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Picking Up From Last Time

Let ℂ be some circuit class (like ACC0)

Thm A [MW’18]:

If for some ℰ > 𝟎, Gap-ℂ-SAT on 𝟐𝒏
ℇ

size is in O(𝟐𝒏−𝒏
ℇ
) 

time, then Quasi-NP does not have poly-size ℂ-circuits. 

Idea. Show that if we assume both: 

(1) Quasi-NP has poly-size ℂ-circuits, 
and

(2) a faster ℂ-SAT algorithm

Then show ∃𝒌 NTIME[𝒏𝒍𝒐𝒈
𝒌𝒏] ⊆ NTIME[o(𝒏𝒍𝒐𝒈

𝒌𝒏)]

Contradicts the nondeterministic time hierarchy:

there is 𝑳𝒉𝒂𝒓𝒅 in NTIME[𝒏𝒍𝒐𝒈
𝒌𝒏] ∖ NTIME[o(𝒏𝒍𝒐𝒈

𝒌𝒏)]



Proof Ideas of Theorem A

Idea. Assume: 

(1) Quasi-NP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Then show ∃𝒌 NTIME[𝒏𝒍𝒐𝒈
𝒌𝒏] ⊆ NTIME[o(𝒏𝒍𝒐𝒈

𝒌𝒏)]

Take an 𝐿 in nondeterministic 𝒏𝒍𝒐𝒈
𝒌𝒏 time. 

Given an input 𝑥, we decide if 𝑥 ∈ 𝐿, by: 

(A) Guessing some witness 𝑦 of O(𝒏𝒍𝒐𝒈
𝒌𝒏) length.

(B) Checking 𝑦 is a witness for 𝑥 in O(𝒏𝒍𝒐𝒈
𝒌𝒏) time.
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Guessing Short Witnesses

Easy Witness Lemma [IKW’02, MW’18]:
If NEXP (Quasi-NP) has polynomial-size circuits, then 
all NEXP (Quasi-NP) problems have “easy witnesses”

Def. An NEXP/Quasi-NP problem L has easy witnesses if
∀ Verifiers V for L and ∀𝑥 ∈ 𝐿, 
∃ poly(|𝑥|)-size circuit Dx such that V(x,Y) accepts,

where Y  = Truth Table of circuit Dx.

1. Guess a witness y of o(𝟐𝒏) length.

1’.   Guess 𝑝𝑜𝑙𝑦 𝑛 -size circuit Dx

1. Guess a witness y of o(𝒏𝒍𝒐𝒈
𝒌𝒏) length.

Small circuits for 
solving Quasi-NP 

problems 
→ Small circuits 

encoding solutions to 
Quasi-NP problems



Verifying Short Witnesses

Assuming Quasi-NP has polynomial-size circuits, 
“easy witnesses” exist for every verifier V.

We choose a verifier 𝑉 for 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸[𝒏𝒍𝒐𝒈
𝒌𝒏] so that: 

Checking V(𝑥, 𝑦) accepts for 𝑥 = 𝑛
𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜

Solving UNSAT on a ℂ-circuit with 2𝑚
𝜀

size 
and 𝑚 = log𝑘+1(𝑛) + 4 log(𝑛) inputs

Then, 2𝑚−𝑚𝜖
time for ℂ-UNSAT ➔ 𝑜 𝒏𝒍𝒐𝒈

𝒌𝒏 time to decide 𝐿

2. Check y is a witness for x in o(𝒏𝒍𝒐𝒈
𝒌𝒏) time.



Verifying Short Witnesses

Checking 𝑉(𝑥, 𝑦) accepts ≡

Distinguishing unsatisfiable circuits from 
circuits with many satisfying assignments

(Uses a version of the PCP Theorem!)

Then, 2𝑛−𝑛
𝜖

time for Gap-ℂ-UNSAT ➔ 𝑜 𝒏𝒍𝒐𝒈
𝒌𝒏 time to decide L

2. Check y is a witness for x in o(𝒏𝒍𝒐𝒈
𝒌𝒏) time.

Assuming Quasi-NP has polynomial-size circuits, 
“easy witnesses” exist for every verifier V.

We can also choose a verifier 𝑉 for 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸[𝒏𝒍𝒐𝒈
𝒌𝒏] so that: 



Now: Time for Details



Definition: ACC Circuit Family

An ACC circuit family { Cn } has the properties:
• Every Cn takes 𝑛 bits of input and outputs one bit 
• There is a fixed 𝒅 such that every Cn has depth at most 𝒅
• There is a fixed 𝒎 such that the gates of Cn are 

AND, OR, NOT, MOD𝒎 (unbounded fan-in)
MOD𝒎(𝒙𝟏, … , 𝒙𝒕) = 𝟏 iff 𝒊 𝒙𝒊 is divisible by 𝒎

Remarks
1. The default size (#gates) of Cn is polynomial in n
2. Strength: this is a non-uniform model of computation

(can compute some undecidable languages!)
3. Weakness: ACC circuits can be efficiently simulated by 

constant-layer neural networks (a.k.a. TC0)

Alternating 
Circuits
With Counters



Definition: ACC Circuit Family

An ACC circuit family { Cn } has the properties:
• Every Cn takes 𝑛 bits of input and outputs one bit 
• There is a fixed 𝒅 such that every Cn has depth at most 𝒅
• There is a fixed 𝒎 such that the gates of Cn are 

AND, OR, NOT, MOD𝒎 (unbounded fan-in)
MOD𝒎(𝒙𝟏, … , 𝒙𝒕) = 𝟏 iff 𝒊 𝒙𝒊 is divisible by 𝒎

MOD6

ANDMOD6

OR NOT

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10  x11

Example: Note: These circuits become very complex, 
already for certain fixed 𝑑 and 𝑚. 

OPEN: Does every problem in EXP have 
polynomial-size MOD6 circuits of depth 3 (?!)

Alternating 
Circuits
With Counters

ACC does have some surprising power:

[CW’22] For every 𝜀 > 0, every symmetric 

Boolean fn has 2𝑛
𝜀

size depth-3 ACC circuits



Where does ACC come from?

Dream of the 1980s: Prove P  NP by proving NP  P/poly. 

Unlike Turing Machines, logic circuits are fixed, “simple” devices. 
This should make it easier to prove impossibility results.

Ajtai, Furst-Saxe-Sipser, Håstad (early 80’s)
MOD2 ∉ AC0 [poly-size ACC with only AND, OR, NOT, no MODm]

Razborov, Smolensky (late 80’s)
MOD3 ∉ (AC0 with MOD2 gates)

For p  q prime, MODp ∉ (AC0 with MODq gates)

Barrington (late 80’s)  Suggested ACC as the next natural step

Conjecture   Majority ∉ ACC
Conjecture (early 90’s) NP  ACC

Conjecture (late 90’s)   NEXP  ACC



ACC Lower Bounds

EXPNP =  Exponential Time with an NP oracle [think: SAT oracle]
NEXP =  Nondeterministic Exponential Time

Theorem [W’11] There is an 𝑓 ∈ EXPNP such that for every 𝑑,𝑚 there is an 
ε > 0 such that 𝒇 does not have ACC circuits with MOD𝑚 gates, depth 𝑑,
and size 2nε

Theorem [W’11] There is an 𝑓 ∈ NEXP such that for all 𝑑,𝑚, 𝑘,

𝒇 does not have 𝒏𝒍𝒐𝒈
𝒌𝒏 size ACC circuits of depth 𝑑 with MOD𝑚 gates

Remark    Compare with:
[MS 70’s] EXP(NPNP) = 𝐸𝑋𝑃Σ2𝑃 doesn’t have o(2n/n) size circuits

[K82] NEXPNP = Σ2𝐸 doesn’t have 𝒏𝒍𝒐𝒈
𝒌𝒏-size circuits for all k



ACC Lower Bounds

Quasi-NP =  Nondeterministic 𝑛𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 Time

Theorem [MW’18] There is an 𝒇 in Quasi-NP such that for all 𝑑,𝑚, 𝑘,
𝒇 does not have 𝒏𝒌 size ACC circuits of depth 𝑑 with MOD𝑚 gates

Has since been extended in multiple ways!
(stronger circuit classes, average-case hardness, etc etc)

We’ll outline a different result, and then sketch how to extend it.

Theorem There is an 𝒇 in 𝑬𝑵𝑷 = 𝑻𝑰𝑴𝑬𝑺𝑨𝑻 𝟐𝑶 𝒏 such that for all 𝑑,𝑚,

there is an 𝜀 > 0 such that 𝒇 does not have 2𝑛
𝜀

size ACC circuits of depth 
𝑑 with MOD𝑚 gates



Proof Outline

Design a faster ACC-SAT algorithm

The Algorithm: For every 𝑑,𝑚, there is an 𝜀 > 0 such that 

ACC-SAT on circuits with n inputs, 2𝑛
𝜀

size, depth 𝑑, and 

MOD𝑚 gates is solvable in 2𝑛−𝑛
𝜀

time

Show that faster ACC-SAT algorithms imply 
lower bounds against ACC

The LB Connection: If C-SAT on circuits with n inputs and 

2𝑛
𝜀

size is in O(2n/n10) time, then 
ENP doesn’t have 2𝑛

𝜀
size C-circuits. 

This algorithm has 
changed little in the 

past 9 years…

The connections 
have strengthened 

considerably!



Algorithm for SAT on ACC Circuits
Ingredients:
1. Old representation [Yao’90, Beigel-Tarui’94,Green et al’95]

For every ACC function 𝑓 ∶ 0,1 ⋆ → 0,1 and every 𝒏, we 
can write 𝑓𝑛 ∶ 0,1 𝑛 → {0,1} as:

𝒇𝒏 𝒙𝟏, … , 𝒙𝒏 = 𝒈(𝒉 𝒙𝟏, … , 𝒙𝒏 ), where
- 𝒉 is a multilinear polynomial of at most 𝐾 monomials,  

ℎ 𝑎 ∈ {0,… , 𝐾} for all 𝑎 ∈ 0,1 𝑛

- 𝐾 is not “too large” (quasi-polynomial in circuit size)
- 𝒈 ∶ 0,… , 𝐾 → {0,1} is a fixed “simple” function

2. “Fast Fourier Transform” for multilinear polynomials: 
Given a multilinear polynomial ℎ in its coefficient 
representation, the value ℎ(𝑎) can be computed over all 
points 𝑎 ∈ 0,1 𝑛 in 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time.

𝜮

…
𝒉

𝑲

[Chen-Papakonstantinou’19]

𝐾 ≤ 2 log 𝑠 𝑂 𝑑𝑟

where 𝑠 = size, 𝑑 = depth,
𝑟 = # prime divisors of m

𝒈



Fast Multipoint Evaluation

Theorem: Given the 𝟐𝒏 coefficients of a multilinear polynomial 𝒉 in 𝒏 variables,  
𝒉(𝒂) can be computed on all points 𝒂 ∈ {𝟎, 𝟏}𝒏 in 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time.

Can write:  𝒉(𝒙𝟏, … , 𝒙𝒏) = 𝒙𝟏 𝒉𝟏(𝒙𝟐, … , 𝒙𝒏) + 𝒉𝟐(𝒙𝟐, … , 𝒙𝒏)

Want a 𝟐𝒏 table T that contains the value of 𝒉 on all 𝟐𝒏 points.

Algorithm:  If 𝒏 = 𝟏 then return 𝑻 = [𝒉(𝟎), 𝒉(𝟏)]
Recursively compute the 𝟐𝒏−𝟏-length table 𝑻𝟏 for the values of 𝒉𝟏, 

and the 𝟐𝒏−𝟏-length table 𝑻𝟐 for the values of 𝒉𝟐

Return the table 𝑻 = (𝑻𝟐)(𝑻𝟏 + 𝑻𝟐) of 𝟐𝒏 entries  

Running time has the recurrence 𝑹 𝟐𝒏 ≤ 𝟐 ⋅ 𝑹(𝟐𝒏−𝟏) + 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏)

Corollary: We can evaluate 𝒈 of 𝒉 on all 𝒂 ∈ 𝟎, 𝟏 𝒏, in only 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time



ACC Satisfiability Algorithm

Theorem: For every 𝑑,𝑚, there is an 𝜀 > 0 such that ACC-SAT on circuits with n 

inputs, 2𝑛
𝜀

size, depth 𝑑, and MOD𝑚 gates is solvable in 2𝑛−𝑛
𝜀

time

Proof:

n inputs

K = 2nO(ε) 

size

n-nε inputs

C
Size 
2nε

𝒈

…

Take an OR of all assignments 
to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨

…

Fast Multipoint Eval
For small ε > 0, evaluate h 
on all 2n - nε assignments in 

2n -nε poly(n)  time

n-nε inputs

22nε size

𝒉

Output “SAT”  ∃𝒂 ∈ 𝟎, 𝟏 𝒏−𝒏𝜺 s.t. 𝒈 𝒉 𝒂 = 𝟏



The LB Connection: If ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 
𝑂(2𝑛/𝑛10) time, then ENP doesn’t have 2𝑛

𝜀
size ACC-circuits. 

Given circuit 𝑪 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}, let 𝒕𝒕(𝑪) be its truth table: 
the output of 𝑪 on all 2𝑛 assignments, in lexicographical order

Key Idea: Succinct 3SAT is NEXP-complete, in a very strong way…

Upper bound: Evaluate the AC0 circuit on all 2𝑛 inputs, get a 2𝑛-length 
3CNF instance, guess and check a SAT assignment, in 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time 

Lower bound: [JMV’13] Every 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸 2𝑛 can be reduced in poly-time to 
a Succinct 3SAT instance which is AC0, 𝑚 = 𝑛 + 4log(𝑛) inputs, 𝑛10 size

So, if Succinct3SAT is in 2𝑚/𝑚5 time, then 𝐿 can be decided in time 𝑜(2𝑛)

Contradicts the nondeterministic time hierarchy theorem!

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for AC0 circuits of 𝑛 inputs and 𝑛10 size is solvable in 

nondeterministic 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time but not in nondeterministic 
2𝑛

𝑛5
time. 



Goal: Use ACC circuits for ENP & the ACC-SAT algorithm, to solve Succinct 3SAT faster.

Say that Succinct 3SAT has “succinct” SAT assignments if
for every 𝑪 (of 𝑛 inputs and 𝑛10 size) such that 𝒕𝒕(𝑪) encodes a satisfiable 3CNF 𝑭, 

there is an ACC circuit 𝑫 of 𝟐𝒏
𝟏𝟎𝜺

size such that 
𝒕𝒕(𝑫) encodes a variable assignment 𝑨 that satisfies 𝑭. 

(Imagine 𝐹 has variables 𝑥1, … , 𝑥2𝑛. Then 𝐷(𝑖) outputs a 0-1 assignment to variable 𝑥𝑖 in F)

If a succinct SAT assignment exists, we only have to guess a witness of length 𝟐𝒏
𝟏𝟎𝜺

Lemma 2 If ENP has 2𝑛
𝜀

size ACC circuits then

Succinct 3SAT has “succinct” SAT assignments

The LB Connection: If ENP has 2𝑛
𝜀

size ACC-circuits and 

ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 𝑂(2𝑛/𝑛10) time, then contradiction

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for ACC circuits of 𝑛 inputs and 𝑛10 size is solvable in 

nondeterministic 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time but not in nondeterministic 
2𝑛

𝑛5
time. 



The LB Connection: If ENP has 2𝑛
𝜀

size ACC-circuits and 

ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 𝑂(2𝑛/𝑛10) time, then contradiction

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 2 If ENP has 2𝑛
𝜀

size ACC circuits then

Succinct 3SAT has “succinct” SAT assignments

Proof The following is an ENP procedure:

On input (𝑪, 𝒊), where 𝒊 ∈ {𝟏,… , 𝟐𝒏}, 𝑪 has 𝒏 inputs & 𝒏𝟏𝟎 size
Compute 𝑭 = 𝒕𝒕(𝑪), think of 𝑭 as a 3CNF formula.
Use a SAT oracle and search-to-decision for SAT, to find the 
lexicographically first SAT assignment to 𝑭.
Output the 𝒊-th bit of this assignment.

ENP has 2𝑛
𝜀

size ACC circuits ⇒ there is a 2|𝐶|
𝜀
≤ 2𝑛

10𝜀
size ACC circuit 𝑫(𝑪, 𝒊)

which outputs the 𝒊-th bit of a satisfying assignment to 𝑭 = 𝒕𝒕(𝑪). 

Now for any circuit C’ of 𝒏𝟏𝟎 size, define the circuit E(i) := D(C’, i)

Then E has 2𝑛
10𝜀

size, and the assignment tt(E) satisfies tt(C’)


