Outline

Lecture 1: Overview of Circ LBs from Algorithms
Lecture 2-3: More on Circ LBs from Algorithms
Lecture 3: The Mysteries of the Missing String
Lecture 4: The Power of Constructing Bad Inputs
How to Prove Lower Bounds With Algorithms

Lecture 2: Overview of Circuit Lower Bounds From Circuit-Analysis Algorithms
Picking Up From Last Time

Let \mathbb{C} be some circuit class (like ACC^0).

Thm A [MW’18]:

If for some $\varepsilon > 0$, Gap-\mathbb{C}-SAT on 2^{n^ε} size is in $O(2^{n-n^\varepsilon})$ time, then Quasi-NP does not have poly-size \mathbb{C}-circuits.

Idea. Show that if we assume both:

1. Quasi-NP has poly-size \mathbb{C}-circuits, and
2. a faster \mathbb{C}-SAT algorithm

Then show $\exists k \text{NTIME}[n^{\log kn}] \subseteq \text{NTIME}[o(n^{\log kn})]$

Contradicts the nondeterministic time hierarchy:

there is L_{hard} in $\text{NTIME}[n^{\log kn}] \setminus \text{NTIME}[o(n^{\log kn})]$
Proof Ideas of Theorem A

Idea. Assume:

(1) Quasi-NP has poly-size \(\mathbb{C} \)-circuits, and

(2) a faster \(\mathbb{C} \)-SAT algorithm

Then show \(\exists k \ \text{NTIME}[n^{\log^k n}] \subseteq \text{NTIME}[o(n^{\log^k n})] \)

Take an \(L \) in \text{non-deterministic} \(n^{\log^k n} \) time. Given an input \(x \), we decide if \(x \in L \), by:

(A) Guessing some witness \(y \) of \(O(n^{\log^k n}) \) length.

(B) Checking \(y \) is a witness for \(x \) in \(O(n^{\log^k n}) \) time.
Proof Ideas of Theorem A

Idea. Assume:

(1) Quasi-NP has poly-size \(\mathbb{C} \)-circuits, and
(2) a faster \(\mathbb{C} \)-SAT algorithm

Then show \(\exists k \ \text{NTIME}[n^{\log^k n}] \subseteq \text{NTIME}[o(n^{\log^k n})] \)

Take an \(L \) in \text{nondeterministic} \(n^{\log^k n} \) time. Given an input \(x \), we \textbf{will} decide if \(x \in L \), by:

(A) Guessing some witness \(y \) of \(o(n^{\log^k n}) \) length.
(B) Checking \(y \) is a witness for \(x \) in \(o(n^{\log^k n}) \) time.
Proof Ideas of Theorem A

Idea. Assume:

(1) Quasi-NP has poly-size \(\mathbb{C} \)-circuits, and
(2) a faster \(\mathbb{C} \)-SAT algorithm

Then show \(\exists k \text{ NTIME}[n^{\log^k n}] \subseteq \text{NTIME}[o(n^{\log^k n})] \)

Take an \(L \) in nondeterministic \(n^{\log^k n} \) time.
Given an input \(x \), we \textbf{will} decide if \(x \in L \), by:

(A) Guessing some witness \(y \) of \(o(n^{\log^k n}) \) length.

(B) Checking \(y \) is a witness for \(x \) in \(o(n^{\log^k n}) \) time.
Guessing Short Witnesses

Easy Witness Lemma [IKW’02, MW’18]:
If NEXP (Quasi-NP) has polynomial-size circuits, then all NEXP (Quasi-NP) problems have “easy witnesses”

Def. An NEXP/Quasi-NP problem L has easy witnesses if
\forall Verifiers V for L and $\forall x \in L$,
\exists poly$(|x|)$-size circuit D_x such that $V(x, Y)$ accepts,
where $Y = \text{Truth Table of circuit } D_x$.

1. Guess a witness y of $o(n^{\log^k n})$ length.

1’. Guess $\text{poly}(n)$-size circuit D_x
Verifying Short Witnesses

2. Check y is a witness for x in $o(n^{\log^k n})$ time.

Assuming Quasi-NP has polynomial-size circuits, “easy witnesses” exist for every verifier V.

We choose a verifier V for $L \in NTIME[n^{\log^k n}]$ so that:

- Checking $V(x, y)$ accepts for $|x| = n$ is equivalent to
 - Solving UNSAT on a \mathbb{C}-circuit with 2^{m^ε} size and $m = \log^{k+1}(n) + 4\log(n)$ inputs

Then, 2^{m-m^ε} time for \mathbb{C}-UNSAT $\Rightarrow o(n^{\log^k n})$ time to decide L.
Verifying Short Witnesses

2. Check y is a witness for x in $o(n^\log^k n)$ time.

Assuming Quasi-NP has polynomial-size circuits, “easy witnesses” exist for every verifier V.

We can also choose a verifier V for $L \in NTIME[n^\log^k n]$ so that:

Checking $V(x, y)$ accepts \iff

Distinguishing unsatisfiable circuits from circuits with many satisfying assignments (Uses a version of the PCP Theorem!)

Then, 2^{n-n^ε} time for Gap-\mathbb{C}-UNSAT $\Rightarrow o\left(n^\log^k n\right)$ time to decide L.
Now: Time for Details
Definition: ACC Circuit Family

An **ACC circuit family** \(\{ C_n \} \) has the properties:

- Every \(C_n \) takes \(n \) bits of input and outputs one bit
- There is a fixed \(d \) such that every \(C_n \) has depth at most \(d \)
- There is a fixed \(m \) such that the gates of \(C_n \) are \(\text{AND, OR, NOT, MOD}_{m} \) (unbounded fan-in)

\[
\text{MOD}_{m}(x_1, \ldots, x_t) = 1 \iff \sum_i x_i \text{ is divisible by } m
\]

Remarks

1. The default size (#gates) of \(C_n \) is **polynomial in** \(n \)
2. **Strength:** this is a **non-uniform** model of computation (can compute some undecidable languages!)
3. **Weakness:** ACC circuits can be efficiently simulated by **constant-layer neural networks (a.k.a. TC0)**
Definition: ACC Circuit Family

An **ACC circuit family** \(\{ C_n \} \) has the properties:

- Every \(C_n \) takes \(n \) bits of input and outputs one bit
- There is a fixed \(d \) such that every \(C_n \) has depth at most \(d \)
- There is a fixed \(m \) such that the gates of \(C_n \) are AND, OR, NOT, MOD\(m \) (unbounded fan-in)

\[
\text{MOD}_m(x_1, \ldots, x_t) = 1 \text{ iff } \sum_i x_i \text{ is divisible by } m
\]

Example:

Note: These circuits become very complex, already for certain fixed \(d \) and \(m \).

OPEN: Does every problem in EXP have polynomial-size MOD6 circuits of depth 3 (?!)

ACC does have some surprising power:

[CW’22] For every \(\epsilon > 0 \), every symmetric Boolean fn has \(2^{n\epsilon} \) size depth-3 ACC circuits
Where does ACC come from?

Dream of the 1980s: Prove $P \neq NP$ by proving $NP \not\subset P/poly$.

Unlike Turing Machines, logic circuits are fixed, “simple” devices. This should make it easier to prove impossibility results.

Ajtai, Furst-Saxe-Sipser, Håstad (early 80’s)

MOD2 $\not\in$ AC0 [poly-size ACC with only AND, OR, NOT, no MODm]

Razborov, Smolensky (late 80’s)

MOD3 $\not\in$ (AC0 with MOD2 gates)

For $p \neq q$ prime, $\text{MOD}_p \not\in$ (AC0 with MODq gates)

Barrington (late 80’s) Suggested ACC as the next natural step

Conjecture Majority $\not\in$ ACC

Conjecture (early 90’s) NP $\not\in$ ACC

Conjecture (late 90’s) NEXP $\not\in$ ACC
ACC Lower Bounds

\[\text{EXP}^{\text{NP}} = \text{Exponential Time with an NP oracle} \quad \text{[think: SAT oracle]} \]

\[\text{NEXP} = \text{Nondeterministic Exponential Time} \]

Theorem [W’11] There is an \(f \in \text{EXP}^{\text{NP}} \) such that for every \(d, m \) there is an \(\epsilon > 0 \) such that \(f \) does not have \(\text{ACC} \) circuits with \(\text{MOD}m \) gates, depth \(d \), and size \(2^n^{\epsilon} \).

Theorem [W’11] There is an \(f \in \text{NEXP} \) such that for all \(d, m, k \), \(f \) does not have \(n^{\log^k n} \) size \(\text{ACC} \) circuits of depth \(d \) with \(\text{MOD}m \) gates.

Remark Compare with:

[MS 70’s] \(\text{EXP}^{(\text{NP}^{\text{NP}})} = \text{EXP}^{\Sigma_2 P} \) doesn’t have \(o(2^{n/n}) \) size circuits.

[K82] \(\text{NEXP}^{\text{NP}} = \Sigma_2 E \) doesn’t have \(n^{\log^k n} \)-size circuits for all \(k \).
ACC Lower Bounds

Quasi-NP = Nondeterministic $n^{polylog n}$ Time

Theorem [MW’18] There is an f in **Quasi-NP** such that for all d, m, k, f does not have n^k size ACC circuits of depth d with MODm gates

Has since been extended in multiple ways!
(stronger circuit classes, average-case hardness, etc etc)

We’ll outline a different result, and then sketch how to extend it.

Theorem There is an f in $E^{NP} = \text{TIME}^{\text{SAT}[2^{O(n)}]}$ such that for all d, m, there is an $\varepsilon > 0$ such that f does not have 2^{n^ε} size ACC circuits of depth d with MODm gates
Design a faster ACC-SAT algorithm

The Algorithm: For every d, m, there is an $\epsilon > 0$ such that ACC-SAT on circuits with n inputs, $2^{n\epsilon}$ size, depth d, and MODm gates is solvable in 2^{n-n^ϵ} time.

Show that faster ACC-SAT algorithms imply lower bounds against ACC

The LB Connection: If \mathcal{C}-SAT on circuits with n inputs and 2^{n^ϵ} size is in $O(2^n/n^{10})$ time, then E^{NP} doesn’t have 2^{n^ϵ} size \mathcal{C}-circuits.

This algorithm has changed little in the past 9 years...

The connections have strengthened considerably!
Algorithm for SAT on ACC Circuits

Ingredients:

1. **Old representation** [Yao’90, Beigel-Tarui’94, Green et al’95]
 For every ACC function \(f : \{0,1\}^* \to \{0,1\} \) and every \(n \), we can write \(f_n : \{0,1\}^n \to \{0,1\} \) as:
 \[
 f_n(x_1, \ldots, x_n) = g(h(x_1, \ldots, x_n)),
 \]
 where
 - \(h \) is a multilinear polynomial of at most \(K \) monomials,
 \(h(a) \in \{0, \ldots, K\} \) for all \(a \in \{0,1\}^n \)
 - \(K \) is not “too large” (quasi-polynomial in circuit size)
 - \(g : \{0, \ldots, K\} \to \{0,1\} \) is a fixed “simple” function

2. **“Fast Fourier Transform” for multilinear polynomials:**
 Given a multilinear polynomial \(h \) in its coefficient representation, the value \(h(a) \) can be computed over all points \(a \in \{0,1\}^n \) in \(2^n \, \text{poly}(n) \) time.

\[K \leq 2^{O(\log s \, \text{poly}(d \, r))} \]
where \(s = \text{size}, \ d = \text{depth}, \ r = \# \text{ prime divisors of } m \)
Fast Multipoint Evaluation

Theorem: Given the 2^n coefficients of a multilinear polynomial h in n variables, $h(a)$ can be computed on all points $a \in \{0, 1\}^n$ in $2^n \text{poly}(n)$ time.

Can write: $h(x_1, \ldots, x_n) = x_1 h_1(x_2, \ldots, x_n) + h_2(x_2, \ldots, x_n)$

Want a 2^n table T that contains the value of h on all 2^n points.

Algorithm: If $n = 1$ then return $T = [h(0), h(1)]$

Recursively compute the 2^{n-1}-length table T_1 for the values of h_1, and the 2^{n-1}-length table T_2 for the values of h_2

Return the table $T = (T_2)(T_1 + T_2)$ of 2^n entries

Running time has the recurrence $R(2^n) \leq 2 \cdot R(2^{n-1}) + 2^n \text{poly}(n)$

Corollary: We can evaluate g of h on all $a \in \{0, 1\}^n$, in only $2^n \text{poly}(n)$ time
Theorem: For every d, m, there is an $\varepsilon > 0$ such that ACC-SAT on circuits with n inputs, $2^{n\varepsilon}$ size, depth d, and MODm gates is solvable in 2^{n-n^ε} time.

Proof:

- Take an OR of all assignments to the first n^ε inputs of C.
- For small $\varepsilon > 0$, h is evaluated on all $2^n - n^\varepsilon$ assignments in 2^{n-n^ε} poly(n) time.

Output “SAT” $\iff \exists a \in \{0, 1\}^{n-n^\varepsilon}$ s.t. $g(h(a)) = 1$.

Beigel and Tarui

Fast Multipoint Eval
The LB Connection: If ACC-SAT on circuits with \(n\) inputs and \(2^{n^\epsilon}\) size is in \(O(2^n/n^{10})\) time, then \(E^{NP}\) doesn’t have \(2^{n^\epsilon}\) size ACC-circuits.

Given circuit \(C: \{0, 1\}^n \rightarrow \{0, 1\}\), let \(tt(C)\) be its truth table: the output of \(C\) on all \(2^n\) assignments, in lexicographical order

Succinct 3SAT: Given a circuit \(C\), does \(tt(C)\) encode a satisfiable 3CNF?

Key Idea: Succinct 3SAT is NEXP-complete, in a very strong way...

Lemma 1 Succinct 3SAT for AC0 circuits of \(n\) inputs and \(n^{10}\) size is solvable in nondeterministic \(2^n \ poly(n)\) time but not in nondeterministic \(\frac{2^n}{n^5}\) time.

Upper bound: Evaluate the AC0 circuit on all \(2^n\) inputs, get a \(2^n\)-length 3CNF instance, guess and check a SAT assignment, in \(2^n \ poly(n)\) time

Lower bound: [JMV’13] Every \(L \in NTIME[2^n]\) can be reduced in poly-time to a Succinct 3SAT instance which is AC0, \(m = n + 4\log(n)\) inputs, \(n^{10}\) size

So, if Succinct3SAT is in \(2^m/m^5\) time, then \(L\) can be decided in time \(o(2^n)\)

Contradicts the nondeterministic time hierarchy theorem!
The LB Connection: If E^{NP} has 2^{n^ϵ} size ACC-circuits and ACC-SAT on circuits with n inputs and 2^{n^ϵ} size is in $O(2^n/n^{10})$ time, then contradiction.

Succinct 3SAT: Given a circuit C, does $tt(C)$ encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for ACC circuits of n inputs and n^{10} size is solvable in nondeterministic $2^n \text{poly}(n)$ time but not in nondeterministic $\frac{2^n}{n^{5}}$ time.

Goal: Use ACC circuits for E^{NP} & the ACC-SAT algorithm, to solve Succinct 3SAT faster.

Say that **Succinct 3SAT has “succinct” SAT assignments** if for every C (of n inputs and n^{10} size) such that $tt(C)$ encodes a satisfiable 3CNF F, there is an ACC circuit D of $2^{n^{10\epsilon}}$ size such that $tt(D)$ encodes a variable assignment A that satisfies F.

(Imagine F has variables $x_1, ..., x_{2^n}$. Then $D(i)$ outputs a 0-1 assignment to variable x_i in F)

If a succinct SAT assignment exists, we only have to guess a witness of length $2^{n^{10\epsilon}}$

Lemma 2 If E^{NP} has 2^{n^ϵ} size ACC circuits then Succinct 3SAT has “succinct” SAT assignments.
The LB Connection: If E^{NP} has 2^{n^e} size ACC-circuits and ACC-SAT on circuits with n inputs and 2^{n^e} size is in $O(2^n/n^{10})$ time, then *contradiction*

Succinct 3SAT: Given a circuit C, does $tt(C)$ encode a satisfiable 3CNF?

Lemma 2 If E^{NP} has 2^{n^e} size ACC circuits then Succinct 3SAT has “succinct” SAT assignments

Proof The following is an E^{NP} procedure:

On input (C, i), where $i \in \{1, \ldots, 2^n\}$, C has n inputs & n^{10} size

1. Compute $F = tt(C)$, think of F as a 3CNF formula.
2. Use a SAT oracle and search-to-decision for SAT, to find the lexicographically first SAT assignment to F.
3. Output the i-th bit of this assignment.

E^{NP} has 2^{n^e} size ACC circuits \Rightarrow there is a $2^{|C|^e} \leq 2^{n^{10e}}$ size ACC circuit $D(C, i)$ which outputs the i-th bit of a satisfying assignment to $F = tt(C)$.

Now for any circuit C' of n^{10} size, define the circuit $E(i) := D(C', i)$

Then E has $2^{n^{10e}}$ size, and the assignment $tt(E)$ satisfies $tt(C')$