Crash course on Algebraic Complexity

Amir Shpilka
Tel Aviv University
Rough Plan

Lecture 1: Models of computation, Complexity Classes, Reductions and Completeness, Connection to Boolean world, Structural Results

Lecture 2: Lower Bounds, Partial Derivative Method, Shifted Partial Derivatives

Lecture 3: Polynomial Identity Testing, Hardness-Randomness tradeoffs

Lecture 4: Limitations, Future Directions
The Basics
Plan

• Introduction:
 – Basic definitions
 – Motivation

• Valiant’s work:
 – VP, VNP
 – Reductions
 – Completeness
Why consider Algebraic Complexity

Natural problems are algebraic:

• **Linear algebra:**
 – Solving a linear system of equations
 – Computing Determinant
 – FFT

• **Polynomial Factorization**
 – List decoding of Reed-Solomon codes

• **Usually computed using Arithmetic Circuits**
 – input treated as field elements, basic arithmetic operations at unit cost
Boolean Circuits

Our holy grail: Prove $\text{NP} \not\subset \text{P/poly}$

Show that certain problems (e.g., graph-coloring) cannot be decided by small Boolean circuits
Arithmetic Circuits

In Example:
- Size = 6
- Depth = 2
- Degree = 3

Example: \((x_1 \cdot x_2) \cdot (x_2 + 1)\)

Size = number of wires

Depth = length of longest input-output path

Degree = max degree of internal gates
Arithmetic Formulas

Same, except underlying graph is a tree
Bounded depth circuits

$\Sigma \Pi$ circuits: depth-2 circuits with $+$ at the top and \times at the bottom. Size s circuits compute s-sparse polynomials

$\Sigma \Pi \Sigma$ circuits: depth-3 circuits with $+$ at the top, \times at the middle and $+$ at the bottom. Compute sums of products of linear functions. I.e. a sparse polynomial composed with a linear transformation

$\Sigma \Pi \Sigma \Pi$ circuits: depth-4 circuits. Compute sums of products of sparse polynomials
ΣΠ circuits

ΣΠ circuits: depth-2 circuits with $+$ at the top and \times at the bottom. Size s circuits compute s-sparse polynomials

Example: $(-e)x_1 \cdot x_n + 2x_1 \cdot x_2 \cdot x_7 + 5(x_n)^2$
$\Sigma\Pi\Sigma$ circuits

$\Sigma\Pi\Sigma$ circuits: + at the top, × at the middle and + at the bottom: compute sums of products of linear functions

Example: $(-e) \cdot (-2x_1 + x_n) \cdot (x_1 + \pi x_2 + 1/4x_7) + ...$
Algebraic Branching Programs

Edges labeled by constants/variables
Path computes product of labels
ABP computes sum over paths = product of labeled transition matrices (as in graph powering)
Basic Relations

“Theorem”: Formula \leq ABP \leq Circuits \leq quasi-poly Formula
Basic Relations

“Theorem”: $\text{Formula} \leq \text{ABP} \leq \text{Circuits} \leq \text{quasi-poly}$

Theorem: if f computed by a size s formula then f is computed by an ABP with s edges
Basic Relations

“Theorem”: Formula \(\leq \) ABP \(\leq \) Circuits \(\leq \) quasi-poly

Theorem: if \(f \) computed by a size \(s \) formula then \(f \) is computed by an ABP with \(s \) edges

Theorem: If \(f \) is computed by an ABP with \(s \) edges then \(f \) computed by an arithmetic circuits of size \(O(s) \).
Basic Relations

“Theorem”: $\text{Formula} \leq \text{ABP} \leq \text{Circuits} \leq \text{quasi-poly Formula}$

Theorem: if f computed by a size s formula then f is computed by an ABP with s edges

Theorem: If f is computed by an ABP with s edges then f computed by an arithmetic circuits of size $O(s)$.

Proof: By induction on structure (both cases).
Basic Relations

“Theorem”: Formula \leq ABP \leq Circuits \leq quasi-poly

Formula

Theorem: if f computed by a size s formula then f is computed by an ABP with s edges

Theorem: If f is computed by an ABP with s edges then f computed by an arithmetic circuits of size $O(s)$.

Proof: By induction on structure (both cases).

Theorem: “Circuits can be made shallow” i.e. $VP=VNC^2$

(more on that later)
Arithmetic vs. Boolean circuits

Boolean circuits compute Boolean functions: $x = x \land x = x \lor x$

Arithmetic circuits compute syntactic objects:

$x \neq x^2$ as polynomials, even over \mathbb{F}_2

Note: if \mathbb{F} infinite then $f = g$ as polynomials iff $f = g$ as functions

Convention: We only consider families $\{f_n\}$ s.t. $\deg(f_n) = \text{poly}(n)$

- In the Boolean world every function is a multilinear polynomial
- For circuits and inputs with polynomial bit complexity output is also of polynomial bit complexity
Why Arithmetic Circuits?

- Most natural model for computing polynomials
- For many problems (e.g. Matrix Multiplication, DFT) best algorithm is an arithmetic circuit
- Great algorithmic achievements:
 - Fourier Transform
 - Matrix Multiplication
 - Polynomial Factorization
- Structured model (compared to Boolean circuits) P vs. NP may be easier (also true in a formal way)
- Personal view: offers the most natural approach to P vs. NP
Important Problems

• Designing new algorithms:
 – $\tilde{O}(n^2)$ for Matrix Multiplication?
 – Understanding P

• Proving lower bounds:
 – Find a polynomial (e.g. Permanent) that requires super-polynomial size or super-logarithmic depth
 – Analog of NC vs. #P

• Derandomizing Polynomial Identity Testing:
 – Understanding the power of randomness
 – Analog of P vs. RP, BPP
Plan

☑ Introduction:
 – Basic definitions
 – Motivation

• Valiant’s work:
 – VP, VNP
 – Reductions
 – Completeness
Complexity Classes – Valiant’s work

Efficient computations: A family \(\{ f_n \} \) is in \(\text{VP} \) if there exists a polynomial \(s: \mathbb{N} \rightarrow \mathbb{N} \) such that

- \(\#\text{vars}(f_n), \deg(f_n) < s(n) \)
- \(f_n \) computed by size \(s(n) \) arithmetic circuit

Example: \(\{ \text{Det}_{n \times n} \} \) is in \(\text{VP} \)

Example: \(\{ x^{2^n} \} \) is not in \(\text{VP} \) (but has a small circuit)

Similar definition (except degree bound) to \(\text{P/poly} \)

Note: accurate definition is \(\text{VP}_F \) as field may matter
Complexity Classes – VNP

Recall: \(L = \{L_n\} \in NP \) if there is \(R(x,y) \in P \) such that
\[
x \in L_n \iff \forall y \ R(x,y) = \text{True}
\]

Def: A family \(\{f_n\} \in VNP \) if there is \(\{g_n\} \in VP \) such that
\[
f_n(x_1, \ldots, x_n) = \sum_{y \in \{0,1\}^t} g_n(x_1, \ldots, x_n, y_1, \ldots, y_t)
\]
where \(t \) is polynomial in \(n \)

Example: \(\text{Perm}(X) = \sum_{\sigma} \prod_i x_{i,\sigma(i)} \in VNP \)
\[
\text{Perm}(X) = \sum_{y \in \{0,1\}^n} \prod_i (2y_i - 1) \prod_j (x_{j,1}y_1 + \cdots + x_{j,n}y_n)
\]

Thumb rule: \(f = \sum_e c_e \prod_i x_i^{e_i} \) in \(VNP \) if \(c_e \) efficiently computable given \(e \)
Completeness and Reductions

Reductions: \(\{f_n\} \) reduces to \(\{g_n\} \) if for some polynomial \(t(n) \)
\[
f_n(x_1, \ldots, x_n) = g_{t(n)}(y_1, \ldots, y_{t(n)})
\]
where \(y_i \in \{x_1, \ldots, x_n\} \cup \mathbb{F} \).

I.e., we substitute variables and field elements to the variables of \(g \) and get \(f \) (also called projection)

Theorem [Valiant]: Perm is complete for VNP (except over characteristic 2)

Theorem [Mahajan-Vinay]: Det is complete for “ABPs”

Valiant’s hypothesis: \(\text{VP} \neq \text{VNP} \)

Extended hypothesis: Perm is not a projection of \(\text{Det}_{\text{quasi-poly}} \)

Theorem [Mignon-Ressayre, Cai-Chen-Li]:
If \(\text{Det}(A) = \text{Perm}(X) \) then \(\dim(A) = \Omega(n^2) \)
Cook’s versus Valiant’s Hypothesis

Theorem [Valiant]: 0/1 Perm is complete for \#P

Building on \(\text{PH} \subseteq \text{P}^{\#\text{P}} \) and \(\text{VP=VNC}^2 \) we get

Theorem [Ibarra-Moran, von zur Gathen, Bürgisser]:

- If \(\text{VP=VNP} \) over \(\mathbb{C} \) then (under GRH)
 \(\text{NC}^3/\text{poly} = \text{P}/\text{poly} = \text{NP}/\text{poly} = \text{PH}/\text{poly} \)

- If \(\text{VP=VNP} \) over \(\mathbb{F}_p \) then
 \(\text{NC}^2/\text{poly} = \text{P}/\text{poly} = \text{NP}/\text{poly} = \text{PH}/\text{poly} \)

And, in either cases, \(\text{PH}=\Sigma_2 \)

My take: \(\text{NP} \not\subseteq \text{P}/\text{poly} \) implies \(\text{VP} \neq \text{VNP} \) so we better start with the Algebraic world
Summary - introduction

• **Models**: Formula \leq ABP \leq Circuits \leq quasi-poly Formula. Also saw $\Sigma\Pi, \Sigma\Pi\Sigma$ circuits

• **Complexity Classes**: VP, VNP

• **Reductions and Completeness**: IMM, Det for ABPs, Perm for VNP

• **Valiant’s hypothesis**: Perm does not have poly size circuits

• **Extended hypothesis**: Perm is not a projection of a quasi-poly-sized determinant
Structural Results
Plan

• Homogenization
• Divisions?
• Depth Reduction
 – VP=VNC2
 – Reduction to depth 4
• Baur Strassen theorem (computing first order partial derivatives)
Homogenization

Def: f is homogeneous if all monomials have same total degree (e.g., Det. Perm)

Def: Formula/ABP/Circuit is homogeneous if every gate computes a homogeneous polynomial

Theorem (Homogenization): f of degree r has size s circuit(ABP) then f has size $O(r^2s)$ homogeneous circuit (ABP) computing its homogeneous components

Proof idea: Split every gate to $r+1$ gates where k’th copy computes homogeneous part of degree k

Open: Homogenizing formulas efficiently (known for degree $O(\log s)$ [Raz])
Divisions

Getting rid of divisions [Strassen]: If degree-\(r\) \(f\) computed in size-\(s\) using divisions then \(f\) computed by \(\text{poly}(r,s)\)-size with no divisions

Proof idea:

- transform circuit to one with a single division gate at top (by splitting each gate to numerator and denominator)
- w.l.o.g. (by translating variables and rescaling) \(f = g/(1-h)\) where \(h\) has no free term
- \(f=g(1+h+h^2+\ldots+h^r+\ldots)\) can stop after \(h^r\) and then compute relevant homogeneous parts
Depth Reduction

Theorem (Balancing formulas): If \(f \) has size \(s \) formula then \(f \) has depth \(O(\log s) \) formula

Proof idea: Similar to balancing trees or Boolean formulas

Theorem [Valiant-Skyum-Berkowitz-Rackoff]: \(\text{VP} = \text{VNC}^2 \). Any size \(s \), degree \(r \) circuit can be transformed to a size \(\text{poly}(s, r) \), degree \(r \), depth \(\log(s) \cdot \log(r) \) circuit

(very rough) **Proof idea:** use induction to write each gate as

\[
f_v = \sum_{i=1}^{s} g_{i1} \cdot g_{i2} \cdot g_{i3} \cdot g_{i4} \cdot g_{i5},
\]

where \(\text{deg}(g_{ij}) \leq r/2 \), and \(\{g_{ij}\} \) computed in \(\text{poly}(s) \)-size
Depth Reduction – all the way down

Theorem: [Agrawal-Vinay, Gupta-Kamath-Kayal-Saptharishi]: Homogeneous f of degree r has size s circuits then

- f has homogeneous $\Sigma\Pi\Sigma\Pi^{[\sqrt{r}]}$ circuit of size $s^{O(\sqrt{r})}$
- (over \mathbb{C}) f has depth-3 circuit of size $s^{O(\sqrt{r})}$

Corollary: exponential lower bounds for hom. depth 4 or depth 3 give exponential lower bounds for general circuits

Proof idea: As before each gate is $f_v = \sum_{i=1}^{s} g_{i1} \cdot g_{i2} \cdot g_{i3} \cdot g_{i4} \cdot g_{i5}$ where $\deg(g_{ij}) \leq r/2$. As long as some g_{ij} has degree larger than \sqrt{r} replace it with a similar expression. Process terminates with a $\Sigma\Pi\Sigma\Pi^{[\sqrt{r}]}$ circuit
Baur-Strassen theorem

Theorem [Baur-Strassen]: If f has size s, depth d circuit then $\frac{\partial f}{\partial x_1}, \ldots, \frac{\partial f}{\partial x_n}$ have size $O(s)$, depth $O(d)$ circuit.

Proving lower bound for computing n polynomials as hard as proving a lower bound for a single polynomial.

Proof idea: structural induction and derivative rules

Open: What about computing $\{\frac{\partial^2 f}{\partial x_k \partial x_m}\}_{k,m}$?

If in size $O(s)$, then Matrix Multiplication has $O(n^2)$ algorithm (consider $x^t \cdot A \cdot B \cdot y$)

Open: What about computing $\{\frac{\partial^2 f}{\partial x_k \partial x_k}\}_k$?
Summary – structural results

- **Homogenization** – wlog circuits are homogeneous
- **Divisions**: no need for those
- **VP=VNC2**
- **Depth reduction**: Exponential lower bounds for homogeneous depth 4 circuits imply exponential lower bounds for general circuits
- **Baur-Strassen**: Computing first order partial derivatives with no extra cost
Lower Bounds
Plan

• Survey of known lower bounds

• Some proofs:
 – General lower bounds
 • Strassen’s $\text{nlog}(n)$ lower bound
 • n^2 lower bound for ABPs/Formulas
 – Bounded depth circuits
 • Approximation method for $\Sigma\Pi\Sigma$ circuits over \mathbb{F}_p
 – Partial derivative method and applications
 • $\Sigma\Pi\Sigma$ circuits
 • Multilinear formulas
 – Shifted partial derivatives method
 • Application for $\Sigma\Pi\Sigma\Pi$ circuits
General lower bounds

Counting arguments (dimension arguments): Most degree n polynomials require exponential sized circuits (even with $0/1$ coefficients)

Counting arguments: most linear transformations require $\Omega(n^2)$ operations

Theorem [Strassen]: $\Omega(n \cdot \log r)$ lower bound for computing (simultaneously) $x_1^r, x_2^r, \ldots, x_n^r$

Theorem [Baur–Strassen]: same for $x_1^r + \ldots + x_n^r$

No lower bounds for constant degree polynomials

Theorem: [Kalorkoti, Kumar, Chatterjee-Kumar-She-Volk] $\Omega(nr)$ lower bound for formulas/ABPs
Lower Bounds for Small Depth Circuits
(recall exponential bounds for Boolean $\text{AC}^0[p]$)

Depth-2 is trivial (sum of monomials)

Over \mathbb{F}_2 [Razborov, Smolensky] classical lower bounds hold

[Grigoriev-Karpinski, Grigorev-Razborov]: exp. lower bounds for $\Sigma\Pi\Sigma$ circuits over \mathbb{F}_p (approximation method)

[Nisan-Wigderson]: exp. lower bounds for homogeneous/low degree $\Sigma\Pi\Sigma$ circuits

[S-Wigderson, Kayal-Saha-Tavenas]: quadratic cubic lower bounds over \mathbb{Q}, \mathbb{C} for $\Sigma\Pi\Sigma$ circuits

Open: strong lower bounds for depth-3 circuits over \mathbb{Q}, \mathbb{C}

Recall: by [Gupta-Kamath-Kayal-Saptharishi] exponential lower bounds for depth-3 may be hard…
Lower Bounds for Small Depth Circuits
(recall exponential bounds for Boolean $\text{AC}^0[p]$)

Recall: [Agrawal-Vinay, Gupta-Kamath-Kayal-Saptharishi]: f has size s homogeneous circuit then f has
$\Sigma\Pi\Sigma\Pi[\sqrt{r}]$ homogeneous circuit of size $s^{O(\sqrt{r})}$

[Gupta-Kamath-Kayal-Saptharishi, …]: $s^{\Omega(\sqrt{r})}$ lower bounds for homogeneous $\Sigma\Pi\Sigma\Pi[\sqrt{r}]$ circuits

Lower bounds fall short of implying lower bound for general circuit (constant in exponent too small!)

Even “worse” [Fourier-Limaye-Malod-Srinivasan,Kumar-Saraf]: lower bounds hold for easy polynomials, e.g., IMM
[Raz]: $n^{1+O(1/d)}$ lower bound for depth d circuits
Multilinear Models

Gates compute multilinear/homogeneous polynomials

[Raz]: \text{DET,PERM} require quasi-poly mult. formulas

\text{mult-NC}^1 \subsetneq \text{mult-NC}^2

[Raz-Yehudayoff]: \exp(n^{\Omega(1/d)}) bounds for depth d multilinear circuits

[Raz-S-Yehudayoff, Alon-Kumar-Volk]: n^2 lower bound for multilinear circuits
Plan

✓ Survey of known lower bounds

• Some proofs:
 – General lower bounds
 • Strassen’s $\text{nlog}(n)$ lower bound
 • n^2 lower bound for ABPs/Formulas
 – Bounded depth circuits
 • Approximation method for $\Sigma \Pi \Sigma$ circuits over \mathbb{F}_p
 – Partial derivative method and applications
 • $\Sigma \Pi \Sigma$ circuits
 • Multilinear formulas
 – Shifted partial derivatives method
 • Application for $\Sigma \Pi \Sigma \Pi$ circuits
Strassen’s lower bound

Recall: $\Omega(n \cdot \log r)$ lower bound for $x_1^r, x_2^r, \ldots, x_n^r$

Bézout’s Theorem: f_1, \ldots, f_k polynomials in x_1, \ldots, x_n of degrees r_1, \ldots, r_k. For every b_1, \ldots, b_k in \mathbb{F} the number of solutions to $f_1(x_1, \ldots, x_n) = b_1, \ldots, f_k(x_1, \ldots, x_n) = b_k$ is infinite or at most $r_1 \cdot \ldots \cdot r_k$

Example: $f_i = x_i^r, b_i = 1, i=1, \ldots, n$. The number of solutions is r^n over \mathbb{C}
Strassen’s lower bound

Assume a circuit of size s for $x_1^r, x_2^r, \ldots, x_n^r$

Associate a variable y_v with every gate v

For each gate $v = u \text{ op } w$ set an equation $y_v - (y_u \text{ op } y_w) = 0$

For an input v set $y_v - x_v = 0$

For an output v set, in addition, $y_v = 1$

Any solution (in x, y) to the system gives a solution to $\{x_i^r = 1\}$ and vice versa.

By Bézout at most 2^s solutions (finite number of solutions and s equations of degree at most 2 each)

Hence $2^s \geq r^n$ (can replace s by # of multiplications)

Note: cannot get bound better than $n \cdot \log r$
Kumar’s lower bound for homogeneous ABPs

Recall: ABP computes sum (over paths) of products of labels on path

Edges labeled by linear forms

Homogeneous ABP: vertices compute homogeneous polys

Note: Vertices in level j compute degree j polynomials
Kumar’s lower bound for homogeneous ABPs

Let g_v be computed by $[s,v]$ and h_v by $[v,t]$ (v in layer j, L_j)

Then, $f = \sum_{v \in L_j} g_v \cdot h_v$

Main Lemma: if $x_1^r + x_2^r + \cdots + x_n^r = \sum_{i=1}^m g_i \cdot h_i$ all are homogeneous and non constant then $m \geq n/2$

Proof idea: Common zero of $\{g_i,h_i\}$ is a zero of $(x_1^{r-1}, \ldots, x_n^{r-1})$. Only one zero so result follows by dimension arguments

Note: $n/2$ lower bound also for Determinantal complexity
Plan

✓ Survey of known lower bounds

• Some proofs:

✓ General lower bounds
 ✓ Strassen’s nlog(n) lower bound
 ✓ n^2 lower bound for ABPs/Formulas

– Bounded depth circuits
 • Approximation method for $\Sigma \Pi \Sigma$ circuits over \mathbb{F}_p

– Partial derivative method and applications
 • $\Sigma \Pi \Sigma$ circuits
 • Multilinear formulas

– Shifted partial derivatives method
 • Application for $\Sigma \Pi \Sigma \Pi$ circuits
Approximation method for $\Sigma \Pi \Sigma$ circuits

[Grigoriev-Karpinski, Grigoriev-Razborov]: lower bounds over \mathbb{F}_p (a-la Razborov-Smolensky for $AC^0[\mathbb{F}_p]$ circuits):

- If a multiplication gate contains $n^{1/2}$ linearly independent functions then it is 0, except with probability $\exp(-n^{1/2})$
- A function in k linear functions has degree $< pk$
- Hence, a circuit with s multiplication gates computes a polynomial that is $s \cdot \exp(-n^{1/2})$ close to a degree $O(n^{1/2})$ polynomial
- Correlation bounds for $\text{Mod}(q)$ give $\exp(n^{1/2})$ lower bound

Question: But what about char 0?
Plan

✓ Survey of known lower bounds

• Some proofs:
 ✓ General lower bounds
 ✓ Strassen’s nlog(n) lower bound
 ✓ n^2 lower bound for ABPs/Formulas
 ✓ Approximation method for $\Sigma\Pi\Sigma$ circuits over \mathbb{F}_p
 – Partial derivative method and applications
 • $\Sigma\Pi\Sigma$ circuits
 • Multilinear formulas
 – Shifted partial derivatives method
 • Application for $\Sigma\Pi\Sigma\Pi$ circuits
Partial Derivative Method [Nisan]

[Nisan-Wigderson] exponential lower bounds for homogeneous (or low degree) depth 3 circuits
[S-Wigderson] n^2 lower bound for depth 3 circuits
[Raz]: Det, Perm require quasi-poly multilinear Formulas
[Raz]: multilinear-NC$^1 \not\subseteq$ multilinear-NC2
[Raz-Yehudayoff]: $\exp(n^{\Omega(1/d)})$ bounds for depth d multilinear Circuits
[Raz-S-Yehudayoff, Alon-Kumar-Volk]: n^2 lower bound for multilinear circuits
Partial Derivatives as Complexity Measure

Def: \(\partial^{=k}(f) = \{ \partial^k f / \partial x_{i_1} \partial x_{i_2} \ldots \partial x_{i_k} \} \) = set of all partial derivatives of \(f \) of order \(k \).

Def: \(\mu_k(f) = \dim(\text{span}(\partial^{=k}(f))) \)

In words, take all partial derivatives of order \(k \) of \(f \) and compute the dimension of their span.

Intuition: not easy to create “uncorrelated” partial derivatives

Example: \(f = \text{Det}(X) \)

\[
\partial^{=k}(f) = \{ \text{Det}(X_{I,J}) : |I| = |J| = n-k \}
\]

\[
\mu_k(f) = \dim(\text{span}(\partial^{=k}(f))) = \binom{n}{k}^2
\]
Basic Properties of Partial Derivatives

Recall: \(\mu_k(f) = \dim(\text{span}(\partial^{=k}(f))) \)

Basic properties:

• \(\mu_k(f + g) \leq \mu_k(f) + \mu_k(g) \)
• \(\mu_k(f \cdot g) \leq \sum_t \mu_t(f) \cdot \mu_{k-t}(g) \)
• \(\mu_k(\ell^r) \leq 1 \) (\(\partial^k \ell^r / \partial x_{i_1} \partial x_{i_2} \ldots \partial x_{i_k} = c \cdot \ell^{r-k} \))
• \(\mu_k(\prod_{i=1}^r \ell_i) \leq \binom{r}{k} \) (spanned by all products of \(r-k \) of the linear functions)
Lower Bounds for $\Sigma \land \Sigma$ circuits

\(\Sigma \land \Sigma\) circuits compute polynomials of the form

\[f = \sum_{i=1}^{s} \ell_i^r \]

Claim: \(\mu_k(f) \leq s\)

Proof: \(\mu_k(\ell^r) \leq 1\) and subadditivity.

Corollary: Any \(\Sigma \land \Sigma\) circuit computing \(x_1 \cdot x_2 \cdots x_n\) has size \(\exp(\Omega(n))\)
Lower Bounds for homogeneous $\Sigma\Pi\Sigma$ circuits

Homogeneous $\Sigma\Pi\Sigma$ circuits compute polynomials of the form

$$f = \sum_{i=1}^{s} \prod_{j=1}^{r} \ell_{i,j}$$

Claim: $\mu_k(f) \leq s \cdot \binom{r}{k}$

Proof: $\mu_k(\prod_{i=1}^{r} \ell_i) \leq \binom{r}{k}$ and subadditivity

Corollary [Nisan-Wigderson]: Any homogeneous $\Sigma\Pi\Sigma$ circuit computing Det/Perm has size $\exp(\Omega(n))$
Lower Bounds for $\Sigma \Pi \Sigma$ circuits

Let $\sigma_n^r(x) = \sum_{|T|=r} \prod_{i \in T} x_i$

Theorem [S-Wigderson]: $\Sigma \Pi \Sigma$ size of $\sigma_n^{\log(n)}(x)$ is $\tilde{\Omega}(n^2)$

Proof: If more than $n/10$ multiplication gates of degree at least $n/10$ then we are done. Otherwise, there exists a subspace V of dimension $0.9n$ such that restricted to V, $\sigma_n^{\log(n)}(x)$ has small circuit of degree at most $n/10$.

Claim: $\mu_r(\sigma_n^{2r}(x)|_V) \geq \binom{0.9n}{r}$

Claim: $\mu_r(\Sigma \Pi \Sigma |_V) \leq \binom{n/10}{r}$
Upper Bounds for $\Sigma \Pi \Sigma$ circuits

Theorem [Ben-Or]: $\Sigma \Pi \Sigma$ size of $\sigma^r_n(x)$ is $O(n^2)$

Proof: Evaluate $f(y) = (y+x_1) \ldots (y+x_n)$ at $n+1$ points, then take the appropriate linear combination to get the coefficient of y^{n-r} which is $\sigma^r_n(x)$

Submodel of $\Sigma \Pi \Sigma$ circuits [S]: $f = \sigma^r_s(\ell_1, \ldots, \ell_s)$ f is a restriction of $\sigma^r_s(x)$ to an n dimensional subspace (can compute any f like that)

[Kayal-Saha-Tavens]: $\widetilde{\Omega}(n^2)$ lower bound for an explicit multilinear polynomial in VNP

Open: Prove super quadratic lower bounds
Upper Bounds for $\Sigma \Pi \Sigma$ circuits

Recall [Ryser]: $Perm(X)$

$$= \sum_{y \in \{0,1\}^n} \prod_i (2y_i - 1) \prod_j (x_{j,1}y_1 + \cdots + x_{j,n}y_n)$$

This is a $\Sigma \Pi \Sigma$ circuit of size $\exp(n)$. What about \det?

Recall [Gupta-Kamath-Kayal-Saptharishi]: f has size s circuits (over \mathbb{C}) then f has $\Sigma \Pi \Sigma$ circuit of size $s^{O(\sqrt{r})}$

Corollary: \det has $\Sigma \Pi \Sigma$ complexity $\exp(\tilde{O}(\sqrt{n}))$

Only known construction via [GKKS].

Open: A “nice” $\Sigma \Pi \Sigma$ circuit for \det
Plan

✓ Survey of known lower bounds

• Some proofs:
 ✓ General lower bounds
 ✓ Strassen’s $n \log(n)$ lower bound
 ✓ n^2 lower bound for ABPs/Formulas
 ✓ Approximation method for $\Sigma \Pi \Sigma$ circuits over \mathbb{F}_p
 – Partial derivative method and applications
 ✓ $\Sigma \Pi \Sigma$ circuits
 • Multilinear formulas
 – Shifted partial derivatives method
 • Application for $\Sigma \Pi \Sigma \Pi$ circuits
Partial Derivative Matrix [Nisan]

Let f be a multilinear polynomial over $\{y_1, \ldots, y_m\} \cup \{z_1, \ldots, z_m\}$.

Def: $M_f = 2^m$ dimensional matrix:

- Rows indexed by multilinear monomials in $\{y_1, \ldots, y_m\}$
- Columns indexed by multilinear monomials in $\{z_1, \ldots, z_m\}$

$M_f(p, q) =$ coefficient of $p \cdot q$ in f

$\mu_{y|z}(f) = \text{rank}(M_f)$

Note: $\mu_{y|z}(f) \leq 2^m$

Def: f is full rank if $\mu_{y|z}(f) = 2^m$
Examples

\begin{align*}
f(y,z) &= 1 + ay + bz + abyz \\
\mu_{y|z}(f) &= 1
\end{align*}

\[
M_f = \begin{bmatrix} 1 & z \\ 1 & b \\ a & ab \\ 1 & y \end{bmatrix}
\]

\begin{align*}
f(y_1, y_2, z_1, z_2) &= 1 + y_1y_2 - y_1z_1z_2 \\
\mu_{y|z}(f) &= 2
\end{align*}

\[
M_f = \begin{bmatrix} 1 & 1 & z_1 & z_2 & z_1z_2 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & -1 & y_1 \\ 0 & 0 & 0 & 0 & y_2 \\ 1 & 0 & 0 & 0 & y_1y_2 \end{bmatrix}
\]
Basic facts for a multilinear f

- If f depends on only k variables in $\{y_1, \ldots, y_m\}$ then
 $\mu_{y|z}(g) \leq 2^k$

- If $f = g + h$ then
 $\mu_{y|z}(f) \leq \mu_{y|z}(g) + \mu_{y|z}(h)$

- If $f = g \cdot h$ then
 $\mu_{y|z}(f) = \mu_{y|z}(g) \cdot \mu_{y|z}(h)$

- Corollary: If $f = L_1 \cdot L_2 \cdot \ldots \cdot L_k = \text{product of linear functions}$ then $\mu_{y|z}(f) \leq 2^k$
Unbalanced Gates

\(Y_f = \) variables in \(\{y_1, \ldots, y_m\} \) that \(f \) depends on

\(Z_f = \) variables in \(\{z_1, \ldots, z_m\} \) that \(f \) depends on

Def: \(f \) is \(k \)-unbalanced if \(|\#Y_f - \#Z_f| \geq k \)

A gate \(v \) is \(k \)-unbalanced if it computes a \(k \)-unbalanced function

Main observation: If \(f = g \cdot h \) and either \(g \) or \(h \) are \(k \)-unbalanced then \(\mu_{y|z}(f) \leq 2^{m-k} \)

Proof: W.l.o.g. \(|Y_g| - |Z_g| \geq k \). Hence, \(|Z_h| - |Y_h| \geq k \) and

\[
\mu_{y|z}(f) = \mu_{y|z}(g) \cdot \mu_{y|z}(h) \leq \min(2|Z_g| \cdot 2|Y_h|, 2|Y_g| \cdot 2|Z_h|) \leq 2^{m-k}
\]
Lower bounds for multilinear formulas

Cor: if every top product gate has k-unbalanced child then
$$\mu_{y|z}(\Phi) \leq s \cdot 2^{m-k}$$

Thm [Raz]: with probability $|\Phi| \cdot m^{-\Omega(\log m)}$, after a random partition $\{x_1,...,x_{2m}\} = \{y_1,...,y_m\} \sqcup \{z_1,...,z_m\}$ every child of root is m^ε-unbalanced

Cor: If $|\Phi| < m^{O(\log m)}$ then $\mu_{y|z}(\Phi) < |\Phi| \cdot 2^{m-m^\varepsilon}$

Cor: If f full rank (for most partitions) then any multilinear formula for f has size $m^{\Omega(\log m)}$

Open: Separation of multilinear and non-multilinear formula size
Limitation of Partial Derivative method

Consider $\Sigma \Lambda \Sigma \Pi^{[2]}$ circuits computing polynomials of the form $Q_1^r + \ldots + Q_s^r$, where each Q_i is quadratic.

What is the complexity of the monomial $f = x_1 \cdot \ldots \cdot x_n$ in this model? Intuitively, shouldn’t it be easy to compute?

We already saw $\mu_k(f) = \binom{n}{k}$

However, for $g = x_1^2 + \ldots + x_n^2$ we have $\mu_k(g) \geq \binom{n}{k}$

Thus, partial derivative method fail to give meaningful bounds even for $\Sigma \Lambda \Sigma \Pi^{[2]}$ circuits.
Plan

✓ Survey of known lower bounds

• Some proofs:
 ✓ General lower bounds
 ✓ Strassen’s nlog(n) lower bound
 ✓ n^2 lower bound for ABPs/Formulas
 ✓ Approximation method for $\Sigma \Pi \Sigma$ circuits over \mathbb{F}_p
 ✓ Partial derivative method and applications
 ✓ $\Sigma \Pi \Sigma$ circuits
 ✓ Multilinear formulas
 – Shifted partial derivatives method
 • Application for $\Sigma \Pi \Sigma \Pi$ circuits
Shifted Partial Derivatives

Complexity measure introduced by [Kayal]:

Def: \(\mu_k^\ell(f) = \dim(\text{span}(\bar{x}^\ell \cdot \partial^=k(f))) \)

In words, take all partial derivatives of order \(k \) of \(f \), multiply each of them by every possible monomial of degree \(\leq \ell \) and compute the dimension of the span.

Example: \(g=x^2, f = xy \)

- \(\bar{x}^1 \cdot \partial^=1(g) = \{1,x,y\} \cdot \{x^2\} = \{x^2,x^3,x^2y\} \)
- \(\bar{x}^1 \cdot \partial^=1(f) : \{1,x,y\} \cdot \{x,y\} = \{x,y,x^2,xy,y^2\} \)
- \(\mu_1^1(g)=3, \mu_1^1(f)=5 \)
Basic properties:

- \(\mu_k^\ell (f + g) \leq \mu_k^\ell (f) + \mu_k^\ell (g) \)

- \(\mu_k^\ell (x_1 \cdots x_n) \geq \binom{n}{k} \binom{n - k + \ell}{n - k} \)

Proof: Consider only product by monomials supported on the variables that survived the derivative

Claim: For any degree \(r \) polynomial \(f \)

\[
\mu_k^\ell (f) \leq \min \left\{ \binom{n + k}{n} \binom{n + \ell}{n}, \binom{n + r - k + \ell}{n} \right\}
\]

Proof: First term bounds the possible number of different derivatives and different number of shifts. The second is the dimension of degree \(r-k+\ell \) polynomials

Fact: tight for a random \(f \)
Bounds for $\Sigma \Lambda \Sigma \Pi^{[b]}$ circuits

Claim: For $\deg(Q)=b$: $\mu^{\ell}_k(Q^r) \leq \left(\frac{n + (b-1)k + \ell}{n} \right)$

Proof: order k' derivative of Q^r are of the form $Q^{r-k'} \cdot g$ where $\deg(g)=(b-1)k'$. Hence, all polynomials in $\overline{x}^\ell \cdot \partial^k(Q^r)$ are $Q^{r-k} \cdot g$ where $\deg(g) \leq (b-1)k + \ell$

Cor: f computed by $\Sigma \Lambda \Sigma \Pi^{[b]}$ with top fan-in s then

$$\mu^{\ell}_k(f) \leq s \left(\frac{n + (b-1)k + \ell}{n} \right)$$

Theorem [Kayal]: $\Sigma \Lambda \Sigma \Pi^{[b]}$ complexity of $x_1 \cdot \ldots \cdot x_n$ is $2^{\Omega(n/b)}$

Proof: Take $\ell = bn$ and $k = \varepsilon \cdot n/b$
Bounds for $\Sigma \Pi^{[a]} \Sigma \Pi^{[b]}$ circuits

Claim: For $\deg(Q_i)=b$: $\mu_k^\ell(Q_1 \cdots Q_a) \leq \binom{a}{k} \binom{n + (b - 1)k + \ell}{n}$

Proof: Each term is of the form $Q_{i_1} \cdots Q_{i_{a-k'}} \cdot g$ where $\deg(g) = (b-1)k'+\ell$

Cor: f computed by $\Sigma \Pi^{[a]} \Sigma \Pi^{[b]}$ with top fan-in s then $\mu_k^\ell(f) \leq s \binom{a}{k} \binom{n + (b - 1)k + \ell}{n}$

Cor: best bound is $\frac{\min \{ (n+k)(n+\ell), (n+r-k+\ell) \}}{s \binom{a}{k} \binom{n + (b - 1)k + \ell}{n}}$

Cor: For $a=b=\sqrt{r}$, $\ell = O\left(\frac{n\sqrt{r}}{\log n} \right)$, $k = \varepsilon \cdot \sqrt{r}$ a lower bound of $n^{\Omega(\sqrt{r})}$
Separating VP and VNP?

Just proved: Best possible lower bound is of $n^{\Omega(\sqrt{r})}$

Recall: homogeneous f in VP then f has a homogeneous $\Sigma \Pi[\sqrt{r}] \Sigma \Pi[\sqrt{r}]$ circuit of size $n^{O(\sqrt{r})}$

Dream approach for VP vs. VNP: Prove a lower bound of $n^{\Omega(\sqrt{r})}$ for a polynomial in VNP and improve the depth reduction just a little bit
Dream come true?

Theorem [Gupta-Kamath-Kayal-Saptharishi]:
\[\mu_{k}^{\ell}(\text{Perm}_n, \text{Det}_n) \geq \binom{n + k}{2k} \binom{n^2 - 2k + \ell - 1}{\ell}, \]
bound tight for Det

Cor: their \(\Sigma \Pi[^{\sqrt{n}}] \Sigma \Pi[^{\sqrt{n}}] \) complexity is \(\exp(\Omega(\sqrt{n})) \)

Goal: Better lower bounds for PERM (or \(f \) in VNP) and better depth reduction!

Theorem [Kayal-Saha-Saptharishi]: any \(\Sigma \Pi[^{0(\sqrt{n})}] \Sigma \Pi[^{\sqrt{n}}] \) circuit for \(\text{NW}_{\epsilon \sqrt{n}} \) has size \(n^{\Omega(\sqrt{n})} \)

Great source of optimism, just improve depth reduction for VP
Well...

Theorem [Fourier-Limaye-Malod-Srinivasan]:
for \(r \leq n^\delta \), \(\text{IMM}_r \) has \(\Sigma \Pi \sqrt{r} \Sigma \Pi [\sqrt{r}] \) complexity \(n^{\Omega(\sqrt{r})} \)

Cor: Depth reduction cannot be improved

Theorem [Kumar-Saraf]:
\(\forall \log n \ll t \leq r / 40 \) there is \(f \) computed by \(\text{hom.} \Sigma \Pi \Sigma \Pi \Sigma \Pi [t] \)
formula such that any \(\text{hom.} \Sigma \Pi \Sigma \Pi \Sigma \Pi \left[\frac{t}{20} \right] \) circuit computing it requires size \(n^{\Omega(\sqrt{r}/t)} \)

Cor: Depth reduction really cannot be improved
The NW polynomial

Exponent vectors form an error correcting code:

$$NW_k(x_{1,1}, \ldots, x_{n,n}) = \sum_{\text{deg}(p)<k} \prod_{i\in\mathbb{F}_n} x_{i,p(i)}$$

Main point [Chilara-Mukhopadhyay]: Monomials are “far away” hence, at most one monomial survives an order k derivative – easy to lower bound shifted partial dimension

Cor: For $s = \#\text{Mon}(NW_k)$ and $N = n^2 = \#\text{vars}(NW_k)$

number of distinct monomials in $\bar{x}^\ell \cdot \partial^{=k}(NW_k)$ at least

$$s \left(\binom{N + \ell}{N} \right) - \binom{s}{2} \left(\binom{N + \ell - (n - k)}{N} \right)$$

Open: is $\{NW_k\}$ complete for VNP?
Plan

✓ Survey of known lower bounds
✓ Some proofs:
 ✓ General lower bounds
 ✓ Strassen’s $n \log(n)$ lower bound
 ✓ n^2 lower bound for ABPs/Formulas
 ✓ Approximation method for $\Sigma \Pi \Sigma$ circuits over \mathbb{F}_p
 ✓ Partial derivative method and applications
 ✓ $\Sigma \Pi \Sigma$ circuits
 ✓ Multilinear formulas
✓ Shifted partial derivatives method
 ✓ Application for $\Sigma \Pi \Sigma \Pi$ circuits
Polynomial Identity Testing (PIT)
Plan

• Basic definitions and motivation
• Universality of PIT
 – Equivalence to deterministic polynomial factorization
• Hardness vs. Randomness
 – PIT implies lower bounds and vice versa
• Survey of known results
• PIT for
 – $\Sigma\Pi$ circuits
 – $\Sigma\Lambda\Sigma$ circuits
 – $\Sigma\Pi\Sigma$ circuits – the rank method
• Summary
Input: Arithmetic circuit computing f
Problem: Is $f = 0$?

$\text{Note: } x^2 - x$ is the zero function over \mathbb{F}_2 but not the zero polynomial!
Black Box PIT = Hitting Set

Input: A Black-Box circuit computing f.

Problem: Is $f = 0$?

[Schwartz-Zippel-DeMillo-Lipton]: Evaluate at a random point

Goal: deterministic algorithm (a.k.a. Hitting Set):
Set H s.t. if $f \neq 0$ then $\exists a \in H$ s.t. $f(a) \neq 0$
Existence of a small hitting set

Infinite many circuits so counting arguments don’t work

But, set of poly-size circuit generates a “simple” variety (polynomial identified with vectors of coefficients)

Theorem [Heintz-Sieverking]: The set of n-variate degree-r polynomials computed in size s, defines a variety of dimension $(n+s)^2$ and degree $(sr)^{(n+s)^2}$

Theorem [Heintz-Schnorr]: A random subset of $[sr^2]$ of size $O((s+n)^2)$ is a hitting set whp.

Proof idea: Each “bad point” reduces dimension of variety by 1 (adds another constraint). Bound on degree is used when we reach dimension 0
Motivation

• Natural and fundamental problem
• Strong connection to circuit lower bounds
• Algorithmic importance:
 – Primality testing [Agrawal-Kayal-Saxena]
 – Randomized Parallel algorithms for finding perfect matching [Karp-Upfal-Wigderson, Mulmuley-Vazirani-Vazirani]
 – Deterministic algorithms for Perfect Matching in depth poly(log n) (and quasi-poly time) [Fenner-Gurjar-Thierauf, Svensson-Tarnawski]
• New approaches to derandomization in the Boolean setting
• PIT appears the most general derandomization problem
Motivation

• Natural and fundamental problem
• Strong connection to circuit lower bounds
• Algorithmic importance:
 – Primality testing [Agrawal-Kayal-Saxena]
 – Randomized Parallel algorithms for finding perfect matching [Karp-Upfal-Wigderson, Mulmuley-Vazirani-Vazirani]
 – Deterministic algorithms for Perfect Matching in depth poly(log n) (and quasi-poly time) [Fenner-Gurjar-Thierauf, Svensson-Tarnawski]
• New approaches to derandomization in the Boolean setting
• PIT appears the most general derandomization problem
Plan

✓ Basic definitions and motivation
 • Universality of PIT
 – Equivalence to deterministic polynomial factorization
 • Hardness vs. Randomness
 – PIT implies lower bounds and vice versa
 • Survey of known results
 • PIT for
 – $\Sigma \Pi$ circuits
 – $\Sigma \Lambda \Sigma$ circuits
 – $\Sigma \Pi \Sigma$ circuits – the rank method
 • Summary
Universality of PIT

PIT is in coRP. Is it the most general language there? Which other problems are in RP/BPP???

Parallel algorithm for Perfect matching (PIT) in RNC

Languages coming from group theory
Example: Polynomial factorization

Given circuit for $f = f_1 \cdot f_2$ output circuits for f_1, f_2

A priori not clear such circuits exist

[Kaltofen]: Circuits exist and efficient randomized algorithm for constructing them!

[Kaltofen-Trager]: Also in the black-box model

Open: Are restricted models (bounded depth circuits, formulas, ABPs) close to taking factors?

Question: What is the cost of derandomizing polynomial factorization?
Factorization vs. PIT

Claim: \(f(x) = 0 \) iff \(f(x) + yz \) is reducible

Corollary: Deterministic factorization implies deterministic PIT

What about the other direction?

[S-Volkovich, Kopparty-Saraf-S]: Deterministic PIT implies deterministic factorization

Main idea: Carefully go over factorization algorithm and notice that randomization is used only to argue about nonzeroness of polynomials that have poly size circuits
Plan

✓ Basic definitions and motivation
✓ Universality of PIT
 ✓ Equivalence to deterministic polynomial factorization
 • Hardness vs. Randomness
 – PIT implies lower bounds and vice versa
 • Survey of known results
 • PIT for
 – $\Sigma \Pi$ circuits
 – $\Sigma \Lambda \Sigma$ circuits
 – $\Sigma \Pi \Sigma$ circuits – the rank method
• Summary
Theorem: subexp PIT implies lower bounds, and exp lower bounds \Rightarrow BB-PIT in quasi-P
BB PIT implies lower bounds

[Heintz-Schnorr]: BB PIT in P implies lower bounds

Proof: $|H| = n^{O(1)}$ hitting set for a class C. Find a nonzero (multilinear) polynomial, f, with $\log |H| = O(\log n)$ variables vanishing on H. It follows that f requires exponential circuits from C

Gives lower bounds for f computable in PSPACE

Conjecture [Agrawal]:

$H = \{(y_1, \ldots, y_n) : y_i = y^{ki \mod r}, y,k,r < s^{20}\}$ is a hitting set for size s circuits
WB PIT implies lower bounds

[Kabanets-Impagliazzo]: subexp WB PIT implies lower bounds

Proof idea:

• [Impagliazzo-Kabanets-Wigderson]: NEXP ⊆ P/poly
 \Rightarrow NEXP ⊆ P^{#P}

• If PERM has poly-size circuits then guess one. Verify the circuit using PIT and self reducibility (expansion by row).
 Implies NEXP ⊆ P^{#P} ⊆ NSUBEXP in contradiction
[Kabanets-Impagliazzo]: lower bounds imply BB PIT

Proof idea: If f exponentially hard apply NW-design:

- $S_1,\ldots, S_n \subseteq [t=O(\log^2 n)]$
- $|S_i \cap S_j| \leq \log n$

Let $G(x) = (f(x|S_1),\ldots, f(x|S_n))$ map \mathbb{F}^t to \mathbb{F}^n

Claim: If nonzero p has poly size circuit then $p \circ G$ nonzero

Proof: $p(y_1,\ldots,y_n)$ nonzero but $p(f(x|S_1),\ldots, f(x|S_n))$ zero.

Wlog $p(f(x|S_1),\ldots, f(x|S_{n-1}),y_n)$ nonzero.

Thus $(y_n-f(x|S_n))$ a factor of $p(f(x|S_1),\ldots, f(x|S_{n-1}),y_n)$.

By NW-design property polynomial has small circuit. By

[Kaltofen], $(y_n-f(x|S_n))$ has small circuit in contradiction (pick t to match lower bound on f) \blacksquare

Evaluating G on $(r \cdot \deg(f))^t$ many points give a hitting set.
Extreme Hardness vs. Randomness

Theorem [Guo-Kumar-Saptharishi-Solomon]: Suppose for every s, there exists an explicit hitting set of size $((s + 1)^{k-1})$ for k-variate polynomials of individual degree $\leq s$ that are computable by size s circuits.

Then there is an explicit hitting set of size $s^{O(k^2)}$ for the class of s-variate polynomials, of degree s, that are computable by size s circuits.

In other words: Saving one point over trivial hitting set for polynomials with $O(1)$ many variables enough to solve PIT.

Proof Idea: Hitting set \Rightarrow Hard polynomial \Rightarrow Hitting set (via a variant of the KI generator)
Plan

✓ Basic definitions and motivation
✓ Universality of PIT
 ✓ Equivalence to deterministic polynomial factorization
✓ Hardness vs. Randomness
 ✓ PIT implies lower bounds and vice versa

• Survey of known results
• PIT for
 – $\Sigma \Pi$ circuits
 – $\Sigma \Lambda \Sigma$ circuits
 – $\Sigma \Pi \Sigma$ circuits – the rank method
• Summary
Deterministic algorithms for PIT

$\Sigma \Pi$ circuits (a.k.a., sparse polys), BB in poly time
[BenOr-Tiwari, Grigoriev-Karpinski, Klivans-Spielman,…]

$\Sigma \Lambda \Sigma$ circuits, BB in $n^{\log \log(n)}$ time [Forbes-Saptharishi-S]

$\Sigma[k] \Pi \Sigma$ circuits

- BB in time $n^{O(k)}$ [Dvir-S,Kayal-Saxena,Karnin-S,Kayal-Saraf,Saxena-Seshadhri]

- Multilinear in sub-exponential time, for subexponential k
 [Oliveira-S-Volk] (implies nearly best lower bounds)

Multilinear $\Sigma[k] \Pi \Sigma \Pi$ [Karnin-Mukhopadhyay-S-Volkovich, Saraf-Volkovich] BB in time $s^{\text{poly}(k)}$

Read-Once (skew) determinants [Fenner-Gurjar-Thierauf, Svensson-Tarnawski] BB in time $n^{(\log n)^2}$
Deterministic algorithms for PIT

Read-Once Algebraic Branching Programs

- White-Box in polynomial time [Raz-S]
- Application to derandomization of Noether’s normalization lemma, central in Geometric Complexity Theory program of Mulmuley

Read-k multilinear formulas / Algebraic Branching Programs [S-Volkovich, Anderson-van Melkebeek-Volkovich, Anderson-Forbes-Saptharishi-S-Volk]

- Subexponential WB for read-k ABPs
- Poly/quasi-poly for read-k Formulas (WB/BB)
Why study restricted models?

- [Agrawal-Vinay,Gupta-Kamath-Kayal-Saptharishi] PIT for $\Sigma\Pi\Sigma$ (or homogeneous $\Sigma\Pi\Sigma\Pi$) circuits implies PIT for general depth
- roABPs: natural analog of Boolean roBP which capture RL
- Read-once determinants: new deterministic parallel algorithm for perfect matching.

- Gaining insight into more general questions:
 - Intuitively: lower bounds imply PIT
 - Multilinear formulas: super polynomial bounds [Raz] but no PIT algorithms
 - PIT gives more information than lower bounds.

- Interesting math: Extensions of Sylvester-Gallai type theorems
Plan

✓ Basic definitions and motivation

✓ Universality of PIT
 ✓ Equivalence to deterministic polynomial factorization

✓ Hardness vs. Randomness
 ✓ PIT implies lower bounds and vice versa

✓ Survey of known results
 • PIT for
 – $\Sigma \Pi$ circuits
 – $\Sigma \Lambda \Sigma$ circuits
 – $\Sigma \Pi \Sigma$ circuits – the rank method
 • Summary
PIT for $\Sigma \Pi$ circuits

\[f = \sum_{e} c_{e} \prod_{i} x_{i}^{e_{i}} \] with polynomially many monomials

[\text{Klivans-Speilman}]: use $x_{i} \leftarrow y^{c_{i}}$ to map x-monomials 1-1

Set $c_{i} = c^{i} \text{ mod } p$ (p prime larger than r)

\[\bar{x}^{\bar{e}} \text{ is mapped to } y^{\sum e_{i}c_{i}} \text{ (mod p)} = y^{e(c)} \text{ (mod p)} \]

If $\forall e \neq e'$, $e(c) \neq e'(c)$ then monomials are mapped 1-1

If s monomials then s^2 differences, each of degree $\leq r$, going over all choices of c in $[rs^2]$ gives a good map

Each possible c gives a low-degree univariate in y, evaluating at enough points gives the hitting set. Size $O(r^3s^2)$.
PIT for $\Sigma\Lambda\Sigma$ circuits

Theorem: If leading monomial of f has m variables then dimension of partial derivatives of f is at least 2^m

Corollary: If f computed in size s then its leading monomial has at most $\log(ns)$ many variables.

Black Box PIT:

- “Guess” $\log(ns)$ variables. Set all other variables to zero.
- Interpolate resulting polynomial.

Theorem: Gives a hitting set of size $\deg^{\log(ns)}$.

Theorem [Forbes-Saptharishi-S]: By combining with PIT for roABP can get hitting set of size $s^{\log\log s}$.

Open: Polynomial time BB algorithm. ([Raz-S] gives WB)
PIT for $\Sigma \Pi \Sigma$ circuits

How does an identity look like?

If $M_1 + \ldots + M_k = 0$ then

Multiplying by a common factor:

$$\Pi x_i \cdot M_1 + \ldots + \Pi x_i \cdot M_k = 0$$

Adding two identities:

$$(M_1 + \ldots + M_k) + (T_1 + \ldots + T_k') = 0$$

How do the most basic identities look like?

Basic: cannot be “broken” to pieces (minimal) and no common linear factors (simple)
ΣΠΣ identities

\[C = M_1 + \ldots + M_k \quad M_i = \prod_{j=1}^{d_i} L_{i,j} \]

Rank: dimension of space spanned by \(\{L_{i,j}\} \)

Can we say anything meaningful about the rank?

Theorem [Dvir-S]: If \(C \equiv 0 \) is a basic identity then

\[\dim(C) \leq \text{Rank}(k,r) = (\log(r))^k \]

White-Box Algorithm: find partition to sub-circuits of low dimension (after removal of g.c.d.) and brute force verify that they vanish.

Improved \((nr)^{O(k)}\) algorithm by [Kayal-Saxena]
Black-Box PIT for $\Sigma \Pi \Sigma$ circuits

Black-Box Algorithm [Karnin-S]: Intuitively, if we project the inputs to a “low” dimensional space in a way that does not collapse the dimension below $\text{Rank}(k,r)$ then identity should not become zero.

Theorem [Gabizon-Raz]: \exists "small" explicit set of D-dimensional subspaces V_1,\ldots,V_m such that for every space of linear functions L, for most i:
$$\dim(L | V_i) = \min(\dim(L),D)$$

In other words: the linear functions in L remain as independent as possible on V_i.
Black-Box PIT for $\Sigma \Pi \Sigma$ circuits

Corollary: $\forall i \ C|_{v_i}$ has low "rank" \implies C has low "rank"

If C has high rank then by [Gabizon-Raz], for some i, $C|_{v_i}$ has high rank.
Black-Box PIT for $\Sigma\Pi\Sigma$ circuits

Corollary: $\forall i \ C \mid_{V_i}$ has low "rank" \implies C has low "rank"

Corollary: if $\forall \ i, \ C \mid_{V_i} \equiv 0$ then C has structure (i.e. C is sum of circuits of low “rank”)

If C is not a sum of low rank circuits then for some i, $C \mid_{V_i}$ is not a sum of low rank circuits. This contradicts the structural theorem.
Black-Box PIT for $\Sigma \Pi \Sigma$ circuits

Corollary: $\forall i \; C|_{V_i}$ has low "rank" \implies C has low "rank"

Corollary: if $\forall \; i, \; C|_{V_i} \equiv 0$ then C has structure (i.e. C is sum of circuits of low “rank”)

Theorem: if $\forall i, \; C|_{V_i} \equiv 0$ then $C \equiv 0$.

C is sum of low rank subcircuits \Rightarrow
$\exists V_i$ s.t. rank of subcircuits remain the same. $C|_{V_i}$ is zero \Rightarrow each subcircuit vanishes on $V_i \Rightarrow$ subcircuits compute the zero polynomial.
Black-Box PIT for \(\Sigma \Pi \Sigma \) circuits

Corollary: \(\forall i \ C \big|_{V_i} \) has low "rank" \(\Rightarrow \) C has low "rank"

Corollary: if \(\forall \ i, \ C \big|_{V_i} \equiv 0 \) then C has structure (i.e. C is sum of circuits of low “rank”)

Theorem: if \(\forall i, \ C \big|_{V_i} \equiv 0 \) then \(C \equiv 0 \).

Algorithm: For every i, brute force compute \(C \big|_{V_i} \)

Time: \(\text{poly}(n) \cdot r^{\dim(V_i)} = \text{poly}(n) \cdot r^O(\text{Rank}(k,r)) \)
$\Sigma\Pi\Sigma$ identities

Lesson 1: depth 3 identities are very structured

Lesson 2: Rank is an important invariant to study

Improvements [Kayal-Saraf,Saxena-Seshadri]:
- Finite field, $k \cdot \log(r) < \text{Rank}(k,r) < k^3 \cdot \log(r)$
- Over char 0, $k < \text{Rank}(k,r) < k^2 \cdot \log(k)$

Improves [Dvir-S] + [Karnin-S] (plug and play)

Best PIT [Saxena-Seshadri]: BB-PIT in time $(nr)^{O(k)}$ (proof inspired by rank techniques)
Bounding the rank

Basic observation: Consider $C = M_1 + M_2$

$M_1 = \begin{bmatrix}
L_1 & L_2 & \ldots & L_i & \ldots & L_j & \ldots & L_r
\end{bmatrix}$

$M_2 = \begin{bmatrix}
L'_1 & L'_2 & \ldots & L'_i & \ldots & L'_j & \ldots & L'_r
\end{bmatrix}$

Fact: linear functions are irreducible polynomial.

Corollary: $C \equiv 0$ then M_1, M_2 have same factors.

Corollary: \exists matching $i \rightarrow \pi(i)$ s.t. $L_i \sim L'_{\pi(i)}$
Bounding the rank

• Claim: \(\text{Rank}(3,r) = O(\log(r)) \)

Sketch: cover all linear functions in \(\log(r) \) steps, where at \(m' \)th step:

- dim of cover is \(O(m) \)
- \(\Omega(2^m) \) functions in span
Plan

✓ Basic definitions and motivation
✓ Universality of PIT
 ✓ Equivalence to deterministic polynomial factorization
✓ Hardness vs. Randomness
 ✓ PIT implies lower bounds and vice versa
✓ Survey of known results
✓ PIT for
 ✓ $\Sigma \Pi$ circuits
 ✓ $\Sigma \Lambda \Sigma$ circuits
 ✓ $\Sigma \Pi \Sigma$ circuits – the rank method
• Summary
Proofs – tailored for the model

Proofs usually use ‘weakness’ inherent in model

- **Depth 2**: few monomials. Substituting y^c_i to x_i we can isolate different monomials

- **Read-Once ABP**: Polynomial has few linearly independent partial derivatives [Nisan]. Keep track of a basis for derivatives to do PIT

- **ΣΠΣ(k)**: setting a linear function to zero reduces top fan-in. If $k=2$ then multiplication gates must be the same. Calls for induction

- **Multilinear ΣΠΣΠ(k)**: in some sense ‘combination’ of sparse polynomials and multilinear ΣΠΣ(k)

- **Read-Once-Formulas**: subformula of root contains $\frac{1}{2}$ of variables
Summary

• PIT natural derandomization problem
• Equivalent to proving lower bounds
• Results for restricted models
• Open:
 – PIT for multilinear formulas
 – Improved PIT for multilinear depth 3
 – Poly time PIT for $\Sigma\Lambda\Sigma$ circuits
 – Closure of classes (ABPs, formulas) under factorization
Limitations and Approaches
Plan

• **Limitations:**
 - Limitations of (shifted) Partial Derivative Method
 - Natural Proofs for Arithmetic Circuits
 - The case of $\Sigma \Pi \Sigma$ circuits

• **Approaches:**
 - Matrix Rigidity
 - Elusive Polynomial Maps
 - Geometric Complexity Theory (GCT)

• **Summary and open problems**
Complexity Measure

Recall:

- \(\mu_k(f) = \dim(\text{span}(\partial^{=k}(f))) \)
- \(\mu_k(f + g) \leq \mu_k(f) + \mu_k(g) \)
- \(\mu_k(\ell^r) \leq 1 \)

Note: \(\{\ell^r\} \) additive building blocks of \(\Sigma \wedge \Sigma \) circuits

Subadditivity implies: \(\text{size}_{\Sigma \wedge \Sigma}(f) \geq \frac{\mu_k(f)}{\mu_k(\ell^r)} \)

A barrier: when \(\mu_k(f) \) cannot be much larger than \(\mu_k(\text{simple building block}) \)
Abstracting the partial derivative method

(shifted) Partial derivative method: construct a huge matrix whose entries are linear functions in the coefficient of underlying polynomial. Rank of matrix is the measure

Example: \(f = xy + 1 \)

\[
\begin{bmatrix}
 f \\
 \frac{\partial f}{\partial x} \\
 \frac{\partial f}{\partial y} \\
 \frac{\partial^2 f}{\partial x \partial y}
\end{bmatrix}
= \begin{bmatrix}
 xy + 1 \\
 y \\
 x \\
 1
\end{bmatrix}
= \begin{bmatrix}
 1 & 0 & 0 & 1 \\
 0 & 0 & 1 & 0 \\
 0 & 1 & 0 & 0 \\
 0 & 0 & 0 & 1
\end{bmatrix}
\]
Abstract rank method

“Rank Method” = Linear map to matrices:

\[
L : \text{Polynomials} \rightarrow \text{Mat}_{m \times m}(\mathbb{F})
\]

Example: \(\ell^r = (\sum a_i x_i)^r = \sum_{\bar{e}} \binom{r}{\bar{e}} \bar{a}^{\bar{e}} x^{\bar{e}} \)

\[
L(\ell^r) = \sum_{\bar{e}} \binom{r}{\bar{e}} \bar{a}^{\bar{e}} L(x^{\bar{e}}) = \sum_{\bar{e}} \binom{r}{\bar{e}} \bar{a}^{\bar{e}} M_{\bar{e}}
\]

\(L(\ell^r) = \text{matrix with entries homogeneous polynomials in } \bar{a} \)

Measure: \(\mu_L(f) = \text{rank}(L(f)) \)
Lower bounds via abstract rank method

“Model” = Set of simple polynomials S that span all polynomials

Example: $S=\{\ell^r\}$ (for $\Sigma \land \Sigma$ circuits)

Example: $S=\{\prod_{i=1}^{f} \ell_i\}$ (for $\Sigma \Pi \Sigma$ circuits)

Example: $S=\{g_{i_1} \cdot g_{i_2} \cdot g_{i_3} \cdot g_{i_4} \cdot g_{i_5}\}$, $\deg(g_{i_j}) \leq r/2$ (for general circuits)

Best lower bound in the model: $\text{size}_{\text{model}}(f) \geq \mu_L(f)/\mu_L(S)$

Barrier: when this ratio cannot be too large
Barrier on rank method

Theorem [Efremenko-Garg-Oliveira-Wigderson]: Rank method cannot prove more than $\Omega(n)^{[r/2]}$ lower bound for homogeneous $\Sigma\Pi\Sigma$ circuits (similar bound also for $\Sigma\Lambda\Sigma$ circuits)

Cor : rank method cannot prove $8n$ lower bound on MM (best known lower bound is $3n-o(n)$ [S, Landsberg])

Note: for a random polynomial we expect $\Sigma\Pi\Sigma$ complexity to be $\Omega(n^{r-1}/r)$ (by counting degrees of freedom)

Recall: For the symmetric polynomial $\sigma^n_r(x)$ the lower bound obtained via partial derivative method is $\Omega(n^{r/2}/2^r)$
Proof Idea for ΣΛΣ circuits

Recall: \(L(\ell^r) \) is a matrix with entries homogeneous monomials in the coefficients of \(\ell \):

\[
L(\ell^r) = \sum_{\bar{e}} \binom{r}{\bar{e}} \bar{a}^\bar{e} L(x^{\bar{e}}) = \sum_{\bar{e}} \binom{r}{\bar{e}} \bar{a}^\bar{e} M_{\bar{e}}
\]

\(q \) = maximum rank of \(L(\ell^r) \)

= rank of \(\sum_{\bar{e}} \binom{r}{\bar{e}} \bar{a}^\bar{e} M_{\bar{e}} \) as a matrix over \(\mathbb{F}(\bar{a}) \)

(when entries viewed as polynomials in \(\bar{a} \))

Maximal possible rank = maximal rank in span\(\{L(\ell^r)\} \)

Main idea: show that \(L(\ell^r) \) are structured matrices and so is their span
Upper bounding the rank

Recall: \(L(\ell^r) = \sum_{\bar{e}} \binom{r}{\bar{e}} \bar{a}^{\bar{e}} M_{\bar{e}} \) has rank at most \(q \)

Can decompose over field of fractions (in \(\bar{a} \))

\[
L(\ell^r) = \sum_{i=1}^{q} \frac{1}{p(\bar{a})} v_i(\bar{a}) \otimes u_i(\bar{a})
\]

where \(v_i(\bar{a}), u_i(\bar{a}) \) \(\bar{a} \) vectors with entries polynomial in \(\bar{a} \), and \(p(\bar{a}) \) is a polynomial

We now perform Strassen’s trick to get rid of divisions!
\[L(\ell^r) = \sum_{i=1}^{q} \frac{1}{p(\bar{a})} v(\bar{a}) \otimes u(\bar{a}) \quad \text{w.l.o.g. } p(\bar{0}) = 1 \]

\[L(\ell^r) = \sum_{i=1}^{q} \frac{1}{1 - \tilde{p}(\bar{a})} v(\bar{a}) \otimes u(\bar{a}) \]

\[= \sum_{i=1}^{q} \left(1 + \tilde{p}(\bar{a}) + \tilde{p}^2(\bar{a}) + \tilde{p}^3(\bar{a}) + \cdots \right) v(\bar{a}) \otimes u(\bar{a}) \]

Homogeneity implies

\[L(\ell^r) = H_r \left(\sum_{i=1}^{q} \tilde{v}_i(\bar{a}) \otimes u(\bar{a}) \right) \]
\[L(\ell^r) = H_r \left(\sum_{i=1}^{q} \tilde{v}_i(\tilde{a}) \otimes u(\tilde{a}) \right) \]
\[= \sum_{i=1}^{q} \sum_{j=0}^{r} H_j(\tilde{v}_i(\tilde{a})) \otimes H_{r-j}(u_i(\tilde{a})) \]

Main point: one of the vectors has degree at most \(\left\lfloor \frac{r}{2} \right\rfloor \)

Cor: summand is \(A+B \) where columns of \(A \) (rows of \(B \))

belong to a fixed space of dimension \(\binom{n + \left\lfloor \frac{r}{2} \right\rfloor}{\left\lfloor \frac{r}{2} \right\rfloor} \)
Plan

• **Limitations:**
 - Limitations of (shifted) Partial Derivative Method
 - Natural Proofs for Arithmetic Circuits
 - The case of $\Sigma\Pi\Sigma$ circuits

• **Approaches:**
 - Matrix Rigidity
 - Elusive Polynomial Maps
 - Geometric Complexity Theory (GCT)

• **Summary and open problems**
Natural proofs

[Razborov-Rudich] A property P of Boolean functions (truth tables) is natural if:

Useful against \mathcal{C}: If $P(f) = 1$ then we get a lower bound for circuits from \mathcal{C} computing f

Constructivity: There is a $2^{\text{poly}(n)}$ sized circuit for computing $P(f)$ (input is truth table of f)

Largeness: For “many” functions f, $P(f) = 1$

[Razborov-Rudich]: All known lower bounds are natural

[Razborov-Rudich]: If PRFGs exist in \mathcal{C} then no strong lower bounds for \mathcal{C} (e.g. $\mathcal{C} = \text{TC}^0$)
Natural proofs barrier for arithmetic circuits?

Consider multilinear polynomials, given by list of coefficients

A property (polynomial) P is natural if

- **Constructivity**: there is a $2^{\text{poly}(n)}$ sized arithmetic circuit for computing $P(f)$
- **Usefulness**: $P(f) \neq 0$ implies lower bounds on f

Note: All known proofs are natural

Example: having high partial derivative rank can be verified using determinant

Def: P is \mathcal{D} natural against \mathcal{C} if P computed by circuits from \mathcal{D} and implies lower bounds for computing f in \mathcal{C}
Succinct hitting sets

Def: \mathcal{C} is succinct hitting set for \mathcal{D} if coefficient vectors of polynomials computed in \mathcal{C} form a hitting set for \mathcal{D}

Note: We consider log(n)-variate polynomials in \mathcal{C} and get hitting set for n-variate polynomials in \mathcal{D}

Observation [Grochow-Kumar-Saks-Saraf, Forbes-S-Volk]: No \mathcal{D} natural property against \mathcal{C}, if \mathcal{C} is succinct hitting set for \mathcal{D}

Conj: coefficient-lists of multilinear polynomial in VP hit VP (if true – no natural proofs for VP≠VNP)

Theorem [Forbes-S-Volk]: except of ro-Det all known hitting sets can be tweaked to multilinear-$\Sigma\Pi\Sigma$-succinct

Cor: Lower bounds on complexity of polynomials defining VP
Plan

• **Limitations:**
 ✓ Limitations of (shifted) Partial Derivative Method
 ✓ Natural Proofs for Arithmetic Circuits
 – The case of ΣΠΣ circuits

• **Approaches:**
 – Matrix Rigidity
 – Elusive Polynomial Maps
 – Geometric Complexity Theory (GCT)

• **Summary and open problems**
Barrier for Lower Bounds for $\Sigma \Pi \Sigma$ circuits

Recall: [S-Wigderson,Kayal-Saha-Tavenas] lower bound for $\Sigma \Pi \Sigma$ circuits showed there exist $\Omega(n)$ many multiplication gates each of degree $\Omega(n)$ ($\Omega(n^2)$)

Proof idea: restrict to a subspace to make high degree gate vanish and then use (shifted) partial derivative measure on remaining circuit

Note: this approach cannot prove that there are more than n multiplication gates

Question: is there a reason for such a barrier?
Approximating polynomials

Def: g algebraically approximates f if $f(x) = g(\varepsilon, x) + \varepsilon \cdot h(\varepsilon, x)$, where monomials in h have degree $> \deg(f)$

Theorem [Kumar]: every degree r polynomial can be approximated by $\Sigma \Pi \Sigma$ circuit with $r+1$ multiplication gates

“Cor”: algebraic (continuous) measures cannot prove that more than $r+1$ multiplication gates are needed

Rationale: if a measure μ is small for every circuit with $r+1$ gates then it is small also for the limit. Thus, every polynomial has small μ complexity
Plan

• Limitations:
 - Limitations of (shifted) Partial Derivative Method
 - Natural Proofs for Arithmetic Circuits
 - The case of $\Sigma\Pi\Sigma$ circuits

• Approaches:
 - Matrix Rigidity
 - Elusive Polynomial Maps
 - Geometric Complexity Theory (GCT)

• Summary and open problems
Matrix Rigidity

Def: matrix A is (r,s)-**rigid** if we need to change more than s entries to reduce rank to r

Whenever $A = B + C$ either $\text{rank}(B) > r$ or C contains more than s nonzero entries

Theorem [Valiant]: If A is $(n/\log \log n, n^{1+\varepsilon})$-rigid then no linear circuit of size $O(n)$ and depth $O(\log n)$ can compute $f(x) = Ax$

Counting arguments: most matrices $(\Omega(n), O(n^2))$-rigid

Applications: Circuit complexity, lower bounds for data structures, locally decodable codes, ...
Theorem [Friedman, Shokrollahi-Spielman-Stemann]: super regular matrices are \((r, \frac{n^2}{r \cdot \log(n/r)})\)-rigid

Proof idea: Some \(r \times r\) submatrix is not touched

Theorem [Alman-Williams, Dvir-Liu]: Hadmard like matrices not rigid enough

Theorem [Alman-Chen]: Using an NP oracle can construct \(\left(2^{\log n^{1/4}}, \Omega(n^2)\right)\)-rigid matrix

Note: new result by Orr et al.

Open: Find an explicit rigid matrix

Open: an explicit \((n-1, \Omega(n))\)-matrix
Plan

• **Limitations:**
 - Limitations of (shifted) Partial Derivative Method
 - Natural Proofs for Arithmetic Circuits
 - The case of $\Sigma \Pi \Sigma$ circuits

✓ **Approaches:**
 - Matrix rigidity
 - Elusive Polynomial Maps
 - Geometric Complexity Theory (GCT)

• **Summary and open problems**
Elusive polynomial mappings

Def [Raz]: \(f = (f_1, \ldots, f_m): \mathbb{F}^n \rightarrow \mathbb{F}^m \) is \((s,r)\)-elusive if for every \(g = (g_1, \ldots, g_m): \mathbb{F}^s \rightarrow \mathbb{F}^m \), where \(\deg(g_i) \leq r \), \(\text{Image}(f) \not\subset \text{Image}(g) \)

Theorem [Raz]: If \(f \) is \((s,2)\)-elusive for \(m = n^{\omega(1)} \) and \(s > m^{0.9} \), then super-polynomial lower bounds for \(f \)

Note: the moment curve (in 1 variable) is \((m-1,1)\)-elusive for every \(m \)
Universal circuit

Def: circuit for degree r is in normal form if
- 2r alternating layers
- Edges go between layers
- Each constant gate has fan-out 1

Easy: each circuit can be made normal with poly blow up

Claim: for size s and degree r \exists universal circuit U in x and $y=(y_1, \ldots, y_s)$ such that
- $\text{size}(U) = \text{poly}(r, s)$
- every size s normal circuit in x is obtained by assigning values to y vars
Circuits as polynomial maps

Note: Output of U is a polynomial in x,y. View it as a polynomial in x whose coefficients are polynomials in y

$\Rightarrow U$ defines a map $\Gamma: \mathbb{F}^s \rightarrow \mathbb{F}^m$ for $m = \binom{n+r}{n}$

mapping y to coefficient polynomials of x-monomials

Claim: Γ has degree $2r-1$

Proof: each y variable used once in a layered circuit

Claim: if f has size s then f in image of Γ

Proof: follows from universality of U
Elusive maps

Cor: If $G: \mathbb{F}^n \rightarrow \mathbb{F}^m$ is $(s,2r-1)$-elusive then for some α, $G(\alpha)$ defines a hard polynomial (requires size $> s$)

Cor: if for every α, $G(\alpha)$ in VNP then can separate VP from VNP like that

Note: to claim about $(s,2)$-elusive maps need to use depth-reduction tricks
Plan

• **Limitations:**
 ✓ Limitations of (shifted) Partial Derivative Method
 ✓ Natural Proofs for Arithmetic Circuits
 ✓ The case of $\Sigma \Pi \Sigma$ circuits

✓ **Approaches:**
 ✓ Matrix Rigidity
 ✓ Elusive Polynomial Maps
 – Geometric Complexity Theory (GCT)

• **Summary and open problems**
Recall: want to show Perm is not a projection of Det

Action of matrices on polynomials: $(A \circ f)(x) = f(A \cdot x)$

Goal: show Perm_n not in orbit of Det_m

Fact: the orbit of Det under matrices = closure of orbit of Det under GL (invertible matrices)

Fact: if Perm not in orbit then there is F (that takes as input coefficient vectors), such that F vanishes on (closure of) orbit of Det but not on Perm

Note: similar to Farkas lemma in linear programming

GCT approach [Mulmuley-Sohoni]: look for such polynomial using representation theory of GL
Det

A

Perm

Zero(F)
Why representation theory?

Separating F comes from a vector space \mathcal{V} of polynomials acting on coefficient vectors.

Can view GL action on coefficient vectors as action on polynomials from \mathcal{V}: $(A \circ F)(f) = F(A^t \circ f)$ (representation).

Consider all such F that vanish on the orbit of Det (Perm). They form a subrepresentation (linear subspace on which GL acts).

GCT approach: prove that these subrepresentations coming from the orbits of Det and Perm are different and conclude the existence of a separating F.
Multiplicities

Conj [Mulmuley-Sohony]: Action of GL on orbit of Det has more irreducible representations than its action on orbit of $Perm$

Idea used by [Bürgisser-Ikenmeyer] to prove lower bounds for border rank of MM

Theorem [Ikenmeyer-Panova, Bürgisser-Ikenmeyer-Panova]: They have the same set of irreducible representation. Even $\Sigma \Lambda \Sigma$ circuits have the same set

New approach: prove that some irreducible representation appears more (higher multiplicity) over $Perm$ than over Det

Recently implemented by [Ikenmeyer-Kandasamy] to separate a monomial from $\Sigma \Lambda \Sigma$
Summary

1. Basic definitions and structure results
2. Lower Bound techniques
3. PIT, hardness-randomness tradeoffs
4. Limitations, approaches

Model simpler than Boolean circuits, offers more chances to prove “big” results, classical math fits more naturally, many many open problems
Some more open problems

• Prove super polynomial lower bounds for bounded depth circuits over \mathbb{F}_3
• Prove super quadratic lower bounds for $\sigma_d(L_1, \ldots, L_m)$
• Exponential lower bound for multilinear formulas
• Separate multilinear and non-multilinear formula size
• Separate multilinear ABPs from multilinear circuits
• Super-poly lower bound for multilinear circuits
• Are formulas/ABPs/bounded-depth-circuits closed to taking factors?
Some more open problems

- What is the complexity of PIT: given H how hard is it to verify that H is a hitting set. Currently in EXPSPACE

- Results for read-once ABPs much better than in the Boolean world. Can techniques be used there?

- Theory of [Khovanskii] gives analogs of Bezout’s theorem for sparse polynomials over \mathbb{R} (sparsity replaces degree). Improve quantitative results. Would solve long standing open problems (PIT and algorithms)

- Reconstruction of arithmetic circuits

- ...
Additional reading

[Bürgisser-Clausen-Shokrollahi]: Algebraic Complexity Theory

[S-Yehudayoff]: Arithmetic Circuits: a survey of recent results and open questions

[Saptharishi]: A selection of lower bounds in arithmetic circuit complexity

[Blaser-Ikenmeyer]: Introduction to geometric complexity theory (lecture notes)
Some more photos