How to Prove Lower Bounds With Algorithms

Lecture 1: Introduction

A view of algorithms and complexity, from 30,000 ft (9144 m)

- Algorithm designers
- Complexity theorists

- What makes some problems easy to solve? When can we find an *efficient* algorithm?
- What makes other problems difficult? When can we prove that a problem is not easy? (When can we prove a *lower bound on the resources needed to solve a problem*?)

The tasks of the algorithm designer and the complexity theorist appear to be inherently opposite ones.

- Algorithm designers
- Complexity theorists

Furthermore, it has been generally believed that algorithm design is somewhat "easier" than lower bounds

• In algorithm design: you only have to find a single clever algorithm that solves a problem well

My Opinion: This isn't why lower bounds are hard!

• In lower bounds: you must reason about "all possible" algorithms, and argue that none of them work well ... but there are thousands of worst-case algorithms which analyze all possible finite objects of some kind...

Why are lower bounds hard to prove?

There are many known "no-go" theorems

- Relativization [70's]
- Natural Proofs [90's]
- Algebrization [00's]

Summary: The standard methods that we use to reason about generic computation cannot resolve $P \neq NP$ (or $P \neq PSPACE$, or $EXP \neq ZPP$, or $NEXP \neq BPP$, etc.)

Great pessimism in complexity theory

The Relativization Barrier, in One Slide

Let $O: \{0,1\}^* \rightarrow \{0,1\}$ be arbitrary. An algorithm A^0 with oracle 0 gets to call 0 as a sub-routine, and it takes one step. You can slap an oracle on practically anything in complexity theory... $TIME[t(n)] = \{ \text{decision problems solvable in time } t(n) \}$ $TIME^{O}[t(n)] = \{ \text{decision problems solvable in time } t(n) \text{ with oracle } O \}$ $P = \{ \text{decision problems solvable by some poly-time Turing machine} \}$ $P^{O} = \{ \text{decision problems solvable in poly-time with oracle } O \}$ **Boolean circuits with** *O***-oracle gates:** have AND, OR, NOT, and gates computing O on fixed input lengths 1. Most theorems in complexity theory "relativize": still hold when oracles are added [this is very powerful! you get "uncountably many" corollaries for free!] 2. But results such as P = NP (or $P \neq NP$, or $P \neq PSPACE$, or ...) *cannot* relativize: example: there are oracles A, B such that $P^A = NP^A$ and $P^B \neq NP^B$

How will we make progress?

There are many known "no-go" theorems

- Relativization [70's]
- Natural Proofs [90's]
- Algebrization [00's]

Summary: The standard methods that we use to reason about generic computation cannot resolve $P \neq NP$ (or $P \neq PSPACE$, or $EXP \neq ZPP$, or $NEXP \neq BPP$, etc.)

Great pessimism in complexity theory

One Direction for Progress:

Find cases where Algorithm Design can imply Lower Bounds

They are much more than *opposites*! There are deeper connections we are slowly uncovering.

Designing Algorithms \approx **Proving Lower Bounds**

A typical result in Algorithm Design: "Here is an algorithm) that solves the problem, on all possible instances of the problem" A typical theorem from Lower Bounds: "Here is a proof) that the problem can't be solved, by all possible algorithms of some type"

Meta-computation: Problems whose input is the code of an algorithm Simple Example: The Time Hierarchy TheoremTheorem: For "reasonable" f, g where g(n) >> f(n),TIME(f(n)) ⊊ TIME(g(n))An algorithm determines
how small g(n) can beProof Sketch: Define an algorithm N as follows.

N on input $\langle M \rangle$: "Let $n = |\langle M \rangle|$. Simulate M on $\langle M \rangle$ for up to f(n) steps. If the sim halts, output the opposite answer."

Claim: The function computed by N cannot be in time f(n).

Proof: Assume some D runs in f(n) time, where D is equivalent to N. By assumption, D on $\langle D \rangle$ runs in f(n) time and outputs the *opposite* answer of D on $\langle D \rangle$ after f(n) steps! Contradiction!

Universal simulator -> N can be implemented in g(n) time

Another Simple Example

If PSPACE = EXPTIME then PTIME \neq PSPACE

PSPACE = problems solvable in polynomial space PTIME = in polynomial time EXPTIME = in exponential time

Proof: PTIME ≠ EXPTIME (time hierarchy theorem) So PTIME = PSPACE implies PSPACE ≠ EXPTIME. QED

> Many such results can be proved.... But they do not seem very useful!

Big Idea: Interesting circuit-analysis algorithms tell us about the *limitations* of circuits in modeling algorithms

"Non-Trivial" Circuit Analysis Algorithm

Circuits are **not** "black-boxes" to algorithms!

Circuit Complexity: A Crash Course

Algorithms

Can take in **arbitrarily long inputs** and still solve the (decision) problem

 $f: \{0, 1\}^* \to \{0, 1\}$

To compute functions of the form

 $f: \{0, 1\}^* \rightarrow \{0, 1\}$ with circuits, we define a

For each n, have a circuit C_n to be run on all inputs of length n

A circuit family can be viewed as a "program with an *infinite-length description*"

P/poly = { $f : \{0, 1\}^* \rightarrow \{0, 1\}$ computable by a circuit family {C_n} where ∃ c s.t. for every n, the size of C_n is at most cn^c }

Each circuit is "small" relative to its number of inputs

 $\begin{array}{l} \mathsf{P/poly} = \{ \ f : \{0,1\}^* \rightarrow \{0,1\} \ \text{computable by a circuit family} \ \{\mathsf{C}_n\} \\ \text{where for every } n, \text{ the size of } \mathsf{C}_n \ \text{is at most poly}(n) \ \} \end{array}$

Conjecture: NP $\not\subset$ P/poly

Why study this model?

One motivation: Proving limitations on circuit families is a step towards *non-asymptotic complexity theory:*

Concrete limitations on computing within the known universe "Any computer solving most instances of this 1000-bit problem needs at least 10⁸⁰ bits to be described"

[Meyer-Stockmeyer '70s]

Universe stores < 10⁸⁰ bits [Bekenstein '70s]

Proved such a result (for an EXPSPACE problem)

Which Functions Have High Circuit Complexity?

Nearly *all* of them... "Most" functions require *huge* circuits!

Theorem [Shannon '49, Lupanov '58]

With high probability, a randomly chosen function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ does not have circuits of size less than $\sim 2^n/n$ (and: every f has a circuit of size about $\sim 2^n/n$)

Circuit Lower Bounds ⇒ **Derandomization**

Thm [Nisan-Wigderson, Impagliazzo-Wigderson 90s]

If there is an $f : \{0,1\}^* \to \{0,1\}$ computable in $2^{O(n)}$ time that does not have circuits of size at most $2^{\varepsilon n}$ **This is widely** (for all but finitely many n)

Then Randomized Time \equiv Deterministic Time (many other results in this direction)

Another motivation to prove circuit lower bounds!

Idea: If f "looks random" to all circuits, then f can be used to construct a pseudorandom generator, replacing true randomness in efficient computation!

Algorithms vs Circuit Families

Exponential Time Versus "Shallow" Nets?

We don't yet understand very simple neural networks!

"Neural nets with one hidden layer" -- this should be a very weak class!

Depth-two threshold circuits

Here endeth the Crash Course...

Now, what kinds of circuit analysis problems will we consider?

Generalized Circuit Satisfiability

Let C be a class of Boolean circuits

 $C = \{\text{formulas}\}, C = \{\text{arbitrary circuits}\}, C = \{3CNFs\}$

The C-SAT Problem:

Given a circuit $K(x_1,...,x_n)$ from C, is there an assignment $(a_1, ..., a_n) \in \{0,1\}^n$ such that $K(a_1,...,a_n) = 1$?

A very "simple" circuit analysis problem! [CL'70s] C-SAT is NP-complete for practically all interesting C C-SAT is solvable in $O(2^n |K|)$ time by brute force QUESTION: For what C is there a *faster* algorithm? Example: for 3CNFs there is a long line of work... Best known is about $O(1.31^n)$ time

Gap Circuit Satisfiability

Let C be a class of Boolean circuits

 $C = \{\text{formulas}\}, C = \{\text{arbitrary circuits}\}, C = \{3CNFs\}$

Gap-C-SAT:

Given $K(\mathbf{x}_1,...,\mathbf{x}_n)$ from C, and the **promise** that either (a) $K \equiv \mathbf{0}$, or (b) $Pr_x[K(x) = \mathbf{1}] \ge \mathbf{1}/2$, **decide** which is true.

Even simpler! In randomized polynomial time

[Folklore?] If Gap-Circuit-SAT ∈ P then P = RP
[Hirsch, Trevisan, ...] Gap-kSAT ∈ P, for all k
Best known algorithm for Gap-Circuit-SAT: O(2ⁿ |K|) time
QUESTION: For what C is there a *faster* algorithm?

"Perfect" Circuit Analysis Circuit Lower Bounds

[Karp-Lipton-Meyer '80]

Suppose we had *extremely efficient* circuit-analysis algorithms. Then there are problems with exponential-time algorithms *that require maximum circuit complexity*

This is an interesting implication... But we do not believe that the hypothesis is true, and we believe that the consequence is true!

Aside: Could you use this to separate P from NP??

Faster Algorithms ⇒ Lower Bounds

C needs some closure properties	 Slightly Faster Circuit-SAT [R.W. '10,'11] Deterministic algorithms for: Circuit SAT in O(2ⁿ/n¹⁰) time with n inputs and n^k gates Formula SAT in O(2ⁿ/n¹⁰) 	No "Circuits for NEXP"Would imply:• NEXP ⊄ P/poly• NEXP ⊄ Poly-size Formulas	
	• <i>C</i> -SAT in O(2 ⁿ /n ¹⁰)	• NEXP <i>⊄ poly-size C</i>	Concrete LBs!
	 Gap-C-SAT is in O(2ⁿ/n¹⁰) time on n^k size (Easily solved w/ randomness!) 	NEXP ⊄ poly-size <i>C</i>	C = ACC [W'11] C = ACC of THR [W'14]

Even Faster \implies **"Easier" Functions**

Better "Algorithms for Circuits" [Murray-W. '18] Det. algorithm for some $\epsilon > 0$:

- Circuit SAT in $O(2^{n-n^{\epsilon}})$ time with n inputs and $2^{n^{\epsilon}}$ gates
- Formula SAT in $O(2^{n-n^{\epsilon}})$
- **C-SAT** in $O(2^{n-n^{\epsilon}})$

• Gap-*C*-SAT is in $O(2^{n-n^{\epsilon}})$ time on $2^{n^{\epsilon}}$ gates

NTIME[$n^{polylog n}$] $\not\subset$ psize C

- NTIME[$n^{polylog n}$] $\not\subset$ psize C
- NTIME[$n^{polylog n}$] $\not\subset$ NC1

Would imply:

• NTIME[$n^{polylog n}$] $\not\subset$ P/poly

No "Circuits for Quasi-NP"

Even Faster \implies **"Easier" Functions**

	Fine-Grained SAT Algorithms [Murray-W. '18]	No "Circuits for NP"	
	Det. algorithm for some $\epsilon > 0$:	Would imply:	
Note: Not currently	• Circuit SAT in $O(2^{(1-\epsilon)n})$ time on n inputs and $2^{\epsilon n}$ gates	• NP $\not\subset$ SIZE(n^k) for all k	
believed	• Formula SAT in $O(2^{(1-\epsilon)n})$	• NP $\not\subset$ Formula-SIZE(n^k)	
	• C-SAT in $O(2^{(1-\epsilon)n})$	• NP $\not\subset C$ -SIZE(n^k) for all k	
			C = SUM of TH C = SUM of Re
Strongly believed to be true	• Gap- <i>C</i> -SAT is in $O(2^{(1-\epsilon)n})$ time on $2^{\epsilon n}$ gates	NP $\not\subset C$ -SIZE(n^k) for all k	C = SUM of lov degree polys [W'18]
	(Implied by PromiseRP in P)		

Faster #SAT ⇒ Average-Case Lower Bounds

(and for larger circuit classes!)

Given a circuit of size **s**, approximate its *fraction* of SAT assignments to within **+- 1/s** R

Why on Earth would it be true?

Some More Intuition

Faster Circuit-SAT algorithms reveal a *weakness* of small circuits *Small circuits cannot "obfuscate" the all-zeroes function as well as a black-box can!*

Proposition: For every algorithm A computing SAT on black-boxes, there is a box B such that A must call B for $\Omega(2^n)$ times!

Therefore: a faster Circuit SAT algorithm demonstrates a concrete difference between a "white-box" circuit problem and a "black-box" problem

Some More Intuition

Faster Circuit-SAT algorithms show a **strength** of "faster than 2ⁿ" algorithms! A "quicker" algorithm can tell when a given circuit computes the all-zeroes function!

Therefore, Faster-Than-2ⁿ time Algorithms are "strong" and Small Circuits are "weak"... so we can construct an "algorithmically-defined function" which doesn't have small circuits

A Concrete Lower Bound From Algorithms

Thm [Murray-W'18]: Quasi-NP ⊄ ACC⁰

Quasi-NP = NTIME[$2^{\log^{O(1)} n}$]

ACC⁰: polynomial size, constant depth circuits with AND, OR, and MOD[m] gates for some constant m. A simple but Annoying Circuit Class to prove lower bounds for (proposed in 1986 by Barrington)

How Quasi-NP $\not\subset$ **ACC**⁰ **Was Proved**

Let \mathbb{C} be a "typical" circuit class (like ACC⁰) Thm A [MW'18] (algorithm design \rightarrow lower bounds) If for some $\mathcal{E} > 0$, Gap- \mathbb{C} -SAT on $2^{n^{\mathcal{E}}}$ size is in O($2^{n-n^{\mathcal{E}}}$) time, then Quasi-NP does not have poly-size \mathbb{C} -circuits.

Thm B [W'11] (algorithm)

 $\exists \mathcal{E} > 0$, #ACC⁰-SAT on $2^{n^{\mathcal{E}}}$ size is in $O(2^{n-n^{\mathcal{E}}})$ time. [Uses a representation theorem for ACC⁰ from 1990, that people long suspected should imply lower bounds!]

More on Theorem A

Let \mathbb{C} be some circuit class (like ACC⁰)

Thm A [MW'18]:

If for some $\mathcal{E} > 0$, Gap- \mathbb{C} -SAT on $2^{n^{\mathcal{E}}}$ size is in O($2^{n-n^{\mathcal{E}}}$) time, then Quasi-NP does not have poly-size \mathbb{C} -circuits. Idea. Show that if we assume both:

> (1) Quasi-NP has poly-size C-circuits, and

(2) a faster \mathbb{C} -SAT algorithm

Then show $\exists k \text{ NTIME}[n^{\log^k n}] \subseteq \text{NTIME}[o(n^{\log^k n})]$ Contradicts the nondeterministic time hierarchy: there is L_{hard} in $\text{NTIME}[n^{\log^k n}] \setminus \text{NTIME}[o(n^{\log^k n})]$