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Recap: 𝐸𝑁𝑃 needs exp. size ACC circuits

Design a faster ACC-SAT algorithm

The Algorithm: For every 𝑑,𝑚, there is an 𝜀 > 0 such that 

ACC-SAT on circuits with n inputs, 2𝑛
𝜀

size, depth 𝑑, and 

MOD𝑚 gates is solvable in 2𝑛−𝑛
𝜀

time

Show that faster ACC-SAT algorithms imply 
lower bounds against ACC

The LB Connection: If C-SAT on circuits with n inputs and 

2𝑛
𝜀

size is in O(2n/n10) time, then 
ENP doesn’t have 2𝑛

𝜀
size C-circuits. 



Algorithm for SAT on ACC Circuits
Ingredients:
1. Old representation [Yao’90, Beigel-Tarui’94,Green et al’95]

For every ACC function 𝑓 ∶ 0,1 ⋆ → 0,1 and every 𝒏, we 
can write 𝑓𝑛 ∶ 0,1 𝑛 → {0,1} as:

𝒇𝒏 𝒙𝟏, … , 𝒙𝒏 = 𝒈(𝒉 𝒙𝟏, … , 𝒙𝒏 ), where
- 𝒉 is a multilinear polynomial of at most 𝐾 monomials,  

ℎ 𝑎 ∈ {0,… , 𝐾} for all 𝑎 ∈ 0,1 𝑛

- 𝐾 is not “too large” (quasi-polynomial in circuit size)
- 𝒈 ∶ 0,… , 𝐾 → {0,1} is a fixed “simple” function

2. “Fast Fourier Transform” for multilinear polynomials: 
Given a multilinear polynomial ℎ in its coefficient 
representation, the value ℎ(𝑎) can be computed over all 
points 𝑎 ∈ 0,1 𝑛 in 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time.

𝜮

…
𝒉

𝑲

[Chen-Papakonstantinou’19]

𝐾 ≤ 2 log 𝑠 𝑂 𝑑𝑟

where 𝑠 = size, 𝑑 = depth,
𝑟 = # prime divisors of m

𝒈



Fast Multipoint Evaluation

Theorem: Given the 𝟐𝒏 coefficients of a multilinear polynomial 𝒉 in 𝒏 variables,  
𝒉(𝒂) can be computed on all points 𝒂 ∈ {𝟎, 𝟏}𝒏 in 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time.

Can write:  𝒉(𝒙𝟏, … , 𝒙𝒏) = 𝒙𝟏 𝒉𝟏(𝒙𝟐, … , 𝒙𝒏) + 𝒉𝟐(𝒙𝟐, … , 𝒙𝒏)

Want a 𝟐𝒏 table T that contains the value of 𝒉 on all 𝟐𝒏 points.

Algorithm:  If 𝒏 = 𝟏 then return 𝑻 = [𝒉(𝟎), 𝒉(𝟏)]
Recursively compute the 𝟐𝒏−𝟏-length table 𝑻𝟏 for the values of 𝒉𝟏, 

and the 𝟐𝒏−𝟏-length table 𝑻𝟐 for the values of 𝒉𝟐
Return the table 𝑻 = (𝑻𝟐)(𝑻𝟏 + 𝑻𝟐) of 𝟐𝒏 entries  

Running time has the recurrence 𝑹 𝟐𝒏 ≤ 𝟐 ⋅ 𝑹(𝟐𝒏−𝟏) + 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏)

Corollary: We can evaluate 𝒈 of 𝒉 on all 𝒂 ∈ 𝟎, 𝟏 𝒏, in only 𝟐𝒏 𝒑𝒐𝒍𝒚(𝒏) time



ACC Satisfiability Algorithm

Theorem: For every 𝑑,𝑚, there is an 𝜀 > 0 such that ACC-SAT on circuits with n 

inputs, 2𝑛
𝜀

size, depth 𝑑, and MOD𝑚 gates is solvable in 2𝑛−𝑛
𝜀

time

Proof:

n inputs

K = 2nO(ε) 

size

n-nε inputs

C
Size 
2nε

𝒈

…

Take an OR of all assignments 
to the first nε inputs of C

C
2nεC

2nε
C

2nε
C

2nε
C

2nε
C

2nε

∨

…

Fast Multipoint Eval
For small ε > 0, evaluate h 
on all 2n - nε assignments in 

2n -nε poly(n)  time

n-nε inputs

22nε size

𝒉

Output “SAT”  ∃𝒂 ∈ 𝟎, 𝟏 𝒏−𝒏𝜺 s.t. 𝒈 𝒉 𝒂 = 𝟏



The LB Connection: If ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 
𝑂(2𝑛/𝑛10) time, then ENP doesn’t have 2𝑛

𝜀
size ACC-circuits. 

Given circuit 𝑪 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}, let 𝒕𝒕(𝑪) be its truth table: 
the output of 𝑪 on all 2𝑛 assignments, in lexicographical order

Key Idea: Succinct 3SAT is NEXP-complete, in a very strong way…

Upper bound: Evaluate the AC0 circuit on all 2𝑛 inputs, get a 2𝑛-length 
3CNF instance, guess and check a SAT assignment, in 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time 

Lower bound: [JMV’13] Every 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸 2𝑛 can be reduced in poly-time to 
a Succinct 3SAT instance which is AC0, 𝑚 = 𝑛 + 4log(𝑛) inputs, 𝑛10 size

So, if Succinct3SAT is in 2𝑚/𝑚5 time, then 𝐿 can be decided in time 𝑜(2𝑛)

Contradicts the nondeterministic time hierarchy theorem!

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for AC0 circuits of 𝑛 inputs and 𝑛10 size is solvable in 

nondeterministic 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time but not in nondeterministic 
2𝑛

𝑛5
time. 



Goal: Use ACC circuits for ENP & the ACC-SAT algorithm, to solve Succinct 3SAT faster.

Say that Succinct 3SAT has “succinct” SAT assignments if
for every 𝑪 (of 𝑛 inputs and 𝑛10 size) such that 𝒕𝒕(𝑪) encodes a satisfiable 3CNF 𝑭, 

there is an ACC circuit 𝑫 of 𝟐𝒏
𝟏𝟎𝜺

size such that 
𝒕𝒕(𝑫) encodes a variable assignment 𝑨 that satisfies 𝑭. 

(Imagine 𝐹 has variables 𝑥1, … , 𝑥2𝑛. Then 𝐷(𝑖) outputs a 0-1 assignment to variable 𝑥𝑖 in F)

If a succinct SAT assignment exists, we only have to guess a witness of length 𝟐𝒏
𝟏𝟎𝜺

Lemma 2 If ENP has 2𝑛
𝜀

size ACC circuits then

Succinct 3SAT has “succinct” SAT assignments

The LB Connection: If ENP has 2𝑛
𝜀

size ACC-circuits and 

ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 𝑂(2𝑛/𝑛10) time, then contradiction

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for ACC circuits of 𝑛 inputs and 𝑛10 size is solvable in 

nondeterministic 2𝑛 𝑝𝑜𝑙𝑦 𝑛 time but not in nondeterministic 
2𝑛

𝑛5
time. 



The LB Connection: If ENP has 2𝑛
𝜀

size ACC-circuits and 

ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 𝑂(2𝑛/𝑛10) time, then contradiction

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Lemma 2 If ENP has 2𝑛
𝜀

size ACC circuits then

Succinct 3SAT has “succinct” SAT assignments

Proof The following is an ENP procedure:

On input (𝑪, 𝒊), where 𝒊 ∈ {𝟏,… , 𝟐𝒏}, 𝑪 has 𝒏 inputs & 𝒏𝟏𝟎 size
Compute 𝑭 = 𝒕𝒕(𝑪), think of 𝑭 as a 3CNF formula.
Use a SAT oracle and search-to-decision for SAT, to find the 
lexicographically first SAT assignment to 𝑭.
Output the 𝒊-th bit of this assignment.

ENP has 2𝑛
𝜀

size ACC circuits ⇒ there is a 2|𝐶|
𝜀
≤ 2𝑛

10𝜀
size ACC circuit 𝑫(𝑪, 𝒊)

which outputs the 𝒊-th bit of a satisfying assignment to 𝑭 = 𝒕𝒕(𝑪). 

Now for any circuit C’ of 𝒏𝟏𝟎 size, define the circuit E(i) := D(C’, i)

Then E has 2𝑛
10𝜀

size, and the assignment tt(E) satisfies tt(C’)



The LB Connection: If ENP has 2𝑛
𝜀

size ACC-circuits and 

ACC-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 𝑂(2𝑛/𝑛10) time, then contradiction

Succinct 3SAT: Given a circuit 𝑪, does 𝒕𝒕(𝑪) encode a satisfiable 3CNF?

Goal: Use ACC circuits for ENP & the ACC-SAT algorithm 
to put Succinct3SAT in 𝑵𝑻𝑰𝑴𝑬[𝟐𝒏/𝒏𝟓] (contradiction!)

Outline of Succinct3SAT algorithm:

Given a Succinct3SAT instance 𝐶 (an AC0 circuit of 𝑛10 size, 𝑛 inputs)

1. Guess a 2𝑛
10𝜀

size ACC circuit 𝑌 encoding a SAT assignment for the 
exponentially-long 3CNF 𝐹 ≔ 𝑡𝑡 𝐶

2. Check that 𝑡𝑡(𝑌) satisfies 𝐹 in 𝑂 2𝑛/𝑛5 time, 
using the 𝑂(2𝑛/𝑛10)-time ACC-SAT algorithm.

The entire process will take 𝑂 2𝑛/𝑛5 nondeterministic time.

Lemma 2 If ENP has 2𝑛
𝜀

size ACC circuits then

Succinct 3SAT has “succinct” SAT assignments



Faster Algorithm for Succinct3SAT
Given Succinct3SAT instance 𝑪 (an 𝒏-input, 𝒏𝟏𝟎-size AC0 circuit)

Guess: ACC circuit 𝒀 of 2𝑛
10𝜀

size 
[Want: 𝒀(𝒊) outputs the 𝒊-th bit of a satisfying assignment for 𝑭 ≔ 𝒕𝒕(𝑪)] 

To check 𝑌, construct the following circuit 𝑫 of O(2𝑛
10𝜀

) size:

𝐷 is UNSAT ⇔ for all 𝑖, 𝐷(𝑖) = 0⇔ for all 𝑖, 𝑡𝑡(𝑌) satisfies 𝑖-th clause of 𝐹
⇔ 𝑡𝑡(𝑌) is a satisfying assignment to 𝐹.  Using ACC-SAT algorithm, takes 𝒐(𝟐𝒏) time to check!

𝒊 𝒏 input bits

𝐶

Output 1 ⇔ variable assignment encoded by 𝒀
does not satisfy the 𝒊-th clause of 𝑭

¬( 𝑠 ⊕ 𝑌 𝑎 ∨ 𝑡 ⊕ 𝑌 𝑏 ∨ 𝑢 ⊕ 𝑌 𝑐 )

𝒀
s

𝒀 𝒀
a bt u c

Constant size circuit

Outputs the ith clause of 3CNF 𝑭 ≔ 𝒕𝒕(𝑪):
(±𝑥𝑎 ∨ ±𝑥𝑏 ∨ ±𝑥𝑐)

Outputs claimed assignments 
to the variables 𝑥𝑎, 𝑥𝑏, 𝑥𝑐 of 𝑭

𝑫



Theorem If ACC SAT with n inputs, 2𝑛
𝜀

size is in O(2n/n10) time, then 
Quasi-NP doesn’t have nO(1) size ACC circuits. 

Proceed just as before, but use the following lemma:

Lemma [MW’18] “Easy Witness Lemma for Quasi-NP”

If Quasi-NP ⊆ P/poly then for all 𝜀 ∈ 0,1 ,

Succinct 3SAT on 𝑛-input circuits of size 2𝑛
𝜀

has 2𝑂(𝑛
𝜀) -size circuits 

encoding SAT assignments.

Idea: The problem Succinct 3SAT on 𝒏-input circuits of size 𝟐𝒏
𝜺

is actually a Quasi-NP (complete) problem: 

• input is of length 𝑁 ∼ 2𝑛
𝜀

• takes about 𝑂 2𝑛 ≤ 𝑂(2(log 𝑁)^(1/𝜀)) time to guess-and-check a 
variable assignment, and verify it is satisfying

[MW’18] shows Quasi-NP in P/poly implies every Quasi-NP verifier has 
witnesses encoded by poly-size circuits!



Theorem If ACC SAT with n inputs, 2𝑛
𝜀

size is in O(2n/n10) time, then 
Quasi-NP doesn’t have nO(1) size ACC circuits. 

Proceed just as before, but use the following lemma:

Lemma [MW’18] “Easy Witness Lemma for Quasi-NP”

If Quasi-NP ⊆ P/poly then for all 𝜀 ∈ 0,1 ,

Succinct 3SAT on 𝑛-input circuits of size 2𝑛
𝜀

has 2𝑂(𝑛
𝜀) -size circuits 

encoding SAT assignments.

Lemma If P ⊆ ACC  then all poly-size unrestricted circuit families have 
equivalent poly-size ACC circuit families (exercise!)

Therefore we can assume WLOG that the 𝟐𝑶(𝒏
𝜺) size circuits encoding 

SAT assignments are in fact ACC circuits, and apply the previous 
argument (with minor modifications)



Theorem If Gap-C-SAT on circuits with 𝑛 inputs and 2𝑛
𝜀

size is in 

𝑂(2𝑛/𝑛10) time, then ENP doesn’t have 2𝑛
𝜀

size C-circuits. 

Proof Idea: Same as before, but replace the reduction to Succinct 3SAT 
with a succinct PCP reduction to “Succinct MAX CSP”!

Lemma 3 [BGHSV’05,…,BV’14] For all 𝐿 ∈ 𝑁𝑇𝐼𝑀𝐸(2𝑛),
there is a reduction SL from 𝐿 to MAX CSP such that:

• 𝑥 ∈ 𝐿 ⇒ All constraints of SL(𝑥) are satisfiable by some assignment

• 𝒙 ∉ 𝑳 ⇒ No assignment satisfies more than ½ of the constraints of SL(x)

• |SL(x)| = 2n poly(n), each constraint of SL(x) is on 𝑶(𝟏) variables

• There is a poly-size AC0 circuit that given 𝒊, outputs the 𝒊-th constraint of SL(x).
(Exercise: Verify that this means we can replace ACC-SAT with Gap-ACC-SAT!)

Weak Derandomization Suffices for Lower Bounds!
Gap-C-SAT: Given 𝑲(x1,…,xn) from C, and the promise that either 

(a) 𝑲≡ 0, or (b) 𝑷𝒓𝒙 𝑲 𝒙 = 𝟏 ≥ 𝟏/𝟐, decide which is true.



Open Problems

• Replace Quasi-NP with smaller complexity classes
Could we prove NP is not in polynomial-size ACC?

• Replace ACC with stronger circuits
Current strongest: “MAJ of SUM of ACC of THR” [Chen-Lu-Lyu-Oliveira’21]
Obtained from a #SAT algorithm for ACC of THR

Design SAT/#SAT algorithms for stronger circuits!

Example Open Problem: Can Boolean formulas of size 𝒔 be evaluated on all n-

variable assignments in 𝟐𝒔
𝒐 𝟏

+ 𝟐𝒏 ⋅ 𝒑𝒐𝒍𝒚 𝒏 time?

• Simplify the proofs!

• More connections between algorithms and lower bounds
(next lecture!)



How to Prove Lower 
Bounds With Algorithms

Lecture 3: The Mysteries of the Missing String
(based on work with Nikhil Vyas, ITCS 2023)



Which Functions Have High Circuit Complexity?

Nearly all of them… “Most” functions require huge circuits!

Theorem [Shannon ’49, Lupanov ‘58]
With high probability, 
a randomly chosen function  𝒇 ∶ 𝟎, 𝟏 𝒏 → {𝟎, 𝟏}
does not have circuits of size less than ∼ 𝟐𝒏/𝒏
(and: every 𝒇 has a circuit of size about ∼ 𝟐𝒏/𝒏)

Which “natural” functions exhibit this 
exponential behavior?

0 1 0 1 1 0 1 0 0 1



Which Functions Have High Circuit Complexity?
What is the “smallest” complexity class containing a function of 

maximum (𝟐𝒏/𝒏) circuit complexity?

Smallest known class: 𝐸Σ2𝑃 = 𝑇𝐼𝑀𝐸 2𝑂 𝑛 Σ2𝑃
[1970s]

Theorem: There is a function 𝑓 ∈ 𝐸𝛴2𝑃 that requires maximum circuit complexity.

Recall:  𝑓 ∈ 𝛴2 𝑃⇔ there is a polynomial 𝑝(𝑛) and a 𝑝(𝑛)-time verifier 𝑉 𝑥, 𝑦, 𝑧
such that for all 𝑥, 𝑓 𝑥 = 1 ⇔ (∃ 𝑝-length 𝑦)(∀ 𝑝-length 𝑧)[𝑉(𝑥, 𝑦, 𝑧) accepts]

A Canonical Problem in Σ2𝑃: Circuit Minimization
Input: Boolean circuit 𝐶
Decide: Is there a circuit smaller than 𝐶 that computes the same function? 
“𝛴2 𝑃 algorithm” for Circuit Minimization:
Existentially guess circuit 𝐶′ of size less than 𝐶, with an equal number of inputs

Universally check over all inputs 𝑥 that 𝐶 𝑥 = 𝐶′(𝑥)



A Function With Max Circuit Complexity
Theorem: There is a function 𝑓 ∈ 𝐸𝛴2𝑃 that requires maximum circuit complexity.
Proof Sketch: On 𝑥 ∈ 0,1 ⋆ of length 𝑛, 

// first, find the max circuit complexity 𝑠⋆ of a function on 𝑛 inputs
𝑠 ≔ 2𝑛

while (∀ 𝑓: 0,1 𝑛 → {0,1}, 𝑓 has a circuit of size at most 𝑠)

// can formulate this as an 2𝑂 𝑛 -length query to a Σ2𝑃 oracle
𝑠 ∶= 𝑠 − 1

// at this point, max circuit complexity 𝑠⋆ = 𝑠 + 1
Use a “search-to-decision” reduction on the Σ2𝑃 oracle to find the 

lexicographically first truth table 𝑇 ∈ 0,1 2𝑛 that has circuits of size 𝑠

Output 𝑥-th bit of 𝑇



A Function With Max Circuit Complexity
Theorem: There is a function 𝑓 ∈ 𝐸𝛴2𝑃 that requires maximum circuit complexity.
Proof Sketch: On 𝑥 ∈ 0,1 ⋆ of length 𝑛, 

// first, find the max circuit complexity 𝑠⋆ of a function on 𝑛 inputs
𝑠 ≔ 2𝑛

while (∀ 𝑓: 0,1 𝑛 → {0,1}, 𝑓 has a circuit of size at most 𝑠)

// can formulate this as an 2𝑂 𝑛 -length query to a Σ2𝑃 oracle
𝑠 ∶= 𝑠 − 1

// at this point, max circuit complexity 𝑠⋆ = 𝑠 + 1
Problem: “Complexity”

Input: 𝑓, 𝑠 where 𝑓 ∈ 0,1 2𝑛, 𝑘 ∈ 1,… , 𝑠
Decide: Is there a 2𝑛-bit 𝑔 < 𝑓 that has circuit complexity at least 𝑠?
Complexity ∈ Σ2𝑃 [guess 𝑔 < 𝑓, check 𝑔 is different from all circuits 𝐶 of size < 𝑠]
We can construct the lex. first truth table that needs circuits of size at least 𝑠, 
using 2𝑛 queries to Complexity of length 𝑂 2𝑛

[start with 𝑓 ≔ 12
𝑛

, try to set bits of 𝑓 to 0, and check if 𝑓, 𝑠 ∈ Complexity]



Which Functions Have High Circuit Complexity?

What is the smallest complexity class containing a function of 
maximum (𝟐𝒏/𝒏) circuit complexity?

Smallest known: 𝐸Σ2𝑃 = 𝑇𝐼𝑀𝐸 2𝑂 𝑛 Σ2𝑃
[1970s]

Recall:  𝑓 ∈ 𝛴2 𝑃 ⇔ there is a polynomial 𝑝(𝑛) and a 𝑝(𝑛)-time verifier 𝑉 𝑥, 𝑦, 𝑧 such that 
for all 𝑥, 𝑓 𝑥 = 1 ⇔ (∃ 𝑝-length 𝑦)(∀ 𝑝-length 𝑧)[𝑉(𝑥, 𝑦, 𝑧) accepts]

Theorem: There is a function 𝑓 ∈ 𝐸𝛴2𝑃 that requires maximum circuit complexity.
This lower bound relativizes! Let 𝐴: 0,1 ⋆ → {0,1} be an arbitrary “oracle”

𝑓 ∈ 𝛴2 𝑃
𝐴 ⇔ there is a polynomial 𝑝(𝑛) and a 𝑝(𝑛)-time verifier 𝑉𝐴 𝑥, 𝑦, 𝑧 such that 

for all 𝑥, 𝑓 𝑥 = 1 ⇔ (∃ 𝑝-length 𝑦)(∀ 𝑝-length 𝑧)[𝑉𝐴(𝑥, 𝑦, 𝑧) accepts]

Theorem: There’s 𝑓 ∈ 𝐸𝛴2𝑃
𝐴

that requires maximum 𝐴-oracle circuit complexity.
[𝐴-oracle circuit: can have unbounded fan-in gates that compute 𝐴]



Which Functions Have High Circuit Complexity?

What is the smallest complexity class containing a function of 
maximum (𝟐𝒏/𝒏) circuit complexity?

Smallest known: 𝐸Σ2𝑃 = 𝑇𝐼𝑀𝐸 2𝑂 𝑛 Σ2𝑃
[1970s]

Recall:  𝑓 ∈ 𝛴2 𝑃 ⇔ there is a polynomial 𝑝(𝑛) and a 𝑝(𝑛)-time verifier 𝑉 𝑥, 𝑦, 𝑧 such that 
for all 𝑥, 𝑓 𝑥 = 1 ⇔ (∃ 𝑝-length 𝑦)(∀ 𝑝-length 𝑧)[𝑉(𝑥, 𝑦, 𝑧) accepts]

Theorem: There is a function 𝑓 ∈ 𝐸𝛴2𝑃 that requires maximum circuit complexity.

Corollary: If 𝑃 = 𝑁𝑃 then there is an 𝑓 ∈ 𝐸 that requires maximum circuit complexity.

Proof: 𝑃 = 𝑁𝑃 ⇒ 𝐸𝛴2𝑃 = 𝐸𝑁𝑃
𝑁𝑃

= 𝐸𝑁𝑃
𝑃
= 𝐸𝑁𝑃 = 𝐸𝑃 = 𝐸

Thus, one could prove 𝑃 ≠ 𝑁𝑃, if one could show that every function in 𝐸 has circuit 
complexity at most 𝐻 𝑛 − 1
[where 𝐻(𝑛)=maximum circuit complexity for 𝑛-bit functions]



Which Functions Have High Circuit Complexity?

What is the smallest complexity class containing a function of 
maximum (𝟐𝒏/𝒏) circuit complexity?

Smallest known: 𝐸Σ2𝑃 = 𝑇𝐼𝑀𝐸 2𝑂 𝑛 Σ2𝑃
[1970s]

Theorem: There is a function 𝑓 ∈ 𝐸𝛴2𝑃 that requires maximum circuit complexity.

If we could show 𝐸𝑁𝑃 needs 2Ω 𝑛 -size circuits (for example), 
then by derandomization [NW,IW], we would have 𝐵𝑃𝑃 ⊆ 𝑃𝑁𝑃 [major open problem!]

There doesn’t seem to be any real barrier to improving the 𝐸𝛴2𝑃 to Σ2𝐸

[Recall: Σ2𝐸 = 𝑁𝑇𝐼𝑀𝐸 2𝑂 𝑛 NP
, the exponential-time analogue of Σ2𝑃]

(one consequence would be 𝐵𝑃𝑃 ⊆ Σ2𝑃, but we already know this is true!)



Which Functions Have High Circuit Complexity?

What is the smallest complexity class containing a function of 
maximum (𝟐𝒏/𝒏) circuit complexity?

Smallest known: 𝐸Σ2𝑃 = 𝑇𝐼𝑀𝐸 2𝑂 𝑛 Σ2𝑃
[1970s]

Does Σ2𝐸 contain a function requiring 2Ω 𝑛 -size circuits? 
[Recall: Σ2𝐸 = 𝑁𝐸𝑋𝑃𝑁𝑃, the exponential-time analogue of Σ2𝑃]

Kannan [1981]  Σ2𝐸 requires 𝑛𝑝𝑜𝑙𝑦𝑙𝑜𝑔 𝑛 -size circuits (in fact “sub-half-exponential”)

But we don’t even know if there is an oracle 𝐴 under which Σ2𝐸 has 2𝑜 𝑛 -size circuits!

That is, the following is open:

Is there an oracle 𝐴 such that Σ2𝐸
𝐴 has an 𝐴-oracle circuit of 2𝑜 𝑛 size?

(note: there is an oracle 𝐴 such that Σ2𝐸
𝐴 requires 2Ω 𝑛 -size A-oracle circuits)

So it remains possible there is a relativizing proof that Σ2𝐸 requires 2Ω 𝑛 -size circuits, 
i.e., one that works by standard “black-box” techniques!

We will give a completely new way of thinking about this question!



The MISSING STRING Problem

Theorem [Folklore? K’81] There is an ෨𝑂(𝑀)-time algorithm for MISSING STRING.
Proof: “Halving Algorithm”. Our missing string will be 𝑥 = 𝑥1𝑥2⋯𝑥𝑁
Probe the 1st bit of each string. 
Set 𝑥1= “minority” bit of those 𝑀 bits

Probe the 2nd bits of all 𝑡2 ≤ 𝑀/2 strings with first bit = 𝑥1
Set 𝑥2= “minority” bit of those 𝑡2 bits

Probe the 3rd bits of all 𝑡3 ≤ 𝑀/4 strings with first two bits = 𝑥1𝑥2
Set 𝑥3= “minority” bit of those 𝑡3 bits

After (log2𝑚) + 1 rounds, no strings are left. Fill any remaining 𝑥𝑖’s with zeroes.

Total number of probes is 𝑂 𝑀 .

MISSING STRING: Given a list of 𝑀 strings of length 𝑁 (𝑀 < 2𝑁), find a string not on the list
If the list is truth tables of “easy” functions, we are asking you to find a “hard” function!

𝑀 probes

≤ 𝑀/2 probes

≤ 𝑀/4 probes



MISSING STRING and High-Complexity Functions
There is a strong equivalence between questions like:

Is there an oracle 𝐴 such that 𝛴2𝐸
𝐴 has an A-oracle circuit of 2𝑜 𝑛 size?

And the circuit complexity of MISSING STRING!

“Efficient” circuits for Missing String correspond to “efficient” constructions of hard functions!

Example Theorem:

For every oracle 𝐴,  Σ2𝐸
𝐴 requires 2𝜀𝑛-size 𝐴-oracle circuit complexity (a.e.)

⇔
There are uniform depth-3 AC0 circuits for MISSING STRING of 2𝑝𝑜𝑙𝑦 𝑁 size 

and 𝑝𝑜𝑙𝑦 𝑁 bottom fan-in, on all lists of length 𝑀 ≈ 2𝑁
𝜀

Depth 3 is crucial here! 

Note: since 𝑀 ≈ 2𝑁
𝜀

we’re asking for a 
circuit that has size 

quasi-polynomial in its 
input length!



MISSING STRING and High-Complexity Functions
There is a strong equivalence between questions like:

Is there an oracle 𝐴 such that 𝛴2𝐸
𝐴 has an A-oracle circuit of 2𝑜 𝑛 size?

And the circuit complexity of MISSING STRING!

“Efficient” circuits for Missing String correspond to “efficient” constructions of hard functions!

Example Theorem:

For every oracle 𝐴,  𝑁𝐸𝐴 requires 2𝜀𝑛-size 𝐴-oracle circuit complexity (a.e.)  

⇔
There are uniform depth-2 AC0 circuits for MISSING STRING of 2𝑝𝑜𝑙𝑦 𝑁 size 

and 𝑝𝑜𝑙𝑦 𝑁 bottom fan-in, on all lists of length 𝑀 ≈ 2𝑁
𝜀

Known to be FALSE
[Wilson’84]

Therefore, no 
depth-2 circuits!

Depth 3 is crucial here! 



MISSING STRING and High-Complexity Functions
There is a strong equivalence between questions like:

Is there an oracle 𝐴 such that 𝛴2𝐸
𝐴 has an A-oracle circuit of 2𝑜 𝑛 size?

And the circuit complexity of MISSING STRING!

“Efficient” circuits for Missing String correspond to “efficient” constructions of hard functions!

Example Theorem:

For every oracle 𝐴,  Σ3𝐸
𝐴 requires 2𝜀𝑛-size 𝐴-oracle circuit complexity (a.e.)  

⇔
There are uniform depth-4 AC0 circuits for MISSING STRING of 2𝑝𝑜𝑙𝑦 𝑁 size 

and 𝑝𝑜𝑙𝑦 𝑁 bottom fan-in, on all lists of length 𝑀 ≈ 2𝑁
𝜀

Known to be TRUE
[Kannan’81]

Therefore, 
depth-4 circuits exist!

Depth 3 is crucial here! 



MISSING STRING and High-Complexity Functions
Theorem [Easier Case]:

There are uniform OR-AND-OR circuits for MISSING STRING of 2𝑝𝑜𝑙𝑦 𝑁 size 

and 𝑝𝑜𝑙𝑦 𝑁 bottom fan-in, on all lists of length 𝑀 = 2𝑂(𝑁
𝜀 log 𝑁)

⇒ Σ2𝐸 requires 2𝜀𝑛-size circuit complexity

Proof Sketch: 

Our Σ2𝐸 function will evaluate the depth-3 circuit for MISSING STRING with its input fixed to be:
the list of all 2𝑛-bit truth-tables of functions 𝑓: 0,1 𝑛 → 0,1 with circuits of size 2𝜀𝑛

𝑁 = 2𝑛, 𝑀 = 2𝑂(2
𝜀𝑛𝑛) [there are 2𝑂(2

𝜀𝑛𝑛) circuits of size 2𝜀𝑛]

On input 𝑥 ∈ 0,1 𝑛, our Σ2𝐸 function evaluates the 𝑥-th output of the MISSING STRING circuit:

Existentially guess an input wire to the output OR gate which is true, coming from an AND gate g
Universally try all input wires to the AND gate g, coming from an OR gate ℎ
Evaluate all 𝑝𝑜𝑙𝑦(𝑁) literals with wires into ℎ, accept iff at least one literal is true.

Both the existential and universal guesses take 𝑝𝑜𝑙𝑦(𝑁) bits to write down (fan-in is 2𝑝𝑜𝑙𝑦 𝑁 )

Assuming we can compute local information about the gates of the circuit in 𝑝𝑜𝑙𝑦 𝑁 time, 

the above process can be implemented in 𝑝𝑜𝑙𝑦 𝑁 = 2𝑂 𝑛 time on a Σ2 machine. 

This is the “algorithms imply 
lower bounds” direction!

Also works for AND-OR-AND circuits


