
How to Prove Lower 
Bounds With Algorithms

Lecture 1: Introduction



A view of algorithms and complexity, from 30,000 ft

• Algorithm designers

• Complexity theorists

• What makes some problems easy to solve? 
When can we find an efficient algorithm?

• What makes other problems difficult?
When can we prove that a problem is not easy?

(When can we prove a lower bound on
the resources needed to solve a problem?)

(9144 m)



• Algorithm designers

• Complexity theorists

Furthermore, it has been generally believed that 
algorithm design is somewhat “easier” than lower bounds

• In algorithm design: you only have to find a single clever 
algorithm that solves a problem well

• In lower bounds: you must reason about “all possible” 
algorithms, and argue that none of them work well
… but there are thousands of worst-case algorithms 
which analyze all possible finite objects of some kind…

The tasks of the algorithm designer and the complexity 
theorist appear to be inherently opposite ones.

My Opinion:
This isn’t why lower 

bounds are hard!



Why are lower bounds hard to prove?

There are many known “no-go” theorems
• Relativization [70’s]
• Natural Proofs  [90’s]
• Algebrization [00’s]

Great pessimism in complexity theory

Summary: The standard methods that we use to reason 
about generic computation cannot resolve P ≠ NP

(or P ≠ PSPACE, or EXP ≠ ZPP, or NEXP ≠ BPP, etc.)



The Relativization Barrier, in One Slide

Let 𝑂 ∶ 0,1 ⋆ → {0,1} be arbitrary.
An algorithm 𝐴𝑂 with oracle 𝑂 gets to call 𝑂 as a sub-routine, and it takes one step.

You can slap an oracle on practically anything in complexity theory…
𝑇𝐼𝑀𝐸 𝑡(𝑛) ={decision problems solvable in time 𝑡(𝑛)}

𝑇𝐼𝑀𝐸𝑂 𝑡(𝑛) ={decision problems solvable in time 𝑡(𝑛) with oracle 𝑂}
𝑷 = {decision problems solvable by some poly-time Turing machine}

𝑷𝑶 = {decision problems solvable in poly-time with oracle 𝑂}
Boolean circuits with 𝑂-oracle gates: 
have AND, OR, NOT, and gates computing 𝑂 on fixed input lengths

1. Most theorems in complexity theory “relativize”: still hold when oracles are added
[this is very powerful! you get “uncountably many” corollaries for free!]

2. But results such as 𝑃 = 𝑁𝑃 (or 𝑃 ≠ 𝑁𝑃, or 𝑃 ≠ 𝑃𝑆𝑃𝐴𝐶𝐸, or …) cannot relativize:
example: there are oracles 𝐴, 𝐵 such that 𝑃𝐴 = 𝑁𝑃𝐴 and 𝑃𝐵 ≠ 𝑁𝑃𝐵



How will we make progress?

There are many known “no-go” theorems
• Relativization [70’s]
• Natural Proofs  [90’s]
• Algebrization [00’s]

Great pessimism in complexity theory

Summary: The standard methods that we use to reason 
about generic computation cannot resolve P ≠ NP

(or P ≠ PSPACE, or EXP ≠ ZPP, or NEXP ≠ BPP, etc.)



They are much more than opposites!
There are deeper connections we are slowly uncovering.

A typical result in Algorithm Design:
“Here is an algorithm A that solves the problem, 

on all possible instances of the problem"

A typical theorem from Lower Bounds:
“Here is a proof P that the problem can’t be solved, 

by all possible algorithms of some type"

One Direction for Progress: 
Find cases where Algorithm Design can imply Lower Bounds

Meta-computation:
Problems whose 

input is the code of 
an algorithm 

Designing Algorithms ≈ Proving Lower Bounds 
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Proof Sketch:  Define an algorithm N as follows.

N on input ⟨M⟩: “Let 𝒏 = |⟨M⟩|. Simulate M on ⟨M⟩ for up to f(𝒏)
steps. If the sim halts, output the opposite answer.”

Claim: The function computed by N cannot be in time f(𝒏).

Proof: Assume some D runs in f(𝒏) time, where D is equivalent to N.
By assumption, D on ⟨D⟩ runs in f(𝒏) time and outputs the 

opposite answer of D on ⟨D⟩ after f(𝒏) steps! Contradiction!

Universal simulator ➔ N can be implemented in g(n) time

Theorem: For “reasonable” f, g where g(n) >> f(n),

TIME(f(n)) ⊊ TIME(g(n))

Simple Example: The Time Hierarchy Theorem

An algorithm determines 
how small g(n) can be



PSPACE = problems solvable in polynomial space

PTIME =    ….  in polynomial time

EXPTIME = …   in exponential time

Another Simple Example

Many such results can be proved…. 
But they do not seem very useful!

If PSPACE = EXPTIME then PTIME ≠ PSPACE 

Proof: PTIME ≠ EXPTIME (time hierarchy theorem) 
So PTIME = PSPACE implies PSPACE ≠ EXPTIME.   QED



Big Idea: Interesting circuit-analysis algorithms 
tell us about the limitations of circuits in modeling algorithms

∃

∀

“Non-Trivial” 
Circuit Analysis

Algorithm Circuit Lower Bounds

SAT? YES/NO ∃”interesting”𝑓

∀

≠
Circuits are not “black-boxes” to algorithms!



Circuit Complexity: 
A Crash Course



Circuits

For each 𝑛, have a circuit  C𝒏 to be run on all inputs of length 𝑛

P/poly = { 𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏} computable by a circuit family {C𝒏} 
where ∃ 𝑐 s.t. for every 𝑛, the size of C𝒏 is at most 𝒄𝒏𝒄 }

Each circuit is “small” relative to its number of inputs 

C1 C10 C1000

A circuit family can be viewed as a “program with an infinite-length description”

Can take in arbitrarily long inputs
and still solve the (decision) problem

Can only take in inputs of a fixed length

…            … …      … …     …
C100

Algorithms

Circuit Family =  { ,        ,           , ,  }

𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏}
𝒈: 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}

To compute functions of the form
𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏}

with circuits, we define a



Concrete limitations on computing within the known universe
“Any computer solving most instances of this 1000-bit problem 

needs at least 1080 bits to be described”

C1 C10 C1000

…            … …      … …     …
C100

Circuit Family =  { ,        ,           , ,  }

P/poly = { 𝒇 ∶ 𝟎, 𝟏 ∗ → {𝟎, 𝟏} computable by a circuit family {C𝒏} 
where for every 𝑛, the size of C𝒏 is at most poly(𝒏)  }

Why study this model?

One motivation: Proving limitations on circuit families is a step 

towards non-asymptotic complexity theory:

[Meyer-Stockmeyer ‘70s]
Proved such a result 
(for an EXPSPACE problem)

Universe stores < 1080 bits  [Bekenstein ‘70s]

Conjecture:  NP  P/poly



Which Functions Have High Circuit Complexity?

Nearly all of them… “Most” functions require huge circuits!

Theorem [Shannon ’49, Lupanov ‘58]
With high probability, 
a randomly chosen function  𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}
does not have circuits of size less than ∼ 𝟐𝒏/𝒏
(and: every 𝒇 has a circuit of size about ∼ 𝟐𝒏/𝒏)

Which “natural” functions exhibit this 
exponential behavior?

0 1 0 1 1 0 1 0 0 1



Circuit Lower Bounds ⇒ Derandomization

Thm [Nisan-Wigderson, Impagliazzo-Wigderson 90s]

If there is an 𝑓 ∶ 0,1 ⋆ → {0,1}

computable in 𝟐𝑶 𝒏 time 
that does not have circuits of size at most 𝟐𝜺𝒏

(for all but finitely many n)

Then Randomized Time ≡ Deterministic Time 
(many other results in this direction)

Idea: If f “looks random” to all circuits, then f can be 
used to construct a pseudorandom generator, replacing 

true randomness in efficient computation!  

This is widely 
believed!

Another 
motivation to 
prove circuit 

lower bounds!



EXPONENTIAL TIME
(𝟐𝒏 steps)

T(n) time on inputs of length n

Algorithms vs Circuit Families

C𝒏 has ≈ 𝒑𝒐𝒍𝒚(T(n)) size

C1 C2 C3{     ,       ,        ,…}
There is a family where every C𝒏 has ≈ size n No algorithm whatsoever!

BPP is in P/poly

Some undecidable problems are in P/poly

C1 C2 C3{     ,       ,        ,…}

C1 C2 C3{     ,       ,        ,…}

EXP in P/poly is open!
(even NEXP in P/poly is open!!)

every C𝒏 has ≈ n2 size !!

Conjecture:  NP  P/poly



Exponential Time Versus “Shallow” Nets?

NONDETERMISTIC 
EXPONENTIAL TIME
(solutions of 𝟐𝒏 size,
verified in 𝟐𝒏 time!)

…

n3

“neurons” 𝒚𝟏 … 𝒚𝒏

 𝑤𝑖𝑧𝑖 ≥ 𝑡?

 𝑤′𝑖𝑦𝑖 ≥ 𝑡′?  𝑤′′𝑖𝑦𝑖 ≥ 𝑡′′?

C1 C2 Cn{     ,       ,…,        ,…}

zoom in

“Neural nets with one hidden layer“
-- this should be a very weak class!

We don’t yet understand 
very simple neural 

networks!

THIS IS OPEN!!

Depth-two threshold circuits



Here endeth the Crash Course…

Now, what kinds of circuit analysis 
problems will we consider?



Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

A very “simple” circuit analysis problem!
[CL’70s] C-SAT is NP-complete for practically all interesting C
C-SAT is solvable in O(2n |K|) time by brute force

QUESTION: For what C is there a faster algorithm?
Example: for 3CNFs there is a long line of work… 

Best known is about 𝑂(1.31𝑛) time 

Generalized Circuit Satisfiability

The C-SAT Problem:
Given a circuit K(x1,…,xn) from C, is there an 

assignment (a1, …, an) ∈ {0,1}n such that K(a1,…,an) =1?



Gap Circuit Satisfiability

Let C be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

Even simpler! In randomized polynomial time

[Folklore?]  If Gap-Circuit-SAT ∈ P then P = RP
[Hirsch, Trevisan, …]  Gap-kSAT ∈ P, for all k
Best known algorithm for Gap-Circuit-SAT: O(2n |K|) time

QUESTION: For what C is there a faster algorithm?

Gap-C-SAT:
Given 𝑲(x1,…,xn) from C, and the promise that either 

(a) 𝑲 ≡ 0, or (b) 𝑷𝒓𝒙 𝑲 𝒙 = 𝟏 ≥ 𝟏/𝟐,
decide which is true.



“Perfect” Circuit Analysis ➔ Circuit Lower Bounds

[Karp-Lipton-Meyer ‘80]
Suppose we had extremely efficient circuit-analysis 
algorithms. Then there are problems 
with exponential-time algorithms
that require maximum circuit complexity.

P = NP EXP needs circuits 
(Circuit SAT in P) of 𝛀(𝟐𝒏/𝒏) size

This is an interesting implication…
But we do not believe that the hypothesis is true, 
and we believe that the consequence is true!

Aside: Could you use this to 
separate P from NP??



Faster Algorithms ⟹ Lower Bounds

Slightly Faster Circuit-SAT
[R.W. ’10,’11]

Deterministic algorithms for:
• Circuit SAT in O(2n/n10) time

with n inputs and nk gates

• Formula SAT in O(2n/n10)

• 𝑪-SAT in O(2n/n10)

• Gap-𝑪-SAT is in O(2n/n10) 
time on nk size

(Easily solved w/ randomness!)

No “Circuits for NEXP”

Would imply:

• NEXP  P/poly

• NEXP  Poly-size Formulas

• NEXP  poly-size 𝑪

NEXP  poly-size 𝑪

Concrete LBs!
𝑪 = ACC
[W’11]
𝑪 = ACC of THR
[W’14]

C needs 
some closure 

properties



Even Faster ⟹ “Easier” Functions

Better “Algorithms for Circuits”
[Murray-W. ’18]

Det. algorithm for some 𝝐 > 𝟎:

• Circuit SAT in O(2𝑛−𝑛𝜖
) time

with n inputs and 2𝑛𝜖
gates

• Formula SAT in O(2𝑛−𝑛𝜖
)

• 𝑪-SAT in O(2𝑛−𝑛𝜖
)

• Gap-𝑪-SAT is in O(𝟐𝒏−𝒏𝝐
) 

time on 2𝑛𝜖
gates

No “Circuits for Quasi-NP”

Would imply:

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  P/poly

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  NC1

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  psize 𝑪

NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏]  psize 𝑪



Fine-Grained SAT Algorithms
[Murray-W. ’18]

Det. algorithm for some 𝝐 > 𝟎:

• Circuit SAT in O(2(1−𝜖)𝑛) time
on n inputs and 2𝜖𝑛 gates

• Formula SAT in O(2(1−𝜖)𝑛)

• 𝑪-SAT in O(2(1−𝜖)𝑛) 

• Gap-𝑪-SAT is in O(𝟐 𝟏−𝝐 𝒏) 
time on 2𝜖𝑛 gates

(Implied by PromiseRP in P)

No “Circuits for NP”

Would imply:

• NP  SIZE(𝒏𝒌) for all 𝒌

• NP  Formula-SIZE(𝒏𝒌)

• NP  𝑪-SIZE(𝒏𝒌) for all 𝒌

NP  𝑪-SIZE(𝒏𝒌) for all 𝒌

Even Faster ⟹ “Easier” Functions

Note: Not 
currently 

believed…

Strongly 
believed to 

be true…

𝑪 = SUM of THR
𝑪 = SUM of ReLU
𝑪 = SUM of low-

degree polys
[W’18]



[R.Chen-Oliveira-Santhanam’18, 
Chen-W’19, Chen’19, Chen-Ren ’20,

Chen-Lyu-Williams ’20, Chen’23]

Det. algorithm for some 𝝐 > 𝟎:

• #Circuit SAT in O(2𝑛−𝑛𝜖
) time

with 𝑛 inputs and 2𝑛𝜖
gates

• #Formula SAT in O(2𝑛−𝑛𝜖
) time

• #𝑪-SAT in O(2𝑛−𝑛𝜖
) time

• 𝑪-CAPP in O(2𝑛−𝑛𝜖
) time

No Circuits for Computing 
Quasi-NP on Average

Would imply:

• NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] can’t be 

(1/2 +1/poly)-approximated in P/poly

• Inapproximability in NC1

• Inapproximability in 𝑪/poly

Faster #SAT ⟹ Average-Case Lower Bounds
(and for larger circuit classes!)

𝑪 = ACC of THR
[Chen-Ren’20]

There is an 𝑓 ∈ NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] such that, 
for infinitely many 𝑛, every poly(𝑛)-size 

circuit in 𝑪 fails to compute 𝑓𝑛 on more than 
1

2
+

1

poly 𝑛
2𝑛 inputs.

Given a circuit of size s, 
approximate its fraction of SAT 

assignments to within +- 1/s

Given a circuit of size s, 
approximate its fraction of SAT 

assignments to within +- 1/s

There’s 𝑓 ∈ NTIME[𝒏𝒑𝒐𝒍𝒚𝒍𝒐𝒈 𝒏] such that, for 
infinitely many 𝑛, every poly(𝑛)-size circuit in 

"MAJ of SUM of 𝑪" fails to compute 𝑓𝑛

[Chen-Lu-Lyu-Oliveira’22]



Why on Earth would it be true?

∃

∀

“Non-Trivial” 
Circuit Analysis

Algorithm Circuit Lower Bounds

SAT? YES/NO ∃”interesting”𝑓

∀



x1 Size =nc

xn

Faster Circuit-SAT algorithms reveal a weakness of small circuits
Small circuits cannot “obfuscate” the all-zeroes function as well as a black-box can!

2n /n10 time

0

1

0

1

1

0

1

0

1

0

0

1

x1 Size =nc

xn

Some More Intuition

Proposition: For every algorithm A computing SAT on black-boxes, 
there is a box B such that A must call B for 𝛀(2n) times! 

≥ 2n time
2n /n10 time

Black-Box 
SAT:

Circuit
SAT:

Therefore: a faster Circuit SAT algorithm demonstrates a concrete difference 
between a “white-box” circuit problem and a “black-box” problem



x1 Size =nc

xn

Faster Circuit-SAT algorithms show a strength of “faster than 2n” algorithms!
A “quicker” algorithm can tell when a given circuit computes the all-zeroes function!

2n /n10 time

0

1

0

1

1

0

1

0

1

0

0

1

x1 Size =nc

xn

Some More Intuition

Therefore, Faster-Than-𝟐𝒏 time Algorithms are “strong” and Small Circuits are “weak”…
so we can construct an “algorithmically-defined function” which doesn’t have small circuits



A Concrete Lower Bound From Algorithms
Thm [W’11]:

NEXP ⊄ ACC0

Quasi-NP = NTIME[2log𝑂 1 𝑛]

ACC0: polynomial size, constant depth circuits with AND, 
OR, and MOD[m] gates for some constant m.

A simple but Annoying Circuit Class to 
prove lower bounds for

(proposed in 1986 by Barrington)

Thm [Murray-W’18]: Quasi-NP ⊄ ACC0



How Quasi-NP ⊄ ACC0 Was Proved

Let ℂ be a “typical” circuit class (like ACC0)

Thm A [MW’18] (algorithm design ➔ lower bounds)

If for some ℰ > 𝟎, Gap-ℂ-SAT on 𝟐𝒏ℇ
size is in O(𝟐𝒏−𝒏ℇ

) time, 
then Quasi-NP does not have poly-size ℂ-circuits.

Thm B [W’11] (algorithm)

∃ ℰ > 𝟎, #ACC0-SAT on 𝟐𝒏ℇ
size is in O(𝟐𝒏−𝒏ℇ

) time.
[Uses a representation theorem for ACC0 from 1990, 
that people long suspected should imply lower bounds!]



More on Theorem A

Let ℂ be some circuit class (like ACC0)

Thm A [MW’18]:

If for some ℰ > 𝟎, Gap-ℂ-SAT on 𝟐𝒏ℇ
size is in O(𝟐𝒏−𝒏ℇ

) 
time, then Quasi-NP does not have poly-size ℂ-circuits. 

Idea. Show that if we assume both: 

(1) Quasi-NP has poly-size ℂ-circuits, 
and

(2) a faster ℂ-SAT algorithm

Then show ∃𝒌 NTIME[𝒏𝒍𝒐𝒈𝒌𝒏] ⊆ NTIME[o(𝒏𝒍𝒐𝒈𝒌𝒏)]

Contradicts the nondeterministic time hierarchy:

there is 𝑳𝒉𝒂𝒓𝒅 in NTIME[𝒏𝒍𝒐𝒈𝒌𝒏] ∖ NTIME[o(𝒏𝒍𝒐𝒈𝒌𝒏)]


