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How to Prove Lower
Bounds With Algorithms
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Picking Up From Last Tlme
0. ud# 7

Let C be some circuit class (like ACC°) (@@ (@

Thm A [MW’18]:

If for some £ > O»ﬁap-@Alon 27" size is in 0(2" ”J
—
time, then Quasi-NP does not have poly- gw

Idea. Show that if we assume both:

(1) Quasi-NP has poly-size C-circuits,
and

(2) a faster C-SAT algorithm
Then show @NTlME[n’Og""] C NTIME[o(n!°9"™)]

<~ — —
Contradicts the nondeterministic time hiermW

there is@ in NTIME[n"’gk"] \\ NTIME[o(nl"gk")]
\_/————’_\




Proof Ideas of Theorem A

Idea. Assume:
(1) Quasi-NP has poly-size C-circuits, and
(2) a faster C-SAT algorithm

Then show 3k NTIME[1!°9""] € NTIME[o(n!°9"")]
—

. C . ky ..
Take an L in nondeterministic n'°9™" time.
Given an input x, we decide if x € L, by:

Guessing some witness y of O(nlogk") length.
@hecking y is a witness for x in O(nl"gk") time.
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Guessing Short Witnesses

1. Guess a witness y of o(nlogk") length.

a [IKW’
uasi-NP)>has po then
all NEXP (Quasi-NP) problems have “easy witnesses” -

Def. An NEXP/Quasi-NP problem L has easy witnesses if
rL n@\é

3 poly(|x|)-size circuit D, such that V(x,Y)Jaccepts,

F i 02, MW’18]:

Cﬁezre Y =Truth Table of circuit D,. " y(¢") p
L

P
1’. Guess poly(n)-size circuit D,




Verifying Short Witnesses

; ; : Kn o
2. Checky is a witness for x in o(n!?9™ ™) time.

Assuming Quasi-NP has polynomial-size circuits,
“easy withesses” exist for every verifier V.

We choose a verifier V for L € NTIME[nlng”] so that:

\ % %Checking V(x,y) accepts for |[x| =n

M\W\ is equivalent to

e /& Solving UNSAT on a C-circuit with 2™ “size

1 and m = log“*'(n) + 4log(n) mputs

%\/L

 U—

Then, 2™ time for C-UNSAT = o (nl"g ") time to decide L




Verifying Short Witnesses ' !.

; ; : Kn o
2. Checky is a witness for x in o(n!?9™ ™) time.

Assuming Quasi-NP has polynomial-size circuits,
“easy witnhesses” exist for every verifier V.

We can also choose a verifier V for L € NTIME[n!'®9"™ 4
Ay rejeely

Checking V' (x, y) accepts=

Distinguishing unsatisfiable circuits from
circuits with many satisfying assignments
(Uses a version of the PCP Theorem!)

Then, 2" time for Gap-C-UNSAT = 0o (nl"gk") time to decide L
’\—\’_/



Now: Time for Details



Definition: ACC Circuit Family

An ACC circuit family { C, } has the properties: Alternating

* Every C_ takes n bits of input and outputs one bit Circuits

* There is a fixed d such that every C_ has depth at most d With Counters
. There is a fixed m such that the gates of C_ are

<AND @ NO@(unbounded fan-in)

MODmi(xy, ..., x,) = 1 iff X, x; is divisible by m

Remarks
1. The default size (#gates) of C_ is polynomial in n
2. Strength: thisis a non-uniform model of computation
(can compute some undecidable languages!)
3. Weakness: ACC circuits can be efficiently simulated by
constant-layer neural networks (a.k.a. TCO)




Definition: ACC Circuit Family

An ACC circuit family { C, } has the properties: Alternating
* Every C_ takes n bits of input and outputs one bit Circuits
* There is a fixed d such that every C_ has depth at most d With Counters
* There is a fixed m such that the gates of C_ are
AND, OR, NOT, MODm (unbounded fan-in)
MODm(x4, ..., x,) = 1 iff 2, x; is divisible by m

Note: These circuits become very complex, Example:
already for certain fixed d and m.

OPEN: Does every problem in EXP have
polynomial-size MODG6 circuits of depth 3 (?!)

ACC does have some surprism

[CW’22] For every € > 0, every symmetric
Boolean fn has 2™ size depth-3 ACC circuits

X1 Xy X3 Xy X5 Xg Xq Xg X9 X509 Xqpg



Where does ACC come from?

'Dream o)( ﬂ‘\e 19805 Prove P = NP by proving NP & P/poly.

Unlike Turing Machines, logic circuits are fixed, “simple” devices.
This should make it easier to prove impossibility results.

Ajtai, Furst-Saxe-Sipser, Hastad (early 80’s)
MOD2 & ACO [poly-size ACC with only AND, OR, NOT, no MODm]

Razborov, Smolensky (late 80’s) 5 n0)Z
MOD3 $ (ACO with MOD2 gates) , 1, .~ % mods, [
Forp ;Qq prime, MODp & {ACO with MODq gates) [\/\0 D

Barrington (late 80’s) Suggested ACC as the next natural step

Conjecture Majority € ACC
Conjecture (early 90’s) NP & ACC
Conjecture (late 90’s) NEXP & ACC



ACC Lower Bounds
ol S
Ex/ponentlal Time with anCtNP oracle [think: SAT oracle]

NEXP = Nondeterministic Exponential Time

Theorem [W’11] Thereis an f € EXP"? such that for every d, m there is an

€ > 0 such that f does not have ACC circuits with MODm gates, depth d,
ey — i -
and size Lz/é ~ g

Theorem [W’11] Thereis an f € NEXP such that for all d, m, k,
f does not hav

.- CC circuits of depth d with MODm gates

@
N

Remark Compare with: - v 2
[IMS 70’s]  EXPINP™) = X PZ2P/doesn’t have o(2"/n) size circuits
[K82] NEXP" =Y. E doesn’t have n'o9“n_size circuits for all k

vcﬁ-




[z g r)
ACC Lower Bounds \_ ../ sa7T dreado

Quasi-NP = Nondeterministic n?°9 " Time

Theorem [MW’18] There is an f in Quasi-NP such that for all d, m, k,
f does not have n’ sue@urcwts of depth d with MODm gates

Has since been extended in multiple ways!

(stronger circuit classes, average-case hardness, etc etc)

We'll outline a different result, and then sketch how to extend it.

Theorem There is an f in ENP) = TIME@[@O@such that for all d, m,

there is an € > 0 such that f does not havelirsue ACC circuits of depth
d with MODm gates B




Proof Outline
(Bcy #ec T
Design a faster ACC-SAT algorithm ¢y - .+ L+

This algorithm has

The Algorithm: For every d, m, there is an ¢ g > 0 such that N
changed little in the
ACC-SAT on circuits with n mputs AL Size, depth d, and past 9 years...

MODm gates is solvable in 2™~ " time Z/ZVL

Show that faster ACC-SAT algorithms imply

lower bounds against ACC The connections
The LB Connection: If C-SAT on circuits with n inputs and have strengthened
2™ sizeisin O 10) time, then considerably!
NP"doesn’t have 2" sue@wcmtsj



Algorithm for SAT on ACC Circuits

Ingredients: I
1. Old representation [Yao’90, Beigel-Tarui’94,Green et al’95] Olip%dpm

For every ACC functionmﬁ {O,l}}ﬁld every n, we
— {0,1} as: ’
_{ ﬂ{c n

ultilinear polynomial of at mos@monomials, h

iineal polynol
h(a) € {0, ...,K} foralla € {0,1}" Cs TS
- /K is not “too large’”/(quasi-polynomial in circuit size) (5

'—?= {0,...,K} — {0,1} is a fixed “simple” function

2. “FastFourier Transform” for multilinear polynomials: [Chen-Papakonstantinou’19]

Given a mgﬂhiﬂcwﬂr%ﬁlj in its coefficient K Sﬁ

representation, the value h(a) can be computed over all where s = size, d = depth,

points a € {0,1}" in 2™ poly(n) time. 2‘;\0 @ r = # prime divisors of m




Fast Multipoint Evaluation

Theorem: Given the 2™ coefficients of a multilinear polynomial h in i variables,
h(a) can be computed on all points a € {0,1}" in 2" poly(n) time.

Can write: h(xq, ... ,x,) = x; h{(x,,...,x,) + hy,(x,, ..., X,)
Want a 2" table T that contains the value of h on all 2" points.

Algorithm: Ifn = 1thenreturnT = [h(0),h(1)]
Recursively compute the 2™ 1-length table T, for the values of h,,
and the 2™ 1l-length table T, for the values of h,

Return the table T = (T,)(T, + T,) of 2™ entries
Running time has the recurrence R(2") < 2 - R(2™ 1) + 2" poly(n)

Corollary: We can evaluate g of honall a € {0,1}", in only 2" poly(n) time



ACC Satisfiability Algorithm

Theorem: For every d, m, there is an € > 0 such that ACC-SAT on circuits with n
inputs, 2™ size, depth d, and MODm gates is solvable in 2"~ time

Proof: Take an OR of all assignments

to the first n€ inputs of C

—

a‘“\

K = pnO %V n-n¢ inputs
size
For small € > 0, evaluate h
h< Fast M“'t'po'”t 22l on all 2n-"® assighments in
2n-n“ poly(n) time

n-n¢ inputs
Output “SAT” <> Ja € {0,1}" ™ s.t. g(h(a)) = 1

n inputs




The LB Connection: If ACC-SAT on circuits with n inputs and 21" size is in
0(2"/nt0) time, then ENP doesn’t have 2" size ACC-circuits.

Given circuit C : {0,1}" — {0, 1}, let tt(C) be its truth table: - /v JW”‘/S
the output of € on all 2" assignments, in lexicographical order ' S)2¢

Key Idea: Succinct 3SAT is NEXP—compIeté, in a very strong way...

Lemma 1 Succinct 3SAT for ACO circuits of n inputs and nl? size is solvable in

n

nondeterministic 2™ poly(n) time but not in nondeterministic — time.
n

Upper bound: Evaluate the ACO circuit on all 2" inputs, get a 2"-length
3CNF instance, guess and check a SAT assignment, in 2" poly(n) time

Lower bound: [JIMV’13] Every'L € NTIME|[2™) can be reduced in poly-time to
a Succinct 3SAT instance which is ACO, m = n + 4log(n)\nputs, n'? size

So, if Succinct3SAT is ime, then L can be decided in time 022”)

Contradicts the nondeterministic time hierarchy theorem!




The LB Connection: If EN® has 2™ size ACC-circuits and

ACC-SAT on circuits with n inputs and 2™ i e, then contradiction
7 ntradgiction.
Succinct 3SAT: Given a circuit C, does tt(C) encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for ACC circuits of n inputs and n!? size is solvable in

nondeterministic 2" poly(n) time but not.i nondeterministic/—/time.

Goal: Use@ for.& the ACC-SAT algorlthm to solve Succinct 3SAT faster.
Say that Succinct 3SAT has §uccmc;” SAT assignments if e

for every ( C (of n inputs and 10 size) such that tt(C) encodes%\@tlsflable 3CNF F,
€ 4%
there is an/ACC circuit D of 2™ sizesuch that
= X!

@encodes a variable assignment 4 that satisfies F.

\
(Imagine F has variables x4, ..., xon. Then Q(Q outputs a 0-1 assignment to variable x; in F)

If a succinct SAT assignment exists, we only have to guess a witness of length nt

Lemma 2 If ENP has 2™ size ACC circuits then
Succinct 3SAT has “succinct” SAT assignments./




The LB Connection: If ENP has 2™ size ACC-circuits and
ACC-SAT on circuits with n inputs and 2™ size is in 0 (2" /n1%) time, then contradiction

Succinct 3SAT: Given a circuit C, does tt(C) encode a satisfiable 3CNF?

Lemma 2 If ENP has 2™ size ACC circuits then

Succinct 3SAT has “succinct” SAT assignments

Proof The following is an ENP procedurez/7 T Laedsle

[C|#
On input @, wlhg}e i €1{1,..,2"}, C has n inputs & @ze )
)

Compute[lifz__t@ think of F as a 3CNF formula. < 9\
Use a SAT oracle and search-to-decision for SAT, to find the

lexicographically first SAT assignm .
Output the i-th bit of this assignment. .

ENP has 23° size ACC circuits = there is a @size ACC circuit D(C, i)
which outputs the i-th bit of a satisfying assignment to F Dz/t%).

Now for an@m define the circuit E(i) := D(C:E é) ‘

Then E has 2™ size, and the assignment tt(E) satisfies tt(C’)
% . ———




