How to Prove Lower
Bounds With Algorithms

Lecture 1: Introduction

A view of algorithms and complexity, from 30,000 ft

e Algorithm designers

e Complexity theorists

e What makes some problems easy to solve?
When can we find an efficient algorithm?

e What makes other problems difficult?
When can we prove that a problem is not easy?

(When can we prove a lower bound on
the resources needed to solve a problem?)

(9144 m)

The tasks of the algorithm designer and the complexity
theorist appear to be inherently opposite ones.

e Algorithm designers

e Complexity theorists

Furthermore, it has been generally believed that
algorithm design is somewhat “easier” than lower bounds

e |n algorithm design: you only have to find a single clever
algorithm that solves a problem well

* |In lower bounds: you must reason about “all possible”
algorithms, and argue that none of them work well
... but there are thousands of worst-case algorithms
which analyze all possible finite objects of some kind...

My Opinion:
This isn’t why lower
bounds are hard!

Why are lower bounds hard to prove?

There are many known “no-go” theorems
* Relativization [70’s]
* Natural Proofs [90’s]
* Algebrization [00’s]

Summary: The standard methods that we use to reason

about generic computation cannot resolve P = NP
(or P # PSPACE, or EXP # ZPP, or NEXP + BPP, etc.)

Great pessimism in complexity theory

The Relativization Barrier, in One Slide

Let O : {0,1}" — {0,1} be arbitrary.
An algorithm A° with oracle O gets to call O as a sub-routine, and it takes one step.
You can slap an oracle on practically anything in complexity theory...
TIME [t(n)]={decision problems solvable in time t(n)}
TIME?® [t(n)]={decision problems solvable in time t(n) with oracle 0}
P = {decision problems solvable by some poly-time Turing machine}
PP = {decision problems solvable in poly-time with oracle 0}
Boolean circuits with O-oracle gates:
have AND, OR, NOT, and gates computing O on fixed input lengths
1. Most theorems in complexity theory “relativize”: still hold when oracles are added
[this is very powerful! you get “uncountably many” corollaries for free!]
2. Butresultssuchas P = NP (or P # NP, or P # PSPACE, or ...) cannot relativize:
example: there are oracles 4, B such that P4 = NP4 and PP = NPB

How will we make progress?

There are many known “no-go” theorems
* Relativization [70’s]
* Natural Proofs [90’s]
* Algebrization [00’s]

Summary: The standard methods that we use to reason

about generic computation cannot resolve P = NP
(or P #= PSPACE, or EXP + ZPP, or NEXP +# BPP, etc.)

Great pessimism in complexity theory

One Direction for Progress:
Find cases where Algorithm Design can imply Lower Bounds

They are much more than opposites!
There are deeper connections we are slowly uncovering.

\ Designing Algorithms = Proving Lower Bounds

\
L
\

A typical result in Algorithm Design:

“Here is ar{algorithm A that solves the problem, Meta-computation:
Problems whose

input is the code of
an algorithm

Simple Example: The Time Hierarchy Theorem
Theorem: For “reasonable” f, g where g(n) >> f(n),

Proof Sketch: Define an algorithm N as follows. how small g(n) can be

N on input (M): “Let n = | (M)|. Simulate M on (M) for up to f(n)
steps. If the sim halts, output the opposite answer.”

Claim: The function computed by N cannot be in time f(n).
Proof: Assume some D runs in f(n) time, where D is equivalent to N.

By assumption, D on (D) runs in f(n) time and outputs the
opposite answer of D on (D) after f(n) steps! Contradiction!

Universal simulator = N can be implemented in g(n) time

Another Simple Example

If PSPACE = EXPTIME then PTIME = PSPACE

/

_ ’ T o

L — = w
G ;ﬂ. f "

PSPACE = problems solvable in polynomial space
PTIME = in polynomial time
EXPTIME = ... in exponential time

Proof: PTIME # EXPTIME (time hierarchy theorem)
So PTIME = PSPACE implies PSPACE + EXPTIME. QED

Many such results can be proved....
But they do not seem very useful!

Big Idea: Interesting circuit-analysis algorithms
tell us about the limitations of circuits in modeling algorithms

SAT? YES/NO

P

3 “interesting” f B

I”

“Non-Trivia
Circuit Analysis

Algorithm Circuit Lower Bounds

Circuit Complexity:
A Crash Course

Algorithms Circuits

Can take in arbitrarily long inputs Can only take in inputs of a fixed length

and still solve the (decision) problem

f:{0,1}* - {0,1}

g:{0,1}" - {0,1}

To compute functions of the form
f: {0,1}* - {0,1}

with circuits, we define a Ci rcu it Fa m i Iy - { C1)

P/poly={ f : {0,1}" — {0, 1} computable by a circuit family {C,}
where 3 ¢ s.t. for every n, the size of C, is at most cn“ }

Each circuit is “small” relative to its number of inputs

Circuit Family = {f, &

P/poly={ f : {0,1}" — {0, 1} computable by a circuit family {C,}
where for every n, the size of C_ is at most poly(n) }

Conjecture: NP < P/poly Why study this model?

One motivation: Proving limitations on circuit families is a step
towards non-asymptotic complexity theory:

Concrete limitations on computing within the known universe

“Any computer solving most instances of this 1000-bit problem
needs at least 10%° bits to be described”

[Meyer-Stockmeyer ‘70s]

Universe stores < 108 bits [Bekenstein ‘70s] Proved such a result
(for an EXPSPACE problem)

Which Functions Have High Circuit Complexity?

Nearly all of them... “Most” functions require huge circuits!

Theorem [Shannon ’49, Lupanov ‘58]
With high probability,
a randomly chosen function f:{0,1}* - {0, 1}
does not have circuits of size less than ~ 2™ /n
(and: every f has a circuit of size about ~ 2"/n)

Which “natural” functions exhibit this
exponential behavior?

Circuit Lower Bounds = Derandomization

Thm [Nisan-Wigderson, Impagliazzo-Wigderson 90s]

If thereisan f : {0,1}* — {0,1}
computable in 22 time

that does not have circuits of size at most 2*" -

(for all but finitely many n)

Then Randomized Time = Deterministic Time
(many other results in this direction)

Idea: If f “looks random” to all circuits, then f can be
used to construct a pseudorandom generator, replacing
true randomness in efficient computation!

Algorithms vs Circuit Families

Co] o
There is a family where every C, has ~ size n No algorithm whatsoever!

Conjecture: NP & P/poly

EXPONENTIAL TIME -

every C_ has =~ n?size !!

Exponential Time Versus “Shallow” Nets?

NONDETERMISTIC
EXPONENTIAL TIME
(solutions of 2" size,
verified in 2" time!)

zoom in

THIS IS OPEN!! n3

“neurons”

We don’t yet understand
very simple neural
networks!

“Neural nets with one hidden layer”
-- this should be a very weak class!

Depth-two threshold circuits

Here endeth the Crash Course...

Now, what kinds of circuit analysis
problems will we consider?

Generalized Circuit Satisfiability

Let G be a class of Boolean circuits

C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

The C-SAT Problem:

Given a circuit K(x4,...,x.) from C, is there an
assighment (a,, ..., a,) € {0,1}" such that K(a,,...,a,) =17

A very “simple” circuit analysis problem!
[CL'70s] C-SAT is NP-complete for practically all interesting C
C-SAT is solvable in O(2" |K]|) time by brute force

QUESTION: For what C is there a faster algorithm?

Example: for 3CNFs there is a long line of work...

Best known is about 0(1.31") time

Gap Circuit Satisfiability
Let C be a class of Boolean circuits
C = {formulas}, C = {arbitrary circuits}, C = {3CNFs}

Gap-C-SAT:
Given K(x,,...,x,) from C, and the promise that either

(a) K =0, or (b) Pry[K(x) = 1] = 1/2,
decide which is true.

Even simpler! In randomized polynomial time

[Folklore?] If Gap-Circuit-SAT € P then P =RP

[Hirsch, Trevisan, ...] Gap-kSAT € P, for all k

Best known algorithm for Gap-Circuit-SAT: O(2" |K]|) time
QUESTION: For what C is there a faster algorithm?

“Perfect” Circuit Analysis =» Circuit Lower Bounds

[Karp-Lipton-Meyer ‘80]

Suppose we had extremely efficient circuit-analysis
algorithms. Then there are problems

with exponential-time algorithms

that require maximum circuit complexity

E EXP needs circuits
(Circuit SAT in P) of Q(2™/n) size
This is an interesting implication... Aside: Could you use this to

But we do not believe that the hypothesis is true, separate P from NP??

and we believe that the consequence is true!

Faster Algorithms = Lower Bounds

Slightly Faster Circuit-SAT No “Circuits for NEXP”
[R.W.’10,/11]
Deterministic algorithms for: Would imply:
 Circuit SAT in O(2"/n'9) time
with n inputs and nk gates

* NEXP P/poly

e Formula SAT in O(2"/n9) * NEXP & Poly-size Formulas
C needs
some Clos.ure C-SAT in O(Zn/nlo) I * NEXP & pOIy'Size C Concrete LBs!
properties

C =ACC

. Gap-C-SATis in 0(2"/n29) (W11
_ _ _ C = ACC of THR
time on nk size NEXP ¢ poly-size C [W’14]

(Easily solved w/ randomness!)

Even Faster = “Easier” Functions

[Murray-W. '18]

Det. algorithm for some € > 0:

* Circuit SAT in O(2""™™") time
with n inputs and 2™ gates

* Formula SAT in O(2" ™)
e C-SAT in O(2" ")

. Gap-C-SATisin O(2™ ™)
time on 2™ gates

Would imply:
e NTIME[nP°Y!°9 "] &« P/poly

e NTIME[nP?Ylog "] & NC1
e NTIME[nP°Y!109] psize C

NTIME[nP°Y!09 "] # psize C

Even Faster = “Easier” Functions

[Murray-W. '18]
Det. algorithm for some € > 0: | Would imply:

« NP SIZE(nk) for all k

SR - Circuit SAT in O(2(1~9") time
currently on n inputs and 2¢" gates

believed...
Sleve * Formula SAT in O(2(1~97n) NP ¢ Formula-SIZE(nk)

. C-SAT in O(2(1-n) B - NP ¢ C-SIZE(n¥) for all k

C =SUM of THR
C = SUM of RelU
C = SUM of low-
degree polys
[W’18]

SIEV - Gap-C-SATisin 0(2(1-9m)

believed to time on 2€M gates
be true...

NP & C-SIZE(n¥) for all k

(Implied by PromiseRP in P)

Faster #SAT = Average-Case Lower Bounds

(and for larger circuit classes!)

[R.Chen-Oliveira-Santhanam’18,
Chen-W’19, Chen’19, Chen-Ren ’20,
Chen-Lyu-Williams ’20, Chen’23]

Det. algorithm for some € > O:
e #Circuit SAT in O(2™ ") time
with 7 inputs and 2™ gates

e #Formula SAT in O(2" ™) time
e #C-SAT in O(2™" ") time

e C-CAPPin O(2™" ") time

Given a circuit of size s,
approximate its fraction of SAT
assignments to within +- 1/s

Would imply:
* NTIME[nP°Y!09] can’t be

(1/2 +1/poly)-approximated in P/poly

There is an f € NTIME[nP°Y!°9] such that,

FI\V‘

There’s f € NTIME[nP°"Y!°9 "] such that, for
infinitely many n, every poly(n)-size circuit in
"MA]J of SUM of C" fails to compute f,

Why on Earth would it be true?

SAT? YES/NO

i

3 “interesting” f &8

\"/

“Non-Trivial”
Circuit Analysis
Algorithm Circuit Lower Bounds

Some More Intuition

Faster Circuit-SAT algorithms reveal a weakness of small circuits
Small circuits cannot “obfuscate” the all-zeroes function as well as a black-box can!

Black-Box

Circuit
SAT: 9‘

SAT:

oo opPr o Pk o o

Jaz >l

Proposition: For every algorithm A computing SAT on black-boxes,
there is a box B such that A must call B for (2(2") times!

Therefore: a faster Circuit SAT algorithm demonstrates a concrete difference
between a “white-box” circuit problem and a “black-box” problem

Some More Intuition

Faster Circuit-SAT algorithms show a strength of “faster than 2™ algorithms!
A “quicker” algorithm can tell when a given circuit computes the all-zeroes function!

oo opPrr o EFkr o o

Therefore, Faster-Than-2" time Algorithms are “strong” and Small Circuits are “weak”...
so we can construct an “algorithmically-defined function” which doesn’t have small circuits

A Concrete Lower Bound From Algorithms

Thm [Murray-W’18]: Quasi-NP ¢ ACC°

Quasi-NP = NTIME[2108 n

ACCY: pelynomialsize—ceonstant depth-circuitswith-ANB—
OR,-and-MOD|m] gates forsomeconstantm.———
A simple but Annoying Circuit Class to

prove lower bounds for
(proposed in 1986 by Barrington)

How Quasi-NP ¢ ACC° Was Proved

Let C be a “typical” circuit class (like ACC®)
Thm A [MW’18] (algorithm design =» lower bounds

If for some £ > 0, Gap-C-SAT on 27 size is in 0(2"‘"8) time,
then Quasi-NP does not have poly-size C-circuits.

Thm B [W’11] (algorithm

3 € > 0, #HACCO-SAT on 27" size is in 0(2"‘”8) time.
[Uses a representation theorem for ACC° from 1990,
that people long suspected should imply lower bounds!]

More on Theorem A

Let C be some circuit class (like ACC°)
Thm A [MW’18]:

If for some £ > 0, Gap-C-SAT on 27" size is in 0(2"‘"8)
time, then Quasi-NP does not have poly-size C-circuits.
Idea. Show that if we assume both:

(1) Quasi-NP has poly-size C-circuits,
and

(2) a faster C-SAT algorithm

Then show 3k NTIME[n!°9""] € NTIME[o(n!°9"™)]
Contradicts the nondeterministic time hierarchy:
there is Ly, ,,-q in NTIME[nl"gk"] \\ NTIME[o(nl"gk")]

