiplication, DFT) best algorithm is an arithmetic circuit
- Great algorithmic achievements:
- Fourier Transform
- Matrix Multiplication
- Polynomial Factorization
- Structured model (compared to Boolean circuits) P vs. NP may be easier (also true in a formal way)
- Personal view: offers the most natural approach to P vs. NP


## Important Problems

- Designing new algorithms:
- $\tilde{\mathrm{O}}\left(\mathrm{n}^{2}\right)$ for Matrix Multiplication?
- Understanding P
- Proving lower bounds:
- Find a polynomial (e.g. Permanent) that requires superpolynomial size or super-logarithmic depth
- Analog of NC vs. \#P
- Derandomizing Polynomial Identity Testing:
- Understanding the power of randomness
- Analog of P vs. RP, BPP


## Plan

$\checkmark$ Introduction:

- Basic definitions
- Motivation
- Valiant's work:
- VP, VNP
- Reductions
- Completeness


## Complexity Classes - Valiant's work

Efficient computations: A family $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ is in VP if there exists a polynomial s: $\mathbb{N} \rightarrow \mathbb{N}$ such that

$$
-\# \operatorname{vars}\left(\mathrm{f}_{\mathrm{n}}\right), \operatorname{deg}\left(\mathrm{f}_{\mathrm{n}}\right)<\mathrm{s}(\mathrm{n})
$$

- $\mathrm{f}_{\mathrm{n}}$ computed by size $\mathrm{s}(\mathrm{n})$ arithmetic circuit

Example: $\left\{\operatorname{Det}_{\text {nxn }}\right\}$ is in VP
Example: $\left\{\mathrm{x}^{\mathrm{n}}\right\}$ is not in VP (but has a small circuit)
Similar definition (except degree bound) to $\mathrm{P} /$ poly
Note: accurate definition is $\mathrm{VP}_{\mathbb{F}}$ as field may matter

## Complexity Classes - VNP

Recall: $L=\left\{L_{n}\right\} \in N P$ if there is $R(x, y) \in P$ such that

$$
x \in L_{n} \Leftrightarrow V_{y} R(x, y)=\text { True }
$$

Def: A family $\left\{f_{n}\right\} \in \mathrm{VNP}$ if there is $\left\{g_{n}\right\} \in \mathrm{VP}$ such that

$$
f_{n}\left(x_{1}, \ldots, x_{n}\right)=\sum_{y \in\{0,1\}^{\wedge} t} g_{n}\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{t}\right)
$$

where $t$ is polynomial in $n$
Example: $\operatorname{Perm}(\mathrm{X})=\sum_{\sigma} \prod_{i} x_{i, \sigma(i)} \in \mathrm{VNP}$

$$
\operatorname{Perm}(X)=\Sigma_{y \in\{0,1\}^{n}} \Pi_{i}\left(2 y_{i}-1\right) \Pi_{j}\left(x_{j, 1} y_{1}+\cdots+x_{j, n} y_{n}\right)
$$

Thumb rule: $f=\Sigma_{e} c_{e} \Pi_{i} x_{i}^{e_{i}}$ in VNP if $c_{e}$ efficiently computable given e

## Completeness and Reductions

Reductions: $\left\{\mathrm{f}_{\mathrm{n}}\right\}$ reduces to $\left\{\mathrm{g}_{\mathrm{n}}\right\}$ if for some polynomial $\mathrm{t}(\mathrm{n})$

$$
\mathrm{f}_{\mathrm{n}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{g}_{\mathrm{t}(\mathrm{n})}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{t}(\mathrm{n})}\right)
$$

where $\left.\mathrm{y}_{\mathrm{i}} \in\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right\}\right\} \cup \mathbb{F}$.
I.e., we substitute variables and field elements to the variables of g and get f (also called projection)
Theorem [Valiant]: Perm is complete for VNP (except over characteristic 2)
Theorem [Mahajan-Vinay]: Det is complete for "ABPs"
Valiant's hypothesis: VP $\neq$ VNP
Extended hypothesis: Perm is not a projection of Det $_{\text {quasi-poly }}$
Theorem [Mignon-Ressayre, Cai-Chen-Li]:

$$
\text { If } \operatorname{Det}(\mathrm{A})=\operatorname{Perm}(\mathrm{X}) \text { then } \operatorname{dim}(\mathrm{A})=\Omega\left(\mathrm{n}^{2}\right)
$$

## Cook's versus Valiant's Hypothesis

Theorem [Valiant]: $0 / 1$ Perm is complete for \#P
Building on $\mathrm{PH} \subseteq \mathrm{P}^{\# \mathrm{P}}$ and $\mathrm{VP}=\mathrm{VNC}^{2}$ we get
Theorem [Ibarra-Moran, von zur Gathen, Bürgisser]:

- If VP=VNP over $\mathbb{C}$ then (under GRH) $\mathrm{NC}^{3} /$ poly $=\mathrm{P} /$ poly $=\mathrm{NP} /$ poly $=\mathrm{PH} /$ poly
- If VP=VNP over $\mathbb{F}_{\mathrm{p}}$ then
$\mathrm{NC}^{2} /$ poly $=\mathrm{P} /$ poly $=\mathrm{NP} /$ poly $=\mathrm{PH} /$ poly
And, in either cases, $\mathrm{PH}=\Sigma_{2}$
My take: NP $\nsubseteq \mathrm{P} /$ poly implies VP $\neq \mathrm{VNP}$ so we better start with the Algebraic world


## Summary - introduction

- Models: Formula $\leq$ ABP $\leq$ Circuits $\leq$ quasi-poly Formula. Also saw $\Sigma \Pi, \Sigma \Pi \Sigma$ circuits
- Complexity Classes: VP, VNP
- Reductions and Completeness: IMM, Det for ABPs, Perm for VNP
- Valiant's hypothesis: Perm does not have poly size circuits
- Extended hypothesis: Perm is not a projection of a quasi-poly-sized determinant


## Structural Results

## Plan

- Homogenization
- Divisions?
- Depth Reduction
$-\mathrm{VP}=\mathrm{VNC}^{2}$
- Reduction to depth 4
- Baur Strassen theorem (computing first order partial derivatives)


## Homogenization

Def: f is homogeneous if all monomials have same total degree (e.g., Det. Perm)

Def: Formula/ABP/Circuit is homogeneous if every gate computes a homogeneous polynomial
Theorem (Homogenization): $f$ of degree $r$ has size $s$ circuit(ABP) then f has size $\mathrm{O}\left(\mathrm{r}^{2} \mathrm{~s}\right)$ homogeneous circuit (ABP) computing its homogeneous components
Proof idea: Split every gate to r+1 gates where k'th copy computes homogeneous part of degree k
Open: Homogenizing formulas efficiently (known for degree O(log s) [Raz])

## Divisions

Getting rid of divisions [Strassen]: If degree-r f computed in size-s using divisions then f computed by poly( $\mathrm{r}, \mathrm{s}$ )-size with no divisions

Proof idea:

- transform circuit to one with a single division gate at top (by splitting each gate to numerator and denominator)
- w.l.og. (by translating variables and rescaling) $f=g /(1-h)$ where $h$ has no free term
$-\mathrm{f}=\mathrm{g}\left(1+\mathrm{h}+\mathrm{h}^{2}+\ldots+\mathrm{h}^{\mathrm{r}}+\ldots\right)$ can stop after $\mathrm{h}^{\mathrm{r}}$ and then compute relevant homogeneous parts


## Depth Reduction

Theorem (Balancing formulas): $f$ has size s formula then $f$ has depth $\mathrm{O}(\log \mathrm{s})$ formula
Proof idea: Similar to balancing trees or Boolean formulas Theorem [Valiant-Skyum-Berkowitz-Rackoff]: VP $=\mathrm{VNC}^{2}$. Any size s, deg r circuit can be transformed to a size poly( $\mathrm{s}, \mathrm{r}$ ), deg r , depth $\log (\mathrm{s}) \cdot \log (\mathrm{r})$ circuit
(very rough) Proof idea: use induction to write each gate as

$$
\mathrm{f}_{\mathrm{v}}=\sum_{i=1}^{S} \mathrm{~g}_{\mathrm{il} 1} \cdot \mathrm{~g}_{\mathrm{i} 2} \cdot \mathrm{~g}_{\mathrm{i} 3} \cdot \mathrm{~g}_{\mathrm{i} 4} \cdot \mathrm{~g}_{\mathrm{i} 5},
$$

where $\operatorname{deg}\left(\mathrm{g}_{\mathrm{ij}}\right) \leq \mathrm{r} / 2$, and $\left\{\mathrm{g}_{\mathrm{ij}}\right\}$ computed in poly(s)-size

## Depth Reduction - all the way down

Theorem: [Agrawal-Vinay, Gupta-Kamath-Kayal-Saptharishi]: Homogeneous $f$ of degree $r$ has size $s$ circuits then

- f has homogeneous $\Sigma \Pi \Sigma \Pi^{[\sqrt{r}]}$ circuit of size $s^{O(\sqrt{r})}$
- (over $\mathbb{C})$ f has depth-3 circuit of size $s^{O(\sqrt{r})}$

Corollary: exponential lower bounds for hom. depth 4 or depth 3 give exponential lower bounds for general circuits

Proof idea: As before each gate is $\mathrm{f}_{\mathrm{v}}=\sum_{i=1}^{S} \mathrm{~g}_{\mathrm{il}} \cdot \mathrm{g}_{\mathrm{in}} \cdot \mathrm{gi}_{3} \cdot \mathrm{gi}_{4} \cdot \mathrm{gi}_{5}$ where $\operatorname{deg}\left(\mathrm{g}_{\mathrm{ij}}\right) \leq \mathrm{r} / 2$. As long as some $\mathrm{g}_{\mathrm{ij}}$ has degree larger than $\sqrt{r}$ replace it with a similar expression. Process terminates with a $\Sigma \Pi \Sigma \Pi^{[\sqrt{r}]}$ circuit

## Baur-Strassen theorem

Theorem [Baur-Strassen]: If $f$ has size s, depth d circuit then $\partial f / \partial \mathrm{x}_{1} \ldots, \partial \mathrm{f} / \partial \mathrm{x} n$ have size $\mathrm{O}(\mathrm{s})$, depth $\mathrm{O}(\mathrm{d})$ circuit.

Proving lower bound for computing n polynomials as hard as proving a lower bound for a single polynomial.

Proof idea: structural induction and derivative rules
Open: What about computing $\left\{\partial^{2} \mathrm{f} / \partial \mathrm{x}_{\mathrm{k}} \partial \mathrm{x}_{\mathrm{m}}\right\}_{\mathrm{k}, \mathrm{m}}$ ?
If in size $\mathrm{O}(\mathrm{s})$, then Matrix Multiplication has $\mathrm{O}\left(\mathrm{n}^{2}\right)$ algorithm (consider $\mathrm{x}^{\mathrm{t}} \cdot \mathrm{A} \cdot \mathrm{B} \cdot \mathrm{y}$ )

Open: What about computing $\left\{\partial^{2} f / \partial \mathrm{x}_{\mathrm{k}} \partial \mathrm{x}_{\mathrm{k}}\right\}_{\mathrm{k}}$ ?

## Summary - structural results

- Homogenization - wlog circuits are homogeneous
- Divisions: no need for those
- $\mathrm{VP}=\mathrm{VNC}^{2}$
- Depth reduction: Exponential lower bounds for homogeneous depth 4 circuits imply exponential lower bounds for general circuits
- Baur-Strassen: Computing first order partial derivatives with no extra cost


## Lower Bounds

## Plan

- Survey of known lower bounds
- Some proofs:
- General lower bounds
- Strassen's nlog(n) lower bound
- $\mathrm{n}^{2}$ lower bound for ABPs /Formulas
- Bounded depth circuits
- Approximation method for $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{p}}$
- Partial derivative method and applications
- $\Sigma \Pi \Sigma$ circuits
- Multilinear formulas
- Shifted partial derivatives method
- Application for $\Sigma \Pi \Sigma \Pi$ circuits


## General lower bounds

Counting arguments (dimension arguments): Most degree $n$ polynomials require exponential sized circuits (even with $0 / 1$ coefficients)
Counting arguments: most linear transformations require $\Omega\left(\mathrm{n}^{2}\right)$ operations
Theorem [Strassen]: $\Omega(\mathrm{n} \cdot \log \mathrm{r})$ lower bound for computing (simultaneously) $\mathrm{x}_{1}{ }^{\mathrm{r}}, \mathrm{X}_{2}{ }^{\mathrm{r}}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\mathrm{r}}$
Theorem[Baur-Strassen]: same for $x_{1}{ }^{r}+\ldots+x_{n}{ }^{r}$
No lower bounds for constant degree polynomials
Theorem: [Kalorkoti, Kumar, Chatterjee-Kumar-She-Volk] $\Omega(\mathrm{nr})$ lower bound for formulas/ABPs

## Lower Bounds for Small Depth Circuits (recall exponential bounds for Boolean $\mathrm{AC}^{0}[\mathrm{p}]$ )

Depth-2 is trivial (sum of monomials)
Over $\mathbb{F}_{2}$ [Razborov,Smolensky] classical lower bounds hold [Grigoriev-Karpinski, Grigorev-Razborov]: exp. lower bounds for $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{p}}$ (approximation method)
[Nisan-Wigderson]: exp. lower bounds for homogeneous/low degree $\Sigma \Pi \Sigma$ circuits
[S-Wigderson, Kayal-Saha-Tavenas]: quadratic cubic lower bounds over $\mathbb{Q}, \mathbb{C}$ for $\Sigma \Pi \Sigma$ circuits

Open: strong lower bounds for depth-3 circuits over $\mathbb{Q}, \mathbb{C}$ Recall: by [Gupta-Kamath-Kayal-Saptharishi] exponential lower bounds for depth-3 may be hard...

## Lower Bounds for Small Depth Circuits (recall exponential bounds for Boolean $\mathrm{AC}^{0}[\mathrm{p}]$ )

Recall: [Agrawal-Vinay, Gupta-Kamath-Kayal-Saptharishi]: f has size s homogeneous circuit then $f$ has $\Sigma \Pi \Sigma \Pi^{[\sqrt{r}]}$ homogeneous circuit of size $s^{O(\sqrt{r})}$ [Gupta-Kamath-Kayal-Saptharishi, ...]: $s^{\Omega(\sqrt{r})}$ lower bounds for homogeneous $\Sigma \Pi \Sigma \Pi^{[\sqrt{r}]}$ circuits Lower bounds fall short of implying lower bound for general circuit (constant in exponent too small!)
Even "worse" [Fourier-Limaye-Malod-Srinivasan,KumarSaraf]: lower bounds hold for easy polynomials, e.g., IMM [Raz]: $\mathrm{n}^{1+\mathrm{O}(1 / \mathrm{d})}$ lower bound for depth d circuits

## Multilinear Models

Gates compute multilinear/homogeneous polynomials
[Raz]: DET,PERM require quasi-poly mult. formulas mult- $\mathrm{NC}^{1} \subsetneq$ mult- $\mathrm{NC}^{2}$
[Raz-Yehudayoff]: $\exp \left(\mathrm{n}^{\Omega(1 / d)}\right)$ bounds for depth d multilinear circuits
[Raz-S-Yehudayoff, Alon-Kumar-Volk]: n² lower bound for multilinear circuits

## Plan

## $\checkmark$ Survey of known lower bounds

- Some proofs:
- General lower bounds
- Strassen's nlog(n) lower bound
- $\mathrm{n}^{2}$ lower bound for ABPs /Formulas
- Bounded depth circuits
- Approximation method for $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{p}}$
- Partial derivative method and applications
- $\Sigma \Pi \Sigma$ circuits
- Multilinear formulas
- Shifted partial derivatives method
- Application for $\Sigma \Pi \Sigma \Pi$ circuits


## Strassen's lower bound

Recall: $\Omega(\mathrm{n} \cdot \log \mathrm{r})$ lower bound for $\mathrm{x}_{1}{ }^{\mathrm{r}}, \mathrm{x}_{2}{ }^{\mathrm{r}}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\mathrm{r}}$
Bézout's Theorem: $f_{1}, \ldots, f_{k}$ polynomials in $x_{1}, \ldots, x_{n}$ of degrees $r_{1}, \ldots, r_{k}$. For every $b_{1}, \ldots, b_{k}$ in $\mathbb{F}$ the number of solutions to $\mathrm{f}_{1}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{b}_{1}, \ldots, \mathrm{f}_{\mathrm{k}}\left(\mathrm{x}_{1}, \ldots, \mathrm{x}_{\mathrm{n}}\right)=\mathrm{b}_{\mathrm{k}}$ is infinite or at most $\mathrm{r}_{1} \ldots \ldots \mathrm{r}_{\mathrm{k}}$

Example: $f_{i}=x_{i}{ }^{\mathrm{r}}, \mathrm{b}_{\mathrm{i}}=1, \mathrm{i}=1, \ldots, \mathrm{n}$.
The number of solutions is $r^{n}$ over $\mathbb{C}$

## Strassen's lower bound

Assume a circuit of size s for $\mathrm{X}_{1}{ }^{\mathrm{r}}, \mathrm{X}_{2}{ }^{\mathrm{r}}, \ldots, \mathrm{X}_{\mathrm{n}}{ }^{\mathrm{r}}$
Associate a variable $y_{v}$ with every gate v
For each gate $\mathrm{v}=\mathrm{u}$ op w set an equation $\mathrm{y}_{\mathrm{v}}-\left(\mathrm{y}_{\mathrm{u}}\right.$ op $\left.\mathrm{y}_{\mathrm{w}}\right)=0$
For an input v set $\mathrm{y}_{\mathrm{v}}-\mathrm{x}_{\mathrm{v}}=0$
For an output v set, in addition, $\mathrm{y}_{\mathrm{v}}=1$
Any solution (in $\mathrm{x}, \mathrm{y}$ ) to the system gives a solution to $\left\{\mathrm{x}_{\mathrm{i}}^{\mathrm{T}}=1\right\}$ and vice versa.

By Bézout at most $2^{5}$ solutions (finite number of solutions and $s$ equations of degree at most 2 each)
Hence $2^{s} \geq \mathrm{r}^{\mathrm{n}}$ (can replace s by \# of multiplications)
Note: cannot get bound better than $n \cdot \log r$

## Kumar's lower bound for homogeneous ABPs



Recall: ABP computes sum (over paths) of products of labels on path
Edges labeled by linear forms
Homogeneous ABP: vertices compute homogeneous polys
Note: Vertices in level j compute degree j polynomials

## Kumar's lower bound for homogeneous ABPs


$\mathrm{g}_{\mathrm{v}}$ computed by $[\mathrm{s}, \mathrm{v}]$ and $\mathrm{h}_{\mathrm{v}}$ by $[\mathrm{v}, \mathrm{t}]$ ( v in layer $\mathrm{j}, \mathrm{L}_{\mathrm{j}}$ )
Then, $f=\sum_{v \text { in } L_{j}} g_{v} \cdot h_{v}$
Main Lemma: if $x_{1}^{r}+x_{2}^{r}+\cdots x_{n}^{r}=\sum_{i=1}^{m} g_{i} \cdot h_{i}$ all are homogeneous and non constant then $\mathrm{m} \geq \mathrm{n} / 2$
Proof idea: Common zero of $\left\{\mathrm{g}_{\mathrm{i}} \mathrm{h}_{\mathrm{i}}\right\}$ is a zero of $\left(\mathrm{x}_{1}{ }^{\mathrm{r}-1}, \ldots, \mathrm{x}_{\mathrm{n}}{ }^{\mathrm{r}-1}\right)$. Only one zero so result follows by dimension arguments
Note: $\mathrm{n} / 2$ lower bound also for Determinantal complexity

## Plan

$\checkmark$ Survey of known lower bounds

- Some proofs:
$\checkmark$ General lower bounds
$\checkmark$ Strassen's nlog(n) lower bound
$\checkmark \mathrm{n}^{2}$ lower bound for ABPs/Formulas
- Bounded depth circuits
- Approximation method for $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{p}$
- Partial derivative method and applications
- $\Sigma \Pi \Sigma$ circuits
- Multilinear formulas
- Shifted partial derivatives method
- Application for $\Sigma \Pi \Sigma \Pi$ circuits


## Approximation method for $\Sigma \Pi \Sigma$ circuits

[Grigoriev-Karpinski, Grigoriev-Razborov]: lower bounds over $\mathbb{F}_{\mathrm{p}}$ (a-la Razborov-Smolensky for $\mathrm{AC}^{0}[\mathrm{p}]$ circuits):

- If a multiplication gate contains $\mathrm{n}^{1 / 2}$ linearly independent functions then it is 0 , except with probability $\exp \left(-n^{1 / 2}\right)$
- A function in k linear functions has degree $<\mathrm{pk}$
- Hence, a circuit with s multiplication gates computes a polynomial that is $s \cdot \exp \left(-\mathrm{n}^{1 / 2}\right)$ close to a degree $\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)$ polynomial
- Correlation bounds for $\operatorname{Mod}(\mathrm{q})$ give $\exp \left(\mathrm{n}^{1 / 2}\right)$ lower bound

Question: But what about char 0?

## Plan

## $\checkmark$ Survey of known lower bounds

- Some proofs:
$\checkmark$ General lower bounds
$\checkmark$ Strassen's nlog(n) lower bound
$\checkmark \mathrm{n}^{2}$ lower bound for ABPs/Formulas
$\checkmark$ Approximation method for $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{p}}$
- Partial derivative method and applications
- $\Sigma \Pi \Sigma$ circuits
- Multilinear formulas
- Shifted partial derivatives method
- Application for $\Sigma \Pi \Sigma \Pi$ circuits


## Partial Derivative Method [Nisan]

[Nisan-Wigderson] exponential lower bounds for homogeneous (or low degree) depth 3 circuits [S-Wigderson] $n^{2}$ lower bound for depth 3 circuits [Raz]: Det,Perm require quasi-poly multilinear Formulas [Raz]: multilinear- $\mathrm{NC}^{1} \subsetneq$ multilinar- $\mathrm{NC}^{2}$ [Raz-Yehudayoff]: $\exp \left(\mathrm{n}^{\Omega(1 / d)}\right)$ bounds for depth d multilinear Circuits
[Raz-S-Yehudayoff, Alon-Kumar-Volk]: n² lower bound for multilinear circuits

## Partial Derivatives as Complexity Measure

Def: $\partial^{=k}(\mathrm{f})=\left\{\partial^{\mathrm{k}} \mathrm{f} / \partial \mathrm{x}_{\mathrm{i}_{1}} \partial \mathrm{x}_{\mathrm{i}_{2}} \ldots \partial \mathrm{x}_{\mathrm{i}_{\mathrm{k}}}\right\}=$ set of all partial derivatives of $f$ of order $k$.

Def: $\mu_{\mathrm{k}}(\mathrm{f})=\operatorname{dim}\left(\operatorname{span}\left(\partial^{=\mathrm{k}}(\mathrm{f})\right)\right.$
In words, take all partial derivatives of order $k$ of $f$ and compute the dimension of their span

Intuition: not easy to create "uncorrelated" partial derivatives
Example: $\mathrm{f}=\operatorname{Det}(\mathrm{X})$

$$
\begin{aligned}
& \partial^{=\mathrm{k}}(\mathrm{f})=\left\{\operatorname{Det}\left(\mathrm{X}_{\mathrm{I}, \mathrm{~J}}\right):|\mathrm{I}|=|\mathrm{J}|=\mathrm{n}-\mathrm{k}\right\} \\
& \mu_{\mathrm{k}}(\mathrm{f})=\operatorname{dim}\left(\operatorname{span}\left(\partial^{=\mathrm{k}}(\mathrm{f})\right)=\left(\begin{array}{l}
\mathrm{k}
\end{array}\right)^{2}\right.
\end{aligned}
$$

## Basic Properties of Partial Derivatives

Recall: $\mu_{\mathrm{k}}(\mathrm{f})=\operatorname{dim}\left(\operatorname{span}\left(\partial^{=\mathrm{k}}(\mathrm{f})\right)\right.$
Basic properties:

- $\mu_{\mathrm{k}}(\mathrm{f}+\mathrm{g}) \leq \mu_{\mathrm{k}}(\mathrm{f})+\mu_{\mathrm{k}}(\mathrm{g})$
- $\mu_{\mathrm{k}}(\mathrm{f} \cdot \mathrm{g}) \leq \sum_{\mathrm{t}} \mu_{\mathrm{t}}(\mathrm{f}) \cdot \mu_{\mathrm{k}-\mathrm{t}}(\mathrm{g})$
- $\mu_{\mathrm{k}}\left(\ell^{\mathrm{r}}\right) \leq 1\left(\partial^{\mathrm{k}} \ell^{\mathrm{r}} / \partial \mathrm{xi}_{1} \partial \mathrm{xi}{ }_{2} \ldots \partial \mathrm{xik}=\mathrm{c} \cdot \ell^{\mathrm{r}-\mathrm{k}}\right)$
- $\mu_{\mathrm{k}}\left(\prod_{\mathrm{i}=1}^{\mathrm{r}} \ell_{\mathrm{i}}\right) \leq\binom{\mathrm{r}}{\mathrm{k}}$ (spanned by all products of $\mathrm{r}-\mathrm{k}$ of the linear functions)


## Lower Bounds for $\Sigma \wedge \Sigma$ circuits

$\Sigma \wedge \Sigma$ circuits compute polynomials of the form

$$
\mathrm{f}=\sum_{\mathrm{i}=1}^{\mathrm{s}} \ell_{\mathrm{i}}^{\mathrm{r}}
$$

Claim: $\mu_{\mathrm{k}}(\mathrm{f}) \leq \mathrm{s}$
Proof: $\mu_{\mathrm{k}}(\ell \mathrm{r}) \leq 1$ and subadditivity.
Corollary: Any $\Sigma \wedge \Sigma$ circuit computing $\mathrm{x}_{1} \cdot \mathrm{x}_{2} \cdots \mathrm{x}_{\mathrm{n}}$ has size $\exp (\Omega(\mathrm{n}))$

## Lower Bounds for homogeneous $\Sigma \Pi \Sigma$ circuits

Homogeneous $\Sigma \Pi \Sigma$ circuits compute polynomials of the form

$$
f=\sum_{i=1}^{s} \prod_{j=1}^{r} \ell_{i, j}
$$

Claim: $\mu_{\mathrm{k}}(\mathrm{f}) \leq \mathrm{s} \cdot\binom{\mathrm{r}}{\mathrm{k}}$
Proof: $\mu_{\mathrm{k}}\left(\prod_{\mathrm{i}=1}^{\mathrm{r}} \ell_{\mathrm{i}}\right) \leq\binom{\mathrm{r}}{\mathrm{k}}$ and subadditivity
Corollary [Nisan-Wigderson]: Any homogeneous $\Sigma \Pi \Sigma$ circuit computing Det/Perm has size $\exp (\Omega(\mathrm{n}))$

## Lower Bounds for $\Sigma \Pi \Sigma$ circuits

Let $\sigma_{\mathrm{n}}^{\mathrm{r}}(\mathrm{x})=\sum_{|\mathrm{T}|=\mathrm{r}} \prod_{\mathrm{i} \in \mathrm{T}} \mathrm{X}_{\mathrm{i}}$
Theorem [S-Wigderson]: $\Sigma \Pi \Sigma$ size of $\sigma_{n}^{\log (n)}(\mathrm{x})$ is $\widetilde{\Omega}\left(\mathrm{n}^{2}\right)$
Proof: If more than $n / 10$ multiplication gates of degree at least $\mathrm{n} / 10$ then we are done. Otherwise, there exists a subspace V of dimension 0.9 n such that restricted to V , $\sigma_{\mathrm{n}}^{\log (\mathrm{n})}(\mathrm{x})$ has small circuit of degree at most $\mathrm{n} / 10$.
Claim: $\mu_{\mathrm{r}}\left(\left.\sigma_{\mathrm{n}}^{2 \mathrm{r}}(\mathrm{x})\right|_{\mathrm{V}}\right) \geq\binom{ 0.9 \mathrm{n}}{\mathrm{r}}$
Claim: $\mu_{\mathrm{r}}\left(\sum \Pi \Sigma \mathrm{I}_{\mathrm{v}}\right) \leq\binom{\mathrm{n} / 10}{\mathrm{r}}$

## Upper Bounds for $\Sigma \Pi \Sigma$ circuits

Theorem [Ben-Or]: $\Sigma \Pi \Sigma$ size of $\sigma_{\mathrm{n}}^{\mathrm{r}}(\mathrm{x})$ is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
Proof: Evaluate $f(y)=\left(y+x_{1}\right) \ldots\left(y+x_{n}\right)$ at $n+1$ points, then take the appropriate linear combination to get the coefficient of $y^{\mathrm{n}-\mathrm{r}}$ which is $\sigma_{\mathrm{n}}^{\mathrm{r}}(\mathrm{x})$
Submodel of $\Sigma \Pi \Sigma$ circuits $[\mathrm{S}]: \mathrm{f}=\sigma_{\mathrm{s}}^{\mathrm{r}}\left(\ell_{1}, \ldots, \ell_{\mathrm{s}}\right) \mathrm{f}$ is a restriction of $\sigma_{\mathrm{s}}^{\mathrm{r}}(\mathrm{x})$ to an n dimensional subspace (can compute any f like that)
[Kayal-Saha-Tavens]: $\widetilde{\Omega}\left(\mathrm{n}^{2}\right)$ lower bound for an explicit multilinear polynomial in VNP

Open: Prove super quadratic lower bounds

## Upper Bounds for $\Sigma \Pi \Sigma$ circuits

Recall [Ryser]: Perm(X)

$$
=\Sigma_{\mathrm{y} \in\{0,1\}^{\mathrm{n}}} \Pi_{\mathrm{i}}\left(2 \mathrm{y}_{\mathrm{i}}-1\right) \Pi_{\mathrm{j}}\left(\mathrm{x}_{\mathrm{j}, 1} \mathrm{y}_{1}+\cdots+\mathrm{x}_{\mathrm{j}, \mathrm{n}} \mathrm{y}_{\mathrm{n}}\right)
$$

This is a $\Sigma \Pi \Sigma$ circuit of size $\exp (\mathrm{n})$. What about Det?
Recall [Gupta-Kamath-Kayal-Saptharishi]: f has size s circuits (over $\mathbb{C}$ ) then $f$ has $\Sigma \Pi \Sigma$ circuit of size $s^{\mathrm{O}}(\sqrt{\mathrm{r}})$

Corollary: Det has $\Sigma \Pi \Sigma$ complexity $\exp (\widetilde{0}(\sqrt{n}))$
Only known construction via [GKKS].
Open: A "nice" $\Sigma \Pi \Sigma$ circuit for Det

## Plan

## $\checkmark$ Survey of known lower bounds

- Some proofs:
$\checkmark$ General lower bounds
$\checkmark$ Strassen's nlog(n) lower bound
$\checkmark \mathrm{n}^{2}$ lower bound for ABPs/Formulas
$\checkmark$ Approximation method for $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{p}}$
- Partial derivative method and applications
$\checkmark \Sigma \Pi \Sigma$ circuits
- Multilinear formulas
- Shifted partial derivatives method
- Application for $\Sigma \Pi \Sigma \Pi$ circuits


## Partial Derivative Matrix [Nisan]

f a multilinear polynomial over $\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right\} \sqcup\left\{\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{m}}\right\}$
Def: $\mathrm{M}_{\mathrm{f}}=2^{\mathrm{m}}$ dimensional matrix:
Rows indexed by multilinear monomials in $\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right\}$
Columns indexed by multilinear monomials in $\left\{\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{m}}\right\}$
$\mathrm{M}_{\mathrm{f}}(\mathrm{p}, \mathrm{q})=$ coefficient of $\mathrm{p} \cdot \mathrm{q}$ in f
$\mu_{y \mid z}(\mathrm{f})=\operatorname{rank}\left(\mathrm{M}_{\mathrm{f}}\right)$
Note: $\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{f}) \leq 2^{\mathrm{m}}$
Def: f is full rank if $\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{f})=2^{\mathrm{m}}$

## Examples

$$
\begin{aligned}
& f(y, z)=1+a y+b z+a b y z \\
& \mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{f})=1 \\
& \mathrm{M}_{\mathrm{f}}=\begin{array}{|l|l|}
\hline 1 & \mathrm{~b} \\
\hline \mathrm{a} & \mathrm{ab} \\
\hline
\end{array} \\
& \mathrm{f}\left(\mathrm{y}_{1}, \mathrm{y}_{2}, \mathrm{z}_{1}, \mathrm{z}_{2}\right)= \\
& 1+\mathrm{y}_{1} \mathrm{y}_{2}-\mathrm{y}_{1} \mathrm{z}_{1} \mathrm{z}_{2} \\
& \mu_{y \mid z}(f)=2 \\
& \mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{f})=2
\end{aligned}
$$

## Basic facts for a multilinear $f$

- If f depends on only k variables in $\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right\}$ then $\mu_{y \mid z}(\mathrm{~g}) \leq 2^{\mathrm{k}}$
- If $\mathrm{f}=\mathrm{g}+\mathrm{h}$ then

$$
\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{f}) \leq \mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{~g})+\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{~h})
$$

- If $\mathrm{f}=\mathrm{g} \cdot \mathrm{h}$ then

$$
\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{f})=\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{~g}) \cdot \mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{~h})
$$

- Corollary: If $\mathrm{f}=\mathrm{L}_{1} \cdot \mathrm{~L}_{2} \cdot \ldots \cdot \mathrm{~L}_{\mathrm{k}}=$ product of linear functions then $\mu_{y \mid z}(f) \leq 2^{k}$


## Unbalanced Gates

$\mathrm{Y}_{\mathrm{f}}=$ variables in $\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right\}$ that f depends on
$Z_{f}=$ variables in $\left\{z_{1}, \ldots, z_{m}\right\}$ that $f$ depends on
Def: $f$ is $k$-unbalanced if $\left|\# Y_{f}-\# Z_{f}\right| \geq k$
A gate v is k -unbalanced if it computes a k -unbalanced function Main observation: If $f=g$.h and either g or h are k -unbalanced then $\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{f}) \leq 2^{\mathrm{m}-\mathrm{k}}$
Proof: W.l.o.g. $\left|\mathrm{Y}_{\mathrm{g}}\right|-\left|\mathrm{Z}_{\mathrm{g}}\right| \geq \mathrm{k}$. Hence, $\left|\mathrm{Z}_{\mathrm{h}}\right|-\left|\mathrm{Y}_{\mathrm{h}}\right| \geq \mathrm{k}$ and
$\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{f})=\mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{g}) \cdot \mu_{\mathrm{y} \mid \mathrm{z}}(\mathrm{h}) \leq \min \left(2^{|\mathrm{Zg}|} \cdot 2^{|\mathrm{Yh}|}, 2^{|\mathrm{Yg}|} \cdot 2^{|\mathrm{Zh}|}\right) \leq 2^{\mathrm{m}-\mathrm{k}}$

## Lower bounds for multilinear formulas

Cor: if every top product gate has k-unbalanced child then
$\mu_{\mathrm{y} \mid \mathrm{z}}(\Phi) \leq \mathrm{s} \cdot 2^{\mathrm{m}-\mathrm{k}}$


Thm [Raz]: with probability $|\Phi| \cdot \mathrm{m}^{-\Omega(\operatorname{logm})}$, after a random partition $\left\{\mathrm{x}_{1}, \ldots, \mathrm{x}_{2 \mathrm{~m}}\right\}=\left\{\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{m}}\right\} \sqcup\left\{\mathrm{z}_{1}, \ldots, \mathrm{z}_{\mathrm{m}}\right\}$ every child of root is $\mathrm{m}^{\varepsilon}$-unbalanced
Cor: If $|\Phi|<\mathrm{m}^{\mathrm{O} \text { (logm) }}$ then $\mu_{\mathrm{y} \mid \mathrm{z}}(\Phi)<|\Phi| \cdot 2^{\mathrm{m}-\mathrm{m}^{\varepsilon}}$
Cor: If f full rank (for most partitions) then any multilinear formula for $f$ has size $m^{\Omega(\operatorname{logm})}$

Open: Separation of multilinear and non-multilinear formula size

## Limitation of Partial Derivative method

Consider $\Sigma \wedge \Sigma \Pi^{[2]}$ circuits computing polynomials of the form $\mathrm{Q}_{1}{ }^{\mathrm{r}}+\ldots+\mathrm{Q}_{\mathrm{s}}{ }^{\mathrm{r}}$, where each $\mathrm{Q}_{\mathrm{i}}$ is quadratic
What is the complexity of the monomial $\mathrm{f}=\mathrm{x}_{1} \cdot \ldots \cdot \mathrm{x}_{\mathrm{n}}$ in this model? Intuitively, shouldn't be easy to compute

We already saw $\mu_{\mathrm{k}}(\mathrm{f})=\binom{\mathrm{n}}{\mathrm{k}}$
However, for $\mathrm{g}=\mathrm{x}_{1}{ }^{2}+\ldots+\mathrm{x}_{\mathrm{n}}{ }^{2}$ we have $\mu_{\mathrm{k}}(\mathrm{g}) \geq\binom{\mathrm{n}}{\mathrm{k}}$
Thus, partial derivative method fail to give meaningful bounds even for $\Sigma \wedge \Sigma \Pi^{[2]}$ circuits

## Plan

## $\checkmark$ Survey of known lower bounds

- Some proofs:
$\checkmark$ General lower bounds
$\checkmark$ Strassen's nlog(n) lower bound
$\checkmark \mathrm{n}^{2}$ lower bound for ABPs/Formulas
$\checkmark$ Approximation method for $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{p}}$
$\checkmark$ Partial derivative method and applications
$\checkmark \Sigma \Pi \Sigma$ circuits
$\checkmark$ Multilinear formulas
- Shifted partial derivatives method
- Application for $\Sigma \Pi \Sigma \Pi$ circuits


## Shifted Partial Derivatives

Complexity measure introduced by [Kayal]:
Def: $\mu_{\mathrm{k}}^{\ell}(\mathrm{f})=\operatorname{dim}\left(\operatorname{span}\left(\overline{\mathrm{x}}^{\ell} \cdot \partial^{=k}(f)\right)\right.$
In words, take all partial derivatives of order $k$ of $f$, multiply each of them by every possible monomial of degree $\leq \ell$ and compute the dimension of the span
Example: $g=x^{2}, f=x y$

- $\bar{x}^{1} \cdot \partial^{=1}(g)=\{1, x, y\} \cdot\left\{x^{2}\right\}=\left\{x^{2}, x^{3}, x^{2} y\right\}$
- $\bar{x}^{1} \cdot \partial^{=1}(\mathrm{f}):\{1, \mathrm{x}, \mathrm{y}\} \cdot\{\mathrm{x}, \mathrm{y}\}=\left\{\mathrm{x}, \mathrm{y}, \mathrm{x}^{2}, \mathrm{xy}, \mathrm{y}^{2}\right\}$
- $\mu_{1}^{1}(\mathrm{~g})=3, \mu_{1}^{1}(\mathrm{f})=5$


## Basic properties:

- $\mu_{\mathrm{k}}^{\ell}(\mathrm{f}+\mathrm{g}) \leq \mu_{\mathrm{k}}^{\ell}(\mathrm{f})+\mu_{\mathrm{k}}^{\ell}(\mathrm{g})$
- $\mu_{\mathrm{k}}^{\ell}\left(\mathrm{x}_{1} \cdots \cdots \mathrm{x}_{\mathrm{n}}\right) \geq\binom{\mathrm{n}}{\mathrm{k}}\binom{\mathrm{n}-\mathrm{k}+\ell}{\mathrm{n}-\mathrm{k}}$
- Proof: Consider only product by monomials supported on the variables that survived the derivative
- Claim: For any degree r polynomial f

$$
\mu_{\mathrm{k}}^{\ell}(\mathrm{f}) \leq \min \left\{\binom{\mathrm{n}+\mathrm{k}}{\mathrm{n}}\binom{\mathrm{n}+\ell}{\mathrm{n}},\binom{\mathrm{n}+\mathrm{r}-\mathrm{k}+\ell}{\mathrm{n}}\right\}
$$

- Proof: First term bounds the possible number of different derivatives and different number of shifts. The second is the dimension of degree $\mathrm{r}-\mathrm{k}+\ell$ polynomials
- Fact: tight for a random f


## Bounds for $\Sigma \wedge \Sigma \Pi^{[\mathrm{b}]}$ circuits

Claim: $\operatorname{For} \operatorname{deg}(\mathrm{Q})=\mathrm{b}: \mu_{\mathrm{k}}^{\ell}\left(\mathrm{Q}^{\mathrm{r}}\right) \leq\binom{\mathrm{n}+(\mathrm{b}-1) \mathrm{k}+\ell}{\mathrm{n}}$
Proof: order $k^{\prime}$ derivative of $Q^{r}$ are of the form $Q^{r-k^{k}} \cdot g$ where $\operatorname{deg}(\mathrm{g})=(\mathrm{b}-1) \mathrm{k}^{\prime}$. Hence, all polynomials in $\overline{\mathrm{x}}^{\ell} \cdot \partial^{\mathrm{k}}\left(\mathrm{Q}^{\mathrm{r}}\right)$ are $\mathrm{Q}^{\text {r-k. }} \mathrm{g}$ where $\operatorname{deg}(\mathrm{g}) \leq(\mathrm{b}-1) \mathrm{k}+\ell$
Cor: f computed by $\Sigma \wedge \Sigma \Pi^{[b]}$ with top fan-in s then

$$
\mu_{\mathrm{k}}^{\ell}(\mathrm{f}) \leq \mathrm{s}\binom{\mathrm{n}+(\mathrm{b}-1) \mathrm{k}+\ell}{\mathrm{n}}
$$

Theorem [Kayal]: $\Sigma \wedge \Sigma \Pi^{[b]}$ complexity of $\mathrm{x}_{1} \cdot \ldots \cdot \mathrm{x}_{\mathrm{n}}$ is $2^{\Omega(\mathrm{n} / \mathrm{b})}$
Proof: Take $\ell=\mathrm{bn}$ and $\mathrm{k}=\varepsilon \cdot \mathrm{n} / \mathrm{b}$

## Bounds for $\Sigma \Pi^{[a]} \Sigma \Pi^{[b]}$ circuits

Claim: For $\operatorname{deg}\left(\mathrm{Q}_{\mathrm{i}}\right)=\mathrm{b}: \mu_{\mathrm{k}}^{\ell}\left(\mathrm{Q}_{1} \cdots \cdots \mathrm{Q}_{\mathrm{a}}\right) \leq\binom{\mathrm{a}}{\mathrm{k}}\binom{\mathrm{n}+(\mathrm{b}-1) \mathrm{k}+\ell}{\mathrm{n}}$
Proof: Each term is of the form $\mathrm{Q}_{\mathrm{i} 1} \cdot \ldots \mathrm{Q}_{\mathrm{i}\left\{a-\mathrm{k}^{\prime}\right\}} \cdot \mathrm{g}$ where $\operatorname{deg}(\mathrm{g})=(\mathrm{b}-1) \mathrm{k}^{\prime}+\ell$
Cor: f computed by $\Sigma \Pi^{[\mathrm{a}]} \Sigma \Pi^{[\mathrm{b}]}$ with top fan-in s then

$$
\mu_{\mathrm{k}}^{\ell}(\mathrm{f}) \leq \mathrm{s}\binom{\mathrm{a}}{\mathrm{k}}\binom{\mathrm{n}+(\mathrm{b}-1) \mathrm{k}+\ell}{\mathrm{n}}
$$

Cor: best bound is $\frac{\min \left\{\binom{n+k}{\mathrm{n}}\binom{\mathrm{n}+\ell}{\mathrm{n}},\binom{\mathrm{n}+\mathrm{r}-\mathrm{k}+\ell}{\mathrm{n}}\right\}}{\mathrm{s}\binom{\mathrm{a}}{\mathrm{k}}\binom{\mathrm{n}+(\mathrm{b}-1) \mathrm{k}+\ell}{\mathrm{n}}}$
Cor: For $\mathrm{a}=\mathrm{b}=\sqrt{\mathrm{r}}, \ell=0\left(\frac{\mathrm{n} \sqrt{\mathrm{r}}}{\log \mathrm{n}}\right), \mathrm{k}=\varepsilon \cdot \sqrt{\mathrm{r}}$ a lower bound of $\mathrm{n}^{\Omega(\sqrt{\mathrm{r}})}$

## Separating VP and VNP?

Just proved: Best possible lower bound is of $\mathrm{n}^{\Omega(\sqrt{\mathrm{r}})}$
Recall: homogeneous f in VP then f has a homogeneous $\Sigma \Pi^{[\sqrt{r}]} \Sigma \Pi^{[\sqrt{r}]}$ circuit of size $n^{\mathrm{O}}(\sqrt{\mathrm{r}})$

Dream approach for VP vs. VNP: Prove a lower bound of $\mathrm{n}^{\Omega(\sqrt{\mathrm{r}})}$ for a polynomial in VNP and improve the depth reduction just a little bit

## Dream come true?

Theorem [Gupta-Kamath-Kayal-Saptharishi]:
$\mu_{\mathrm{k}}^{\ell}\left(\operatorname{Perm}_{\mathrm{n}}, \operatorname{Det}_{\mathrm{n}}\right) \geq\binom{\mathrm{n}+\mathrm{k}}{2 \mathrm{k}}\binom{\mathrm{n}^{2}-2 \mathrm{k}+\ell-1}{\ell}$, bound tight for Det
Cor: their $\Sigma \Pi^{[\sqrt{n}]} \Sigma \Pi^{[\sqrt{n}]}$ complexity is $\exp (\Omega(\sqrt{n}))$
Goal: Better lower bounds for PERM (or f in VNP) and better depth reduction!
Theorem [Kayal-Saha-Saptharishi]: any $\Sigma \Pi^{[0(\sqrt{n})]} \Sigma \Pi^{[\sqrt{n}]}$ circuit for $N W_{\varepsilon \sqrt{n}}$ has size $n^{\Omega(\sqrt{n})}$

Great source of optimism, just improve depth reduction for VP

## Well...

Theorem [Fourier-Limaye-Malod-Srinivasan]: for $r \leq n^{\delta}$, $\mathrm{IMM}_{\mathrm{r}}$ has $\Sigma \Pi^{[\sqrt{r}]} \Sigma \Pi^{[\sqrt{r}]}$ complexity $n^{\Omega(\sqrt{r})}$
Cor: Depth reduction cannot be improved
Theorem [Kumar-Saraf]:
$\forall \operatorname{logn} \ll \mathrm{t} \leq \mathrm{r} / 40$ there is f computed by hom. $\Sigma \Pi \Sigma \Pi^{[t]}$
formula such that any hom. $\Sigma \Pi \Sigma \Pi^{\left[\frac{t}{20}\right]}$ circuit computing it requires size $n^{\Omega(\sqrt{r / t})}$

Cor: Depth reduction really cannot be improved

## The NW polynomial

Exponent vectors form an error correcting code:

$$
N W_{k}\left(x_{1,1}, \ldots, x_{n, n}\right)=\sum_{\operatorname{deg}(p)<k} \prod_{i \in \mathbb{F}_{n}} x_{i, p(i)}
$$

Main point [Chilara-Mukhopadhyay]: Monomials are "far away" hence, at most one monomial survives an order k derivative - easy to lower bound shifted partial dimension
Cor: For $s=\# \operatorname{Mon}\left(N_{k}\right)$ and $N=n^{2}=\# \operatorname{vars}\left(N W W_{k}\right)$ number of distinct monomials in $\overline{\mathrm{x}}^{\ell} \cdot \partial^{=k}\left(N W_{k}\right)$ at least $s\binom{N+\ell}{N}-\binom{S}{2}\binom{N+\ell-(n-k)}{N}$
Open: is $\left\{\mathrm{NW}_{\mathrm{k}}\right\}$ complete for VNP?

## Plan

## $\checkmark$ Survey of known lower bounds

$\checkmark$ Some proofs:
$\checkmark$ General lower bounds
$\checkmark$ Strassen's nlog(n) lower bound
$\checkmark \mathrm{n}^{2}$ lower bound for $\mathrm{ABPs} /$ Formulas
$\checkmark$ Approximation method for $\Sigma \Pi \Sigma$ circuits over $\mathbb{F}_{\mathrm{p}}$
$\checkmark$ Partial derivative method and applications
$\checkmark \Sigma \Pi \Sigma$ circuits
$\checkmark$ Multilinear formulas
$\checkmark$ Shifted partial derivatives method
$\checkmark$ Application for $\Sigma \Pi \Sigma \Pi$ circuits

Polynomial Identity Testing (PIT)

## Plan

- Basic definitions and motivation
- Universality of PIT
- Equivalence to deterministic polynomial factorization
- Hardness vs. Randomness
- PIT implies lower bounds and vice versa
- Survey of known results
- PIT for
$-\Sigma \Pi$ circuits
$-\Sigma \wedge \sum$ circuits
- $\Sigma \Pi \Sigma$ circuits - the rank method
- Summary


## Polynomial Identity Testing

Input: Arithmetic circuit computing f
Problem: Is $\mathrm{f}=0$ ?


Note: $\mathrm{x}^{2}-\mathrm{x}$ is the zero function over $\mathbb{F}_{2}$ but not the zero polynomial!

## Black Box PIT = Hitting Set

Input: A Black-Box circuit computing f.


Problem: Is $\mathrm{f}=0$ ?
[Schwart-Zippel-DeMilo-Lipton]: Evaluate at a random point Goal: deterministic algorithm (a.k.a. Hitting Set): Set H s.t. if $\mathrm{f} \neq 0$ then $\exists \mathrm{a} \in \mathrm{H}$ s.t. $\mathrm{f}(\mathrm{a}) \neq 0$

## Existence of a small hitting set

Infinite many circuits so counting arguments don't work
But, set of poly-size circuit generates a "simple" variety (polynomial identified with vectors of coefficients)
Theorem [Heintz-Sieveking]: The set of n-variate degree-r polynomials computed in size $s$, defines a variety of dimension $(\mathrm{n}+\mathrm{s})^{2}$ and degree $(\mathrm{sr})^{\wedge}(\mathrm{n}+\mathrm{s})^{2}$
Theorem [Heintz-Schnorr]: A random subset of [sr²] of size $\mathrm{O}\left((\mathrm{s}+\mathrm{n})^{2}\right)$ is a hitting set whp.

Proof idea: Each "bad point" reduces dimension of variety by 1 (adds another constraint). Bound on degree is used when we reach dimension 0

## Motivation

- Natural and fundamental problem
- Strong connection to circuit lower bounds
- Algorithmic importance:
- Primality testing [Agrawal-Kayal-Saxena]
- Randomized Parallel algorithms for finding perfect matching [Karp-Upfal-Wigderson, Mulmuley-Vazirani-Vazirani]
- Deterministic algorithms for Perfect Matching in depth poly $(\log \mathrm{n})$ (and quasi-poly time) [Fenner-Gurjar-Thierauf, Svensson-Tarnawski]
- New approaches to derandomization in the Boolean setting
- PIT appears the most general derandomization problem


## Motivation

- Natural and fundamental problem
- Strong connection to circuit lower bounds
- Algorithmic importance:
- Primality testing [Agrawal-Kayal-Saxena]
- Randomized Parallel algorithms for finding perfect matching [Karp-Upfal-Wigderson, Mulmuley-Vazirani-Vazirani]
- Deterministic algorithms for Perfect Matching in depth poly( $\log \mathrm{n}$ ) (and quasi-poly time) [Fenner-Gurjar-Thierauf, Svensson-Tarnawski]
- New approaches to derandomization in the Boolean setting
- PIT appears the most general derandomization problem


## Plan

$\checkmark$ Basic definitions and motivation

- Universality of PIT
- Equivalence to deterministic polynomial factorization
- Hardness vs. Randomness
- PIT implies lower bounds and vice versa
- Survey of known results
- PIT for
$-\Sigma \Pi$ circuits
$-\Sigma \wedge \sum$ circuits
- $\Sigma \Pi \Sigma$ circuits - the rank method
- Summary


## Universality of PIT

PIT is in coRP. Is it the most general language there? Which other problems are in RP/BPP ???

Parallel algorithm for Perfect matching (PIT) in RNC
Languages coming from group theory

## Example: Polynomial factorization

Given circuit for $\mathrm{f}=\mathrm{f}_{1} \cdot \mathrm{f}_{2}$ output circuits for $\mathrm{f}_{1}, \mathrm{f}_{2}$
A priori not clear such circuits exist
[Kaltofen]: Circuits exist and efficient randomized algorithm for constructing them!
[Kaltofen-Trager]: Also in the black-box model
Open: Are restricted models (bounded depth circuits, formulas, ABPs ) close to taking factors?
Question: What is the cost of derandomizing polynomial factorization?

## Factorization vs. PIT

Claim: $\mathrm{f}(\mathrm{x})=0$ iff $\mathrm{f}(\mathrm{x})+\mathrm{yz}$ is reducible
Corollary: Deterministic factorization implies deterministic PIT

What about the other direction?
[S-Volkovich,Kopparty-Saraf-S]: Deterministic PIT implies deterministic factorization

Main idea: Carefully go over factorization algorithm and notice that randomization is used only to argue about nonzeroness of polynomials that have poly size circuits

## Plan

$\checkmark$ Basic definitions and motivation
$\checkmark$ Universality of PIT
$\checkmark$ Equivalence to deterministic polynomial factorization

- Hardness vs. Randomness
- PIT implies lower bounds and vice versa
- Survey of known results
- PIT for
$-\Sigma \Pi$ circuits
$-\Sigma \wedge \sum$ circuits
- $\Sigma \Pi \Sigma$ circuits - the rank method
- Summary


## Hardness vs. Randomness

[Kabanets-
Impagliazzo] Lower bounds

## Trivial

White Box PIT


Black Box PIT

Theorem: subexp PIT implies lower bounds, and exp lower bounds $\Rightarrow$ BB-PIT in quasi-P

## BB PIT implies lower bounds

[Heintz-Schnorr]: BB PIT in P implies lower bounds
Proof: $|\mathrm{H}|=\mathrm{n}^{\mathrm{O}(1)}$ hitting set for a class $\mathcal{C}$. Find a nonzero (multilinear) polynomial, f, with $\log |\mathrm{H}|=\mathrm{O}(\log \mathrm{n})$ variables vanishing on H . It follows that f requires exponential circuits from $\mathcal{C}$

Gives lower bounds for f computable in PSPACE
Conjecture [Agrawal]:
$H=\left\{\left(y_{1}, \ldots, y_{n}\right): y_{i}=y^{k^{\mathrm{i}} \operatorname{modr}}, y, k, r<s^{20}\right\}$ is a hitting set for size s circuits

## WB PIT implies lower bounds

[Kabanets-Impagliazzo]: subexp WB PIT implies lower bounds

Proof idea:

- [Impagliazzo-Kabanets-Wigderson]: NEXP $\subseteq$ P/poly $\Rightarrow$ NEXP $\subseteq \mathrm{P}^{\# P}$
- If PERM has poly-size circuits then guess one. Verify the circuit using PIT and self reducibility (expansion by row).
Implies NEXP $\subseteq \mathrm{P}^{\# \mathrm{P}} \subseteq$ NSUBEXP in contradiction
[Kabanets-Impagliazzo]: lower bounds imply BB PIT
Proof idea: If f exponentially hard apply NW-design:
$-\mathrm{S}_{1}, \ldots, \mathrm{~S}_{\mathrm{n}} \subseteq\left[\mathrm{t}=\mathrm{O}\left(\log ^{2} \mathrm{n}\right)\right]$
$-\left|S_{i} \cap S_{j}\right| \leq \log n$
Let $G(x)=\left(f\left(x \mid S_{1}\right), \ldots, f\left(x \mid S_{n}\right)\right)$ map $\mathbb{F}^{t}$ to $\mathbb{F}^{n}$
Claim: If nonzero p has poly size circuit then pog nonzero
Proof: $\mathrm{p}\left(\mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ nonzero but $\mathrm{p}\left(\mathrm{f}\left(\mathrm{x} \mid \mathrm{S}_{1}\right), \ldots, \mathrm{f}\left(\mathrm{x} \mid \mathrm{S}_{\mathrm{n}}\right)\right)$ zero. Wlog $p\left(f\left(x \mid S_{1}\right), \ldots, f\left(x \mid S_{n-1}\right), y_{n}\right)$ nonzero. Thus $\left(y_{n}-f\left(x \mid S_{n}\right)\right)$ a factor of $p\left(f\left(x \mid S_{1}\right), \ldots, f\left(x \mid S_{n-1}\right), y_{n}\right)$. By NW-design property polynomial has small circuit. By [Kaltofen], $\left(\mathrm{y}_{\mathrm{n}}-\mathrm{f}\left(\mathrm{x} \mid \mathrm{S}_{\mathrm{n}}\right)\right)$ has small circuit in contradiction (pick t to match lower bound on f) ■

Evaluating $G$ on $(r \cdot \operatorname{deg}(f))^{t}$ many points give a hitting set.

## Extreme Hardness vs. Randomness

Theorem [Guo-Kumar-Saptharishi-Solomon]: Suppose for every s, $\exists$ explicit hitting set of size $\left((s+1)^{k}-1\right)$ for $k$-variate polynomials of individual degree $\leq \mathrm{s}$ that are computable by size s circuits
Then there is an explicit hitting set of size $\mathrm{s}^{\mathrm{O}\left(\mathrm{k}^{2}\right)}$ for the class of s-variate polynomials, of degree $s$, that are computable by size s circuits

In other words: Saving one point over trivial hitting set for polynomials with $\mathrm{O}(1)$ many variables enough to solve PIT
Proof Idea: Hitting set $\Rightarrow$ Hard polynomial $\Rightarrow$ Hitting set (via a variant of the KI generator)

## Plan

$\checkmark$ Basic definitions and motivation
$\checkmark$ Universality of PIT
$\checkmark$ Equivalence to deterministic polynomial factorization
$\checkmark$ Hardness vs. Randomness
$\checkmark$ PIT implies lower bounds and vice versa

- Survey of known results
- PIT for
- $\Sigma \Pi$ circuits
$-\Sigma \wedge \sum$ circuits
- $\Sigma \Pi \Sigma$ circuits - the rank method
- Summary


## Deterministic algorithms for PIT

$\Sigma \Pi$ circuits (a.k.a., sparse polys), BB in poly time
[BenOr-Tiwari, Grigoriev-Karpinski, Klivans-Spielman,...]
$\Sigma \wedge \Sigma$ circuits, BB in $n^{\log \log (n)}$ time [Forbes-Saptharishi-S]
$\sum^{[k]} \Pi \sum$ circuits

- BB in time $\mathrm{n}^{\mathrm{O}(\mathrm{k})}$ [Dvir-S,Kayal-Saxena,Karnin-S,Kayal-Saraf,Saxena-Seshadhri]
- Multilinear in sub-exponential time, for subexponential k [Oliveira-S-Volk] (implies nearly best lower bounds)

Multilinear $\sum^{[k]} \Pi \sum \Pi$ [Karnin-Mukhopadhyay-S-Volkovich, SarafVolkovich] BB in time spory ${ }^{\text {poly }}$

Read-Once (skew) determinants [Fenner-Gurjar-Thierauf, SvenssonTarnawski] BB in time $n^{(\log n)^{2}}$

## Deterministic algorithms for PIT

Read-Once Algebraic Branching Programs

- White-Box in polynomial time [Raz-S]
- Black box in quasi-poly time [Forbes-S, Forbes-Saptharishi-S, Agrawal-Gurjar-Korwar-Saxena, Gurjar-Korwar-Saxena]
- Application to derandomization of Noether's normalization lemma, central in Geometric Complexity Theory program of Mulmuley

Read-k multilinear formulas / Algebraic Branching Programs [S-Volkovich, Anderson-van Melkebeek-Volkovich, Anderson-Forbes-Saptharishi-S-Volk]

- Subexponential WB for read-k ABPs
- Poly/quasi-poly for read-k Formulas (WB/BB)


## Why study restricted models?

- [Agrawal-Vinay,Gupta-Kamath-Kayal-Saptharishi] PIT for $\sum \Pi \Sigma$ (or homogeneous $\Sigma \Pi \Sigma \Pi$ ) circuits implies PIT for general depth
- roABPs: natural analog of Boolean roBP which capture RL
- Read-once determinants: new deterministic parallel algorithm for perfect matching.
- Gaining insight into more general questions:
- Intuitively: lower bounds imply PIT
- Multilinear formulas: super polynomial bounds [Raz] but no PIT algorithms
- PIT gives more information than lower bounds.
- Interesting math: Extensions of Sylvester-Gallai type theorems


## Plan

$\checkmark$ Basic definitions and motivation
$\checkmark$ Universality of PIT
$\checkmark$ Equivalence to deterministic polynomial factorization
$\checkmark$ Hardness vs. Randomness
$\checkmark$ PIT implies lower bounds and vice versa
$\checkmark$ Survey of known results

- PIT for
$-\Sigma \Pi$ circuits
$-\Sigma \wedge \sum$ circuits
- $\Sigma \Pi \Sigma$ circuits - the rank method
- Summary


## PIT for $\Sigma \Pi$ circuits

$\mathrm{f}=\Sigma_{\mathrm{e}} \mathrm{C}_{\mathrm{e}} \Pi_{\mathrm{i}} \mathrm{X}_{\mathrm{i}}^{\mathrm{e}_{\mathrm{i}}}$ with polynomialy many monomials
[Klivans-Speilman]: use $\mathrm{x}_{\mathrm{i}} \leftarrow \mathrm{y}^{\text {ci }^{\mathrm{i}}}$ to map x -monomials 1-1
Set $c_{i}=c^{i} \bmod p(p$ prime larger than $r)$
$\bar{x}^{\bar{e}}$ is mapped to $\mathrm{y}^{\wedge} \sum \mathrm{e}_{\mathrm{i}} \mathrm{c}^{\mathrm{i}}(\bmod \mathrm{p})=\mathrm{y}^{\wedge} \mathrm{e}(\mathrm{c})(\bmod \mathrm{p})$
If $\forall \mathrm{e} \neq \mathrm{e}^{\prime}, \mathrm{e}(\mathrm{c}) \neq \mathrm{e}^{\prime}(\mathrm{c})$ then monomials are mapped 1-1
If $s$ monomials then $s^{2}$ differences, each of degree $\leq r$, going over all choices of c in $\left[\mathrm{rs}^{2}\right]$ gives a good map

Each possible c gives a low-degree univariate in y, evaluating at enough points gives the hitting set. Size $\mathrm{O}\left(\mathrm{r}^{3} \mathrm{~s}^{2}\right)$.

## PIT for $\Sigma \wedge \Sigma$ circuits

Theorem: If leading monomial of f has m variables then dimension of partial derivatives of $f$ is at least $2^{m}$
Corollary: If f computed in size s then its leading monomial has at most $\log (\mathrm{ns})$ many variables.
Black Box PIT:

- "Guess" $\log (\mathrm{ns})$ variables. Set all other variables to zero.
- Interpolate resulting polynomial.

Theorem: Gives a hitting set of size deg ${ }^{\log (n s)}$.
Theorem [Forbes-Saptharishi-S]: By combining with PIT for roABP can get hitting set of size s ${ }^{\text {loglogs }}$.
Open: Polynomial time BB algorithm. ([Raz-S] gives WB)

## PIT for $\Sigma \Pi \Sigma$ circuits

How does an identity look like?
If $\mathrm{M}_{1}+\ldots+\mathrm{M}_{\mathrm{k}}=0$ then
Multiplying by a common factor:

$$
\Pi \mathrm{x}_{\mathrm{i}} \cdot \mathrm{M}_{1}+\ldots+\Pi \mathrm{x}_{\mathrm{i}} \cdot \mathrm{M}_{\mathrm{k}}=0
$$

Adding two identities:

$$
\left(\mathrm{M}_{1}+\ldots+\mathrm{M}_{\mathrm{k}}\right)+\left(\mathrm{T}_{1}+\ldots+\mathrm{T}_{\mathrm{k}^{\prime}}\right)=0
$$

How do the most basic identities look like?
Basic: cannot be "broken" to pieces (minimal) and no common linear factors (simple)

## $\Sigma \Pi \Sigma$ identities

$\mathrm{C}=\mathrm{M}_{1}+\ldots+\mathrm{M}_{\mathrm{k}} \quad \mathrm{M}_{\mathrm{i}}=\Pi_{\mathrm{j}=1 . . \mathrm{di}_{\mathrm{i}}} \mathrm{L}_{\mathrm{i}, \mathrm{j}}$
Rank: dimension of space spanned by $\left\{\mathrm{L}_{\mathrm{i}, \mathrm{j}}\right\}$
Can we say anything meaningful about the rank?
Theorem [Dvir-S]: If $\mathrm{C} \equiv 0$ is a basic identity then

$$
\operatorname{dim}(C) \leq \operatorname{Rank}(\mathrm{k}, \mathrm{r})=(\log (\mathrm{r}))^{\mathrm{k}}
$$

White-Box Algorithm: find partition to sub-circuits of low dimension (after removal of g.c.d.) and brute force verify that they vanish.

Improved (nr) ${ }^{\mathrm{O}(\mathrm{k})}$ algorithm by [Kayal-Saxena]

## Black-Box PIT for $\Sigma \Pi \Sigma$ circuits

Black-Box Algorithm [Karnin-S]: Intuitively, if we project the inputs to a "low" dimensional space in a way that does not collapse the dimension below $\operatorname{Rank}(k, r)$ then identity should not become zero

Theorem [Gabizon-Raz]: $\exists$ "small" explicit set of Ddimensional subspaces $\mathrm{V}_{1}, \ldots, \mathrm{~V}_{\mathrm{m}}$ such that for every space of linear functions $L$, for most $i$ :
$\operatorname{dim}\left(\left.\mathrm{L}\right|_{\mathrm{V}_{\mathrm{i}}}\right)=\min (\operatorname{dim}(\mathrm{L}), \mathrm{D})$
In other words: the linear functions in L remain as independent as possible on $\mathrm{V}_{\mathrm{i}}$

## Black-Box PIT for $\Sigma \Pi \Sigma$ circuits

Corollary: $\left.\forall \mathrm{i} \mathrm{C}\right|_{\mathrm{v}_{\mathrm{i}}}$ has low "rank" $\Rightarrow \mathrm{C}$ has low "rank"

If C has high rank then by [Gabizon-Raz], for some $\mathrm{i}, \mathrm{C} \mid \mathrm{v}_{\mathrm{i}}$ has high rank.

## Black-Box PIT for $\Sigma \Pi \Sigma$ circuits

Corollary: $\left.\forall \mathrm{i} C\right|_{\mathrm{v}_{\mathrm{i}}}$ has low "rank" $\Rightarrow \mathrm{C}$ has low "rank"
Corollary: if $\forall \mathrm{i},\left.\mathrm{C}\right|_{\mathrm{V}_{\mathrm{i}}} \equiv 0$ then C has structure (i.e. C is sum of circuits of low "rank")

If C is not a sum of low rank circuits then for some $\mathrm{i}, \mathrm{C} \mid \mathrm{v}_{\mathrm{i}}$ is not a sum of low rank circuits. This contradicts the structural theorem.

## Black-Box PIT for $\Sigma \Pi \Sigma$ circuits

Corollary: $\left.\forall \mathrm{i} \mathrm{C}\right|_{\mathrm{V}_{\mathrm{i}}}$ has low "rank" $\Rightarrow \mathrm{C}$ has low "rank"
Corollary: if $\forall \mathrm{i},\left.\mathrm{C}\right|_{\mathrm{V}_{\mathrm{i}}} \equiv 0$ then C has structure (i.e. C is sum of circuits of low "rank")
Theorem: if $\forall \mathrm{i},\left.\mathrm{C}\right|_{\mathrm{v}_{\mathrm{i}}} \equiv 0$ then $\mathrm{C} \equiv 0$.

## C is sum of low rank subcircuits $\Rightarrow$

$\exists V_{i}$ s.t. rank of subcircuits remain the same. $C \mid v_{i}$ is zero $\Rightarrow$ each subcircuit vanishes on $V_{i} \Rightarrow$ subcircuits compute the zero polynomial.

## Black-Box PIT for $\Sigma \Pi \Sigma$ circuits

Corollary: $\left.\forall \mathrm{i} \mathrm{C}\right|_{\mathrm{V}_{\mathrm{i}}}$ has low "rank" $\Rightarrow \mathrm{C}$ has low "rank"
Corollary: if $\forall \mathrm{i},\left.\mathrm{C}\right|_{\mathrm{V}_{\mathrm{i}}} \equiv 0$ then C has structure (i.e. C is sum of circuits of low "rank")
Theorem: if $\forall \mathrm{i},\left.\mathrm{C}\right|_{\mathrm{V}_{\mathrm{i}}} \equiv 0$ then $\mathrm{C} \equiv 0$.
Algorithm: For every $i$, brute force compute $\left.C\right|_{V_{i}}$
Time: $\operatorname{poly}(\mathrm{n}) \cdot \mathrm{r}^{\operatorname{dim}\left(\mathrm{V}_{\mathrm{i}}\right)}=\operatorname{poly}(\mathrm{n}) \cdot \mathrm{r}^{\mathrm{O}(\operatorname{Rank}(k, \mathrm{r}))}$

## $\Sigma \Pi \Sigma$ identities

Lesson 1: depth 3 identities are very structured
Lesson 2: Rank is an important invariant to study
Improvements [Kayal-Saraf,Saxena-Seshadri]:
Finite field, $k \cdot \log (r)<\operatorname{Rank}(k, r)<k^{3} \cdot \log (r)$
Over char 0, $\mathrm{k}<\operatorname{Rank}(\mathrm{k}, \mathrm{r})<\mathrm{k}^{2} \cdot \log (\mathrm{k})$
Improves [Dvir-S] + [Karnin-S] (plug and play)
Best PIT [Saxena-Seshadri]: BB-PIT in time (nr) ${ }^{\mathrm{O}(\mathrm{k})}($ proof inspired by rank techniques)

## Bounding the rank

Basic observation: Consider $\mathrm{C}=\mathrm{M}_{1}+\mathrm{M}_{2}$


Fact: linear functions are irreducible polynomial.
Corollary: $\mathrm{C} \equiv 0$ then $\mathrm{M}_{1}, \mathrm{M}_{2}$ have same factors.
Corollary: $\exists$ matching $\mathrm{i} \rightarrow \pi(\mathrm{i})$ s.t. $\mathrm{L}_{\mathrm{i}} \sim \mathrm{L}_{\pi(\mathrm{i})}^{\prime}$

## Bounding the rank

- Claim: $\operatorname{Rank}(3, \mathrm{r})=\mathrm{O}(\log (\mathrm{r}))$


Sketch: cover all linear functions in $\log (\mathrm{r})$ steps, where at m'th step:

- dim of cover is $\mathrm{O}(\mathrm{m})$
- $\Omega\left(2^{\mathrm{m}}\right)$ functions in span


## Plan

$\checkmark$ Basic definitions and motivation
$\checkmark$ Universality of PIT
$\checkmark$ Equivalence to deterministic polynomial factorization
$\checkmark$ Hardness vs. Randomness
$\checkmark$ PIT implies lower bounds and vice versa
$\checkmark$ Survey of known results
$\checkmark$ PIT for
$\checkmark \Sigma \Pi$ circuits
$\checkmark \Sigma \wedge \sum$ circuits
$\checkmark \Sigma \Pi \sum$ circuits - the rank method

- Summary


## Proofs - tailored for the model

Proofs usually use `weakness' inherent in model

- Depth 2: few monomials. Substituting $y^{c_{i}}$ to $x_{i}$ we can isolate different monomials
- Read-Once ABP: Polynomial has few linearly independent partial derivatives [Nisan]. Keep track of a basis for derivatives to do PIT
- $\quad \Sigma \Pi \Sigma(\mathrm{k})$ : setting a linear function to zero reduces top fan-in. If $\mathrm{k}=2$ then multiplication gates must be the same. Calls for induction
- Multilinear $\Sigma \Pi \Sigma \Pi(\mathrm{k})$ : in some sense `combination' of sparse polynomials and multilnear $\Sigma \Pi \Sigma(\mathrm{k})$
- Read-Once-Formulas: subformula of root contains $1 / 2$ of variables


## Summary

- PIT natural derandomization problem
- Equivalent to proving lower bounds
- Results for restricted models
- Open:
- PIT for multilinear formulas
- Improved PIT for multilinear depth 3
- Poly time PIT for $\Sigma \wedge \Sigma$ circuits
- Closure of classes (ABPs, formulas) under factorization


# Limitations and Approaches 

## Plan

- Limitations:
- Limitations of (shifted) Partial Derivative Method
- Natural Proofs for Arithmetic Circuits
- The case of $\Sigma \Pi \Sigma$ circuits
- Approaches:
- Matrix Rigidity
- Elusive Polynomial Maps
- Geometric Complexity Theory (GCT)
- Summary and open problems


## Complexity Measure

## Recall:

- $\mu_{k}(f)=\operatorname{dim}\left(\operatorname{span}\left(\partial^{=k}(f)\right)\right.$
- $\mu_{\mathrm{k}}(\mathrm{f}+\mathrm{g}) \leq \mu_{\mathrm{k}}(\mathrm{f})+\mu \mathrm{k}(\mathrm{g})$
- $\mu_{\mathrm{k}}\left(\ell^{\mathrm{r}}\right) \leq 1$

Note: $\left\{\ell^{\mathrm{r}}\right\}$ additive building blocks of $\Sigma \wedge \Sigma$ circuits Subadditivity implies: $\operatorname{size}_{\Sigma \Lambda \Sigma}(\mathrm{f}) \geq \mu_{\mathrm{k}}(\mathrm{f}) / \mu_{\mathrm{k}}\left(\ell^{\mathrm{r}}\right)$
A barrier: when $\mu_{\mathrm{k}}(\mathrm{f})$ cannot be much larger than $\mu_{\mathrm{k}}$ (simple building block)

## Abstracting the partial derivative method

(shifted) Partial derivative method: construct a huge matrix whose entries are linear functions in the coefficient of underlying polynomial. Rank of matrix is the measure

Example: $\mathrm{f}=\mathrm{xy}+1$

$$
\left[\begin{array}{c}
f \\
\partial f / \partial x \\
\partial f / \partial y \\
\partial^{2} f / \partial x \partial y
\end{array}\right]=\left[\begin{array}{c}
x y+1 \\
y \\
x \\
1
\end{array}\right]=\left[\begin{array}{llll}
x y & x & y & 1 \\
1 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

## Abstract rank method

"Rank Method" = Linear map to matrices:

$$
\mathrm{L}: \text { Polynomials } \rightarrow \mathrm{Mat}_{\mathrm{m} \times \mathrm{m}}(\mathbb{F})
$$

Example: $\ell^{r}=\left(\sum a_{i} x_{i}\right)^{r}=\sum_{\bar{e}}\binom{r}{\bar{e}} \bar{a}^{\bar{e}} x^{\bar{e}}$
$\mathrm{L}\left(\ell^{\mathrm{r}}\right)=\sum_{\bar{e}}\binom{r}{\bar{e}} \bar{a}^{\bar{e}} L\left(x^{\bar{e}}\right)=\sum_{\bar{e}}\binom{r}{\bar{e}} \bar{a}^{\bar{e}} M_{\bar{e}}$
$\mathrm{L}\left(\ell^{\mathrm{r}}\right)=$ matrix with entries homogeneous polynomials in $\bar{a}$

Measure: $\mu_{\mathrm{L}}(\mathrm{f})=\operatorname{rank}(\mathrm{L}(\mathrm{f}))$

## Lower bounds via abstract rank method

"Model" $=$ Set of simple polynomials $S$ that span all polynomials
Example: $S=\left\{\ell^{\mathrm{r}}\right\}$ (for $\Sigma \wedge \Sigma$ circuits)
Example: $S=\left\{\prod_{i=1}^{\mathrm{r}} \ell_{\mathrm{i}}\right\}$ (for $\Sigma \Pi \Sigma$ circuits)
Example : $\mathrm{S}=\left\{\mathrm{g}_{\mathrm{i} 1} \cdot \mathrm{~g}_{\mathrm{i} 2} \cdot \mathrm{~g}_{\mathrm{i} 3} \cdot \mathrm{~g}_{\mathrm{i} 4} \cdot \mathrm{~g}_{\mathrm{i} 5}\right\}$, $\operatorname{deg}\left(\mathrm{g}_{\mathrm{ij}}\right) \leq \mathrm{r} / 2$ (for general circuits)
Best lower bound in the model: size $_{\text {model }}(f) \geq \mu_{L}(f) / \mu_{L}(S)$
Barrier: when this ratio cannot be too large

## Barrier on rank method

Theorem [Efremenko-Garg-Oliveira-Wigderson]: Rank method cannot prove more than $\Omega(n)^{[r / 2\rfloor}$ lower bound for homogeneous $\Sigma \Pi \Sigma$ circuits (similar bound also for $\Sigma \wedge \Sigma$ circuits)

Cor: rank method cannot prove 8 n lower bound on MM (best known lower bound is $3 \mathrm{n}-\mathrm{o}(\mathrm{n})$ [S, Landsberg])
Note: for a random polynomial we expect $\Sigma \Pi \Sigma$ complexity to be $\Omega\left(\mathrm{n}^{\mathrm{r}-1} / \mathrm{r}\right.$ ) (by counting degrees of freedom)
Recall: For the symmetric polynomial $\sigma_{\mathrm{n}}^{\mathrm{r}}(\mathrm{x})$ the lower bound obtained via partial derivative method is $\Omega\left(\mathrm{n}^{\mathrm{r} / 2} / 2^{\mathrm{r}}\right)$

## Proof Idea for $\Sigma \wedge \Sigma$ circuits

Recall: $L\left(\ell^{r}\right)$ is a matrix with entries homogeneous monomials in the coefficients of $\ell$ :

$$
\mathrm{L}\left(\ell^{\mathrm{r}}\right)=\sum_{\bar{e}}\binom{r}{\bar{e}} \bar{a}^{\bar{e}} L\left(x^{\bar{e}}\right)=\sum_{\bar{e}}\binom{r}{\bar{e}} \bar{a}^{\bar{e}} M_{\bar{e}}
$$

$\varrho=$ maximum rank of $\mathrm{L}\left(\ell^{\mathrm{r}}\right)$
$=$ rank of $\sum_{\bar{e}}\binom{r}{\bar{e}} \bar{a}^{\bar{e}} M_{\bar{e}}$ as a matrix over $\mathbb{F}(\bar{a})$ (when entries viewed as polynomials in $\bar{a}$ )
Maximal possible rank $=$ maximal rank in $\operatorname{span}\left\{\mathrm{L}\left(\ell^{\mathrm{r}}\right)\right\}$
Main idea: show that $\mathrm{L}\left(\ell^{\mathrm{r}}\right)$ are structured matrices and so is their span

## Upper bounding the rank

Recall: $\mathrm{L}\left(\ell^{\mathrm{r}}\right)=\sum_{\bar{e}}\binom{r}{\bar{e}} \bar{a}^{\bar{e}} M_{\bar{e}}$ has rank at most $\varrho$
Can decompose over field of fractions (in $\bar{a}$ )

$$
L\left(\ell^{r}\right)=\sum_{i=1}^{\varrho} \frac{1}{p(\bar{a})} v_{i}(\bar{a}) \otimes u_{i}(\bar{a})
$$

where $v_{i}(\bar{a}), u_{i}(\bar{a})$ vectors with entries polynomial in $\bar{a}$, and $p(\bar{a})$ is a polynomial

We now perform Strassen's trick to get rid of divisions!

$$
\begin{aligned}
& L\left(\ell^{r}\right)=\sum_{i=1}^{\varrho} \frac{1}{p(\bar{a})} v(\bar{a}) \otimes u(\bar{a}) \quad \text { w.l.o.g. } p(\overline{0})=1 \\
& L\left(\ell^{r}\right)=\sum_{i=1}^{\varrho} \frac{1}{1-\tilde{p}(\bar{a})} v(\bar{a}) \otimes u(\bar{a}) \\
& =\sum_{i=1}^{\varrho}\left(1+\tilde{p}(\bar{a})+\tilde{p}^{2}(\bar{a})+\tilde{p}^{3}(\bar{a})+\cdots\right) v(\bar{a}) \otimes u(\bar{a})
\end{aligned}
$$

Homogeneity implies
$L\left(\ell^{r}\right)=H_{r}\left(\sum_{i=1}^{\varrho} \tilde{v}_{i}(\bar{a}) \otimes u(\bar{a})\right)$

$$
\begin{aligned}
L\left(\ell^{r}\right) & =H_{r}\left(\sum_{i=1}^{\varrho} \tilde{v}_{i}(\bar{a}) \otimes u(\bar{a})\right) \\
& =\sum_{i=1}^{\varrho} \sum_{j=0}^{r} H_{j}\left(\tilde{v}_{i}(\bar{a})\right) \otimes H_{r-j}\left(u_{i}(\bar{a})\right)
\end{aligned}
$$

Main point: one of the vectors has degree at most $\left\lfloor\frac{r}{2}\right\rfloor$
Cor: summand is $\mathrm{A}+\mathrm{B}$ where columns of A (rows of B ) belong to a fixed space of dimension $\binom{n+\left\lfloor\frac{r}{2}\right\rfloor}{\left\lfloor\frac{r}{2}\right\rfloor}$

## Plan

- Limitations:
$\checkmark$ Limitations of (shifted) Partial Derivative Method
- Natural Proofs for Arithmetic Circuits
- The case of $\Sigma \Pi \Sigma$ circuits
- Approaches:
- Matrix Rigidity
- Elusive Polynomial Maps
- Geometric Complexity Theory (GCT)
- Summary and open problems


## Natural proofs

[Razborov-Rudich] A property P of Boolean functions (truth tables) is natural if:

Useful against $\mathcal{C}$ : If $P(f)=1$ then we get a lower bound for circuits from $\mathcal{C}$ computing f

Constructivity: There is a $2^{\text {poly(n) }}$ sized circuit for computing $\mathrm{P}(\mathrm{f})$ (input is truth table of f )
Largeness: For "many" functions $\mathrm{f}, \mathrm{P}(\mathrm{f})=1$
[Razborov-Rudich]: All known lower bounds are natural [Razborov-Rudich]: If PRFGs exist in $\mathcal{C}$ then no strong lower bounds for $\mathcal{C}$ (e.g. $\mathcal{C}=\mathrm{TC}^{9}$ )

## Natural proofs barrier for arithmetic circuits?

Consider multilinear polynomials, given by list of coefficients
A property (polynomial) $P$ is natural if

- Constuctivity: there is a $2^{\text {poly(n) }}$ sized arithmetic circuit for computing $\mathrm{P}(\mathrm{f})$
- Usefulness: $\mathrm{P}(\mathrm{f}) \neq 0$ implies lower bounds on f

Note: All known proofs are natural
Example: having high partial derivative rank can be verified using determinant

Def: P is $\mathcal{D}$ natural against $\mathcal{C}$ if P computed by circuits from $\mathcal{D}$ and implies lower bounds for computing $f$ in $\mathcal{C}$

## Succinct hitting sets

Def: $\mathcal{C}$ is succinct hitting set for $\mathcal{D}$ if coefficient vectors of polynomials computed in $\mathcal{C}$ form a hitting set for $\mathcal{D}$
Note: We consider $\log (\mathrm{n})$-variate polynomials in $\mathcal{C}$ and get hitting set for $n$-variate polynomials in $\mathcal{D}$

Observation [Grochow-Kumar-Saks-Saraf, Forbes-S-Volk]: No $\mathcal{D}$ natural property against $\mathcal{C}$, if $\mathcal{C}$ is succinct hitting set for $\mathcal{D}$ Conj: coefficient-lists of multilinear polynomial in VP hit VP (if true - no natural proofs for $\mathrm{VP} \neq \mathrm{VNP}$ )

Theorem [Forbes-S-Volk]: except of ro-Det all known hitting sets can be tweaked to multilinear- $\Sigma \Pi \Sigma$-succinct

Cor: Lower bounds on complexity of polynomials defining VP

## Plan

- Limitations:
$\checkmark$ Limitations of (shifted) Partial Derivative Method
$\checkmark$ Natural Proofs for Arithmetic Circuits
- The case of $\Sigma \Pi \Sigma$ circuits
- Approaches:
- Matrix Rigidity
- Elusive Polynomial Maps
- Geometric Complexity Theory (GCT)
- Summary and open problems


## Barrier for Lower Bounds for $\Sigma \Pi \Sigma$ circuits

Recall: [S-Wigderson,Kayal-Saha-Tavenas] lower bound for $\Sigma \Pi \Sigma$ circuits showed there exist $\Omega(\mathrm{n})$ many multiplication gates each of degree $\Omega(\mathrm{n})\left(\Omega\left(\mathrm{n}^{2}\right)\right)$

Proof idea: restrict to a subspace to make high degree gate vanish and then use (shifted) partial derivative measure on remaining circuit

Note: this approach cannot prove that there are more than n multiplication gates

Question: is there a reason for such a barrier?

## Approximating polynomials

Def: $g$ algebraically approximates $f$ if $f(x)=g(\varepsilon, x)+\varepsilon \cdot h(\varepsilon, x)$, where monomials in $h$ have degree $>\operatorname{deg}(f)$

Theorem [Kumar]: every degree r polynomial can be approximated by $\Sigma \Pi \Sigma$ circuit with $\mathrm{r}+1$ multiplication gates "Cor": algebraic (continuous) measures cannot prove that more than $\mathrm{r}+1$ multiplication gates are needed

Rationale: if a measure $\mu$ is small for every circuit with $r+1$ gates then it is small also for the limit. Thus, every polynomial has small $\mu$ complexity

## Plan

- Limitations:
$\checkmark$ Limitations of (shifted) Partial Derivative Method
$\checkmark$ Natural Proofs for Arithmetic Circuits
$\checkmark$ The case of $\Sigma \Pi \Sigma$ circuits
- Approaches:
- Matrix Rigidity
- Elusive Polynomial Maps
- Geometric Complexity Theory (GCT)
- Summary and open problems


## Matrix Rigidity

Def: matrix $A$ is ( $\mathrm{r}, \mathrm{s}$ )-rigid if we need to change more than $s$ entries to reduce rank to $r$

Whenever $A=B+C$ either $\operatorname{rank}(B)>r$ or $C$ contains more than $s$ nonzero entries

Theorem [Valiant]: If A is ( $n / \log \log n, n^{1+\varepsilon}$ )-rigid then no linear circuit of size $O(n)$ and depth $O(\log n)$ can compute $f(x)=A x$
Counting arguments: most matrices $\left(\Omega(\mathrm{n}), \mathrm{O}\left(\mathrm{n}^{2}\right)\right)$-rigid
Applications: Circuit complexity, lower bounds for data structures, locally decodable codes, ...

Theorem [Friedman, Shokrollahi-Spielman-Stemann]: super regular matrices are $\left(\mathrm{r}, \mathrm{n}^{2} / \mathrm{r} \cdot \log (\mathrm{n} / \mathrm{r})\right)$-rigid

Proof idea: Some rxr submatrix is not touched
Theorem [Alman-Williams, Dvir-Liu]: Hadmard like matrices not rigid enough

Theorem [Alman-Chen]: Using an NP oracle can construct $\left(2^{\log n^{1 / 4}}, \Omega\left(n^{2}\right)\right)$-rigid matrix

Note: new result by Orr et al.
Open: Find an explicit rigid matrix
Open: an explicit ( $\mathrm{n}-1, \Omega(\mathrm{n})$ )-matrix

## Plan

- Limitations:
$\checkmark$ Limitations of (shifted) Partial Derivative Method
$\checkmark$ Natural Proofs for Arithmetic Circuits
$\checkmark$ The case of $\Sigma \Pi \Sigma$ circuits
$\checkmark$ Approaches:
$\checkmark$ Matrix rigidity
- Elusive Polynomial Maps
- Geometric Complexity Theory (GCT)
- Summary and open problems


## Elusive polynomial mappings

Def $[R a z]: f=\left(f_{1}, \ldots, f_{m}\right): \mathbb{F}^{\mathrm{n}} \rightarrow \mathbb{F}^{\mathrm{m}}$ is $(\mathrm{s}, \mathrm{r})$-elusive if for every $\mathrm{g}=\left(\mathrm{g}_{1}, \ldots, \mathrm{~g}_{\mathrm{m}}\right): \mathbb{F}^{\mathrm{s}} \rightarrow \mathbb{F}^{\mathrm{m}}$, where $\operatorname{deg}\left(\mathrm{g}_{\mathrm{i}}\right) \leq \mathrm{r}$, Image (f) $\not \subset$ Image (g)

Theorem [Raz]: If f is $(\mathrm{s}, 2)$-elusive for $\mathrm{m}=\mathrm{n}^{\omega(1)}$ and $\mathrm{s}>\mathrm{m}^{0.9}$, then super-polynomial lower bounds for $f$

Note: the moment curve (in 1 variable) is ( $\mathrm{m}-1,1$ )-elusive for every m

## Universal circuit

Def: circuit for degree $r$ is in normal form if
-2 r alternating layers

- Edges go between layers
- Each constant gate has fan-out 1

Easy: each circuit can be made normal with poly blow up
Claim: for size s and degree $\mathrm{r} \exists$ universal circuit U in x and $y=\left(y_{1}, \ldots, y_{s}\right)$ such that
$-\operatorname{size}(\mathrm{U})=\operatorname{poly}(\mathrm{r}, \mathrm{s})$

- every size s normal circuit in x is obtained by assigning values to $y$ vars


## Circuits as polynomial maps

Note: Output of $U$ is a polynomial in $x, y$. View it as a polynomial in x whose coefficients are polynomials in y $\Rightarrow U$ defines a map $\Gamma: \mathbb{F}^{\mathrm{s}} \rightarrow \mathbb{F}^{\mathrm{m}}$ for $\mathrm{m}=\binom{\mathrm{n}+\mathrm{r}}{\mathrm{n}}$ mapping y to coefficient polynomials of x -monomials

Claim: $\Gamma$ has degree $2 \mathrm{r}-1$
Proof: each y variable used once in a layered circuit
Claim: if $f$ has size $s$ then $f$ in image of $\Gamma$
Proof: follows from universality of U

## Elusive maps

Cor: If $G: \mathbb{F}^{\mathrm{n}} \rightarrow \mathbb{F}^{\mathrm{m}}$ is ( $\mathrm{s}, 2 \mathrm{r}-1$ )-elusive then for some $\alpha$, $\mathrm{G}(\alpha)$ defines a hard polynomial (requires size $>\mathrm{s}$ )
Cor: if for every $\alpha, G(\alpha)$ in VNP then can separate VP from VNP like that

Note: to claim about (s,2)-elusive maps need to use depthreduction tricks

## Plan

- Limitations:
$\checkmark$ Limitations of (shifted) Partial Derivative Method
$\checkmark$ Natural Proofs for Arithmetic Circuits
$\checkmark$ The case of $\Sigma \Pi \Sigma$ circuits
$\checkmark$ Approaches:
$\checkmark$ Matrix Rigidity
$\checkmark$ Elusive Polynomial Maps
- Geometric Complexity Theory (GCT)
- Summary and open problems


## Geometric complexity theory

Recall: want to show Perm is not a projection of Det
Action of matrices on polynomials: $(A \circ f)(x)=f(A \cdot x)$
Goal: show Perm $_{n}$ not in orbit of Det $_{m}$
Fact: the orbit of Det under matrices $=$ closure of orbit of Det under GL (invertible matrices)

Fact: if Perm not in orbit then there is F (that takes as input coefficient vectors), such that F vanishes on (closure of) orbit of Det but not on Perm

Note: similar to Farkas lemma in linear programming
GCT approach [Mulmuley-Sohoni]: look for such polynomial using representation theory of GL


## Why representation theory?

Separating F comes from a vector space $\mathcal{V}$ of polynomials acting on coefficient vectors
Can view GL action on coefficient vectors as action on polynomials from $\mathcal{V}:(A \circ F)(f)=F\left(A^{t} \circ f\right)$ (representation)
Consider all such F that vanish on the orbit of Det (Perm). They form a subrepresentation (linear subspace on which GL acts)

GCT approach: prove that these subrepresentations coming from the orbits of Det and Perm are different and conclude the existence of a separating F

## Multiplicities

Conj [Mulmuley-Sohony]: Action of GL on orbit of Det has more irreducible representations than its action on orbit of Perm

Idea used by [Bürgisser-Ikenmeyer] to prove lower bounds for border rank of MM
Theorem [Ikenmeyer-Panova,Bürgisser-Ikenmeyer-Panova]: They have the same set of irreducible representation. Even $\Sigma \wedge \Sigma$ circuits have the same set
New approach: prove that some irreducible representation appears more (higher multiplicity) over Perm than over Det
Recently implemented by [Ikenmeyer-Kandasamy] to separate a monomial from $\Sigma \wedge \Sigma$

## Summary

1. Basic definitions and structure results
2. Lower Bound techniques
3. PIT, hardness-randomness tradeoffs
4. Limitations, approaches

Model simpler than Boolean circuits, offers more chances to prove "big" results, classical math fits more naturally, many many open problems

## Some more open problems

- Prove super polynomial lower bounds for bounded depth circuits over $\mathbb{F}_{3}$
- Prove super quadratic lower bounds for $\sigma_{d}\left(\mathrm{~L}_{1}, \ldots, \mathrm{~L}_{\mathrm{m}}\right)$
- Exponential lower bound for multilinear formulas
- Separate multilinear and non-multilinear formula size
- Separate multilinear ABPs from multilinear circuits
- Super-poly lower bound for multilinear circuits
- Are formulas/ABPs/bounded-depth-circuits closed to taking factors?


## Some more open problems

- What is the complexity of PIT: given H how hard is it to verify that H is a hitting set. Currently in EXPSPACE
- Results for read-once ABPs much better than in the Boolean world. Can techniques be used there?
- Theory of [Khovanskii] gives analogs of Bezout's theorem for sparse polynomials over $\mathbb{R}$ (sparsity replaces degree). Improve quantitative results. Would solve long standing open problems (PIT and algorithms)
- Reconstruction of arithmetic circuits


## Additional reading

[Bürgisser-ClausenShokrollahi]: Algebraic Complexity Theory
[S-Yehudayoff]: Arithmetic Circuits: a survey of recent results and open questions [Saptharishi]: A selection of lower bounds in arithmetic circuit complexity
[Blaser-Ikenmeyer]: Introduction to geometric complexity theory (lecture notes)


## Some more photos



