
Outline

Lecture 1: Overview of Circ LBs from Algorithms
Lecture 2-3: More on Circ LBs from Algorithms
Lecture 3: The Mysteries of the Missing String
Lecture 4: The Power of Constructing Bad Inputs

How to Prove Lower
Bounds With Algorithms

Lecture 2: Overview of Circuit Lower Bounds
From Circuit-Analysis Algorithms

Picking Up From Last Time

Let ℂ be some circuit class (like ACC0)

Thm A [MW’18]:

If for some ℰ > 𝟎, Gap-ℂ-SAT on 𝟐𝒏
ℇ

size is in O(𝟐𝒏−𝒏
ℇ
)

time, then Quasi-NP does not have poly-size ℂ-circuits.

Idea. Show that if we assume both:

(1) Quasi-NP has poly-size ℂ-circuits,
and

(2) a faster ℂ-SAT algorithm

Then show ∃𝒌 NTIME[𝒏𝒍𝒐𝒈
𝒌𝒏] ⊆ NTIME[o(𝒏𝒍𝒐𝒈

𝒌𝒏)]

Contradicts the nondeterministic time hierarchy:

there is 𝑳𝒉𝒂𝒓𝒅 in NTIME[𝒏𝒍𝒐𝒈
𝒌𝒏] ∖ NTIME[o(𝒏𝒍𝒐𝒈

𝒌𝒏)]

Proof Ideas of Theorem A

Idea. Assume:

(1) Quasi-NP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Then show ∃𝒌 NTIME[𝒏𝒍𝒐𝒈
𝒌𝒏] ⊆ NTIME[o(𝒏𝒍𝒐𝒈

𝒌𝒏)]

Take an 𝐿 in nondeterministic 𝒏𝒍𝒐𝒈
𝒌𝒏 time.

Given an input 𝑥, we decide if 𝑥 ∈ 𝐿, by:

(A) Guessing some witness 𝑦 of O(𝒏𝒍𝒐𝒈
𝒌𝒏) length.

(B) Checking 𝑦 is a witness for 𝑥 in O(𝒏𝒍𝒐𝒈
𝒌𝒏) time.

Proof Ideas of Theorem A

Idea. Assume:

(1) Quasi-NP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Then show ∃𝒌 NTIME[𝒏𝒍𝒐𝒈
𝒌𝒏] ⊆ NTIME[o(𝒏𝒍𝒐𝒈

𝒌𝒏)]

Take an 𝐿 in nondeterministic 𝒏𝒍𝒐𝒈
𝒌𝒏 time.

Given an input 𝑥, we will decide if 𝑥 ∈ 𝐿, by:

(A) Guessing some witness 𝑦 of o(𝒏𝒍𝒐𝒈
𝒌𝒏) length.

(B) Checking 𝑦 is a witness for 𝑥 in o(𝒏𝒍𝒐𝒈
𝒌𝒏) time.

Proof Ideas of Theorem A

Idea. Assume:

(1) Quasi-NP has poly-size ℂ-circuits, and

(2) a faster ℂ-SAT algorithm

Then show ∃𝒌 NTIME[𝒏𝒍𝒐𝒈
𝒌𝒏] ⊆ NTIME[o(𝒏𝒍𝒐𝒈

𝒌𝒏)]

Take an 𝐿 in nondeterministic 𝒏𝒍𝒐𝒈
𝒌𝒏 time.

Given an input 𝑥, we will decide if 𝑥 ∈ 𝐿, by:

(A) Guessing some witness 𝑦 of o(𝒏𝒍𝒐𝒈
𝒌𝒏) length.

(B) Checking 𝑦 is a witness for 𝑥 in o(𝒏𝒍𝒐𝒈
𝒌𝒏) time.

Guessing Short Witnesses

Easy Witness Lemma [IKW’02, MW’18]:
If NEXP (Quasi-NP) has polynomial-size circuits, then
all NEXP (Quasi-NP) problems have “easy witnesses”

Def. An NEXP/Quasi-NP problem L has easy witnesses if
∀ Verifiers V for L and ∀𝑥 ∈ 𝐿,
∃ poly(|𝑥|)-size circuit Dx such that V(x,Y) accepts,

where Y = Truth Table of circuit Dx.

1. Guess a witness y of o(𝟐𝒏) length.

1’. Guess 𝑝𝑜𝑙𝑦 𝑛 -size circuit Dx

1. Guess a witness y of o(𝒏𝒍𝒐𝒈
𝒌𝒏) length.

Small circuits for
solving Quasi-NP

problems
→ Small circuits

encoding solutions to
Quasi-NP problems

Verifying Short Witnesses

Assuming Quasi-NP has polynomial-size circuits,
“easy witnesses” exist for every verifier V.

We choose a verifier 𝑉 for 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸[𝒏𝒍𝒐𝒈
𝒌𝒏] so that:

Checking V(𝑥, 𝑦) accepts for 𝑥 = 𝑛
𝑖𝑠 𝑒𝑞𝑢𝑖𝑣𝑎𝑙𝑒𝑛𝑡 𝑡𝑜

Solving UNSAT on a ℂ-circuit with 2𝑚
𝜀

size
and 𝑚 = log𝑘+1(𝑛) + 4 log(𝑛) inputs

Then, 2𝑚−𝑚𝜖
time for ℂ-UNSAT ➔ 𝑜 𝒏𝒍𝒐𝒈

𝒌𝒏 time to decide 𝐿

2. Check y is a witness for x in o(𝒏𝒍𝒐𝒈
𝒌𝒏) time.

Verifying Short Witnesses

Checking 𝑉(𝑥, 𝑦) accepts ≡

Distinguishing unsatisfiable circuits from
circuits with many satisfying assignments

(Uses a version of the PCP Theorem!)

Then, 2𝑛−𝑛
𝜖

time for Gap-ℂ-UNSAT ➔ 𝑜 𝒏𝒍𝒐𝒈
𝒌𝒏 time to decide L

2. Check y is a witness for x in o(𝒏𝒍𝒐𝒈
𝒌𝒏) time.

Assuming Quasi-NP has polynomial-size circuits,
“easy witnesses” exist for every verifier V.

We can also choose a verifier 𝑉 for 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸[𝒏𝒍𝒐𝒈
𝒌𝒏] so that:

Now: Time for Details

Definition: ACC Circuit Family

An ACC circuit family { Cn } has the properties:
• Every Cn takes 𝑛 bits of input and outputs one bit
• There is a fixed 𝒅 such that every Cn has depth at most 𝒅
• There is a fixed 𝒎 such that the gates of Cn are

AND, OR, NOT, MOD𝒎 (unbounded fan-in)
MOD𝒎(𝒙𝟏, … , 𝒙𝒕) = 𝟏 iff 𝒊 𝒙𝒊 is divisible by 𝒎

Remarks
1. The default size (#gates) of Cn is polynomial in n
2. Strength: this is a non-uniform model of computation

(can compute some undecidable languages!)
3. Weakness: ACC circuits can be efficiently simulated by

constant-layer neural networks (a.k.a. TC0)

Alternating
Circuits
With Counters

Definition: ACC Circuit Family

An ACC circuit family { Cn } has the properties:
• Every Cn takes 𝑛 bits of input and outputs one bit
• There is a fixed 𝒅 such that every Cn has depth at most 𝒅
• There is a fixed 𝒎 such that the gates of Cn are

AND, OR, NOT, MOD𝒎 (unbounded fan-in)
MOD𝒎(𝒙𝟏, … , 𝒙𝒕) = 𝟏 iff 𝒊 𝒙𝒊 is divisible by 𝒎

MOD6

ANDMOD6

OR NOT

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11

Example: Note: These circuits become very complex,
already for certain fixed 𝑑 and 𝑚.

OPEN: Does every problem in EXP have
polynomial-size MOD6 circuits of depth 3 (?!)

Alternating
Circuits
With Counters

ACC does have some surprising power:

[CW’22] For every 𝜀 > 0, every symmetric

Boolean fn has 2𝑛
𝜀

size depth-3 ACC circuits

Where does ACC come from?

Dream of the 1980s: Prove P  NP by proving NP  P/poly.

Unlike Turing Machines, logic circuits are fixed, “simple” devices.
This should make it easier to prove impossibility results.

Ajtai, Furst-Saxe-Sipser, Håstad (early 80’s)
MOD2 ∉ AC0 [poly-size ACC with only AND, OR, NOT, no MODm]

Razborov, Smolensky (late 80’s)
MOD3 ∉ (AC0 with MOD2 gates)

For p  q prime, MODp ∉ (AC0 with MODq gates)

Barrington (late 80’s) Suggested ACC as the next natural step

Conjecture Majority ∉ ACC
Conjecture (early 90’s) NP  ACC

Conjecture (late 90’s) NEXP  ACC

ACC Lower Bounds

EXPNP = Exponential Time with an NP oracle [think: SAT oracle]
NEXP = Nondeterministic Exponential Time

Theorem [W’11] There is an 𝑓 ∈ EXPNP such that for every 𝑑,𝑚 there is an
ε > 0 such that 𝒇 does not have ACC circuits with MOD𝑚 gates, depth 𝑑,
and size 2nε

Theorem [W’11] There is an 𝑓 ∈ NEXP such that for all 𝑑,𝑚, 𝑘,

𝒇 does not have 𝒏𝒍𝒐𝒈
𝒌𝒏 size ACC circuits of depth 𝑑 with MOD𝑚 gates

Remark Compare with:
[MS 70’s] EXP(NPNP) = 𝐸𝑋𝑃Σ2𝑃 doesn’t have o(2n/n) size circuits

[K82] NEXPNP = Σ2𝐸 doesn’t have 𝒏𝒍𝒐𝒈
𝒌𝒏-size circuits for all k

ACC Lower Bounds

Quasi-NP = Nondeterministic 𝑛𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 Time

Theorem [MW’18] There is an 𝒇 in Quasi-NP such that for all 𝑑,𝑚, 𝑘,
𝒇 does not have 𝒏𝒌 size ACC circuits of depth 𝑑 with MOD𝑚 gates

Has since been extended in multiple ways!
(stronger circuit classes, average-case hardness, etc etc)

We’ll outline a different result, and then sketch how to extend it.

Theorem There is an 𝒇 in 𝑬𝑵𝑷 = 𝑻𝑰𝑴𝑬𝑺𝑨𝑻 𝟐𝑶 𝒏 such that for all 𝑑,𝑚,

there is an 𝜀 > 0 such that 𝒇 does not have 2𝑛
𝜀

size ACC circuits of depth
𝑑 with MOD𝑚 gates

Proof Outline

Design a faster ACC-SAT algorithm

The Algorithm: For every 𝑑,𝑚, there is an 𝜀 > 0 such that

ACC-SAT on circuits with n inputs, 2𝑛
𝜀

size, depth 𝑑, and

MOD𝑚 gates is solvable in 2𝑛−𝑛
𝜀

time

Show that faster ACC-SAT algorithms imply
lower bounds against ACC

The LB Connection: If C-SAT on circuits with n inputs and

2𝑛
𝜀

size is in O(2n/n10) time, then
ENP doesn’t have 2𝑛

𝜀
size C-circuits.

This algorithm has
changed little in the

past 9 years…

The connections
have strengthened

considerably!

Algorithm for SAT on ACC Circuits
Ingredients:
1. Old representation [Yao’90, Beigel-Tarui’94,Green et al’95]

For every ACC function 𝑓 ∶ 0,1 ⋆ → 0,1 and every 𝒏, we
can write 𝑓𝑛 ∶ 0,1 𝑛 → {0,1} as:

𝒇𝒏 𝒙𝟏, … , 𝒙𝒏 = 𝒈(𝒉 𝒙𝟏, … , 𝒙𝒏), where
- 𝒉 is a multilinear polynomial of at most 𝐾 monomials,

ℎ 𝑎 ∈ {0,… , 𝐾} for all 𝑎 ∈ 0,1 𝑛

- 𝐾 is not “too large” (quasi-polynomial in circuit size)
- 𝒈 ∶ 0,… , 𝐾 → {0,1} is a fixed “simple” function

2. “Fast Fourier Transform” for multilinear polynomials:
Given a multilinear polynomial ℎ in its coefficient
representation, the value ℎ(𝑎) can be computed over all
points 𝑎 ∈ 0,1 𝑛 in 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time.

𝜮

…
𝒉

𝑲

[Chen-Papakonstantinou’19]

𝐾 ≤ 2 log 𝑠 𝑂 𝑑𝑟

where 𝑠 = size, 𝑑 = depth,
𝑟 = # prime divisors of m

𝒈

Fast Multipoint Evaluation

Theorem: Given the 𝟐𝒏 coefficients of a multilinear polynomial 𝒉 in 𝒏 variables,
𝒉(𝒂) can be computed on all points 𝒂 ∈ {𝟎, 𝟏}𝒏 in 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time.

Can write: 𝒉(𝒙𝟏, … , 𝒙𝒏) = 𝒙𝟏 𝒉𝟏(𝒙𝟐, … , 𝒙𝒏) + 𝒉𝟐(𝒙𝟐, … , 𝒙𝒏)

Want a 𝟐𝒏 table T that contains the value of 𝒉 on all 𝟐𝒏 points.

Algorithm: If 𝒏 = 𝟏 then return 𝑻 = [𝒉(𝟎), 𝒉(𝟏)]
Recursively compute the 𝟐𝒏−𝟏-length table 𝑻𝟏 for the values of 𝒉𝟏,

and the 𝟐𝒏−𝟏-length table 𝑻𝟐 for the values of 𝒉𝟐

Return the table 𝑻 = (𝑻𝟐)(𝑻𝟏 + 𝑻𝟐) of 𝟐𝒏 entries

Running time has the recurrence 𝑹 𝟐𝒏 ≤ 𝟐 ⋅ 𝑹(𝟐𝒏−𝟏) + 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏)

Corollary: We can evaluate 𝒈 of 𝒉 on all 𝒂 ∈ 𝟎, 𝟏 𝒏, in only 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time

ACC Satisfiability Algorithm

Theorem: For every 𝑑,𝑚, there is an 𝜀 > 0 such that ACC-SAT on circuits with n

inputs, 2𝑛
𝜀

size, depth 𝑑, and MOD𝑚 gates is solvable in 2𝑛−𝑛
𝜀

time

Proof:

n inputs

K = 2nO(ε)

size

n-nε inputs

C
Size
2nε

𝒈

…

Take an OR of all assignments
to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨

…

Fast Multipoint Eval
For small ε > 0, evaluate h
on all 2n - nε assignments in

2n -nε poly(n) time

n-nε inputs

22nε size

𝒉

Output “SAT”  ∃𝒂 ∈ 𝟎, 𝟏 𝒏−𝒏𝜺 s.t. 𝒈 𝒉 𝒂 = 𝟏

The LB Connection: If ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in
𝑂(2𝑛/𝑛10) time, then ENP doesn’t have 2𝑛

𝜀
size ACC-circuits.

Given circuit 𝑪 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}, let 𝒕𝒕(𝑪) be its truth table:
the output of 𝑪 on all 2𝑛 assignments, in lexicographical order

Key Idea: Succinct 3SAT is NEXP-complete, in a very strong way…

Upper bound: Evaluate the AC0 circuit on all 2𝑛 inputs, get a 2𝑛-length
3CNF instance, guess and check a SAT assignment, in 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time

Lower bound: [JMV’13] Every 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸 2𝑛 can be reduced in poly-time to
a Succinct 3SAT instance which is AC0, 𝑚 = 𝑛 + 4log(𝑛) inputs, 𝑛10 size

So, if Succinct3SAT is in 2𝑚/𝑚5 time, then 𝐿 can be decided in time 𝑜(2𝑛)

Contradicts the nondeterministic time hierarchy theorem!

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for AC0 circuits of 𝑛 inputs and 𝑛10 size is solvable in

nondeterministic 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time but not in nondeterministic
2𝑛

𝑛5
time.

Goal: Use ACC circuits for ENP & the ACC-SAT algorithm, to solve Succinct 3SAT faster.

Say that Succinct 3SAT has “succinct” SAT assignments if
for every 𝑪 (of 𝑛 inputs and 𝑛10 size) such that 𝒕𝒕(𝑪) encodes a satisfiable 3CNF 𝑭,

there is an ACC circuit 𝑫 of 𝟐𝒏
𝟏𝟎𝜺

size such that
𝒕𝒕(𝑫) encodes a variable assignment 𝑨 that satisfies 𝑭.

(Imagine 𝐹 has variables 𝑥1, … , 𝑥2𝑛. Then 𝐷(𝑖) outputs a 0-1 assignment to variable 𝑥𝑖 in F)

If a succinct SAT assignment exists, we only have to guess a witness of length 𝟐𝒏
𝟏𝟎𝜺

Lemma 2 If ENP has 2𝑛
𝜀

size ACC circuits then

Succinct 3SAT has “succinct” SAT assignments

The LB Connection: If ENP has 2𝑛
𝜀

size ACC-circuits and

ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 𝑂(2𝑛/𝑛10) time, then contradiction

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for ACC circuits of 𝑛 inputs and 𝑛10 size is solvable in

nondeterministic 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time but not in nondeterministic
2𝑛

𝑛5
time.

The LB Connection: If ENP has 2𝑛
𝜀

size ACC-circuits and

ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 𝑂(2𝑛/𝑛10) time, then contradiction

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 2 If ENP has 2𝑛
𝜀

size ACC circuits then

Succinct 3SAT has “succinct” SAT assignments

Proof The following is an ENP procedure:

On input (𝑪, 𝒊), where 𝒊 ∈ {𝟏,… , 𝟐𝒏}, 𝑪 has 𝒏 inputs & 𝒏𝟏𝟎 size
Compute 𝑭 = 𝒕𝒕(𝑪), think of 𝑭 as a 3CNF formula.
Use a SAT oracle and search-to-decision for SAT, to find the
lexicographically first SAT assignment to 𝑭.
Output the 𝒊-th bit of this assignment.

ENP has 2𝑛
𝜀

size ACC circuits ⇒ there is a 2|𝐶|
𝜀
≤ 2𝑛

10𝜀
size ACC circuit 𝑫(𝑪, 𝒊)

which outputs the 𝒊-th bit of a satisfying assignment to 𝑭 = 𝒕𝒕(𝑪).

Now for any circuit C’ of 𝒏𝟏𝟎 size, define the circuit E(i) := D(C’, i)

Then E has 2𝑛
10𝜀

size, and the assignment tt(E) satisfies tt(C’)

