Slides From the Previous Lectures

- https://people.csail.mit.edu/rrw/winter-school-lec1.pdf
- <u>https://people.csail.mit.edu/rrw/winter-school-lec2.pdf</u>

Recap: E^{NP} needs exp. size ACC circuits

Design a faster ACC-SAT algorithm

The Algorithm: For every d, m, there is an $\varepsilon > 0$ such that ACC-SAT on circuits with n inputs, $2^{n^{\varepsilon}}$ size, depth d, and MOD*m* gates is solvable in $2^{n-n^{\varepsilon}}$ time

Show that faster ACC-SAT algorithms imply lower bounds against ACC

The LB Connection: If **C**-SAT on circuits with n inputs and $2^{n^{\varepsilon}}$ size is in O(2ⁿ/n¹⁰) time, then **E^NP doesn't have** $2^{n^{\varepsilon}}$ size **C**-circuits.

Algorithm for SAT on ACC Circuits

Ingredients:

1. Old representation [Yao'90, Beigel-Tarui'94,Green et al'95] For every ACC function $f : \{0,1\}^* \rightarrow \{0,1\}$ and every n, we can write $f_n : \{0,1\}^n \rightarrow \{0,1\}$ as:

 $f_n(x_1, ..., x_n) = g(h(x_1, ..., x_n))$, where

- h is a multilinear polynomial of at most K monomials, $h(a) \in \{0, ..., K\}$ for all $a \in \{0,1\}^n$
- K is not "too large" (quasi-polynomial in circuit size)
- \boldsymbol{g} : {0, ..., K} \rightarrow {0,1} is a fixed "simple" function
- 2. "Fast Fourier Transform" for multilinear polynomials: Given a multilinear polynomial h in its coefficient representation, the value h(a) can be computed over all points $a \in \{0,1\}^n$ in $2^n poly(n)$ time.

[Chen-Papakonstantinou'19] $K \leq 2^{(\log s)^{O(dr)}}$ where s = size, d = depth,r = # prime divisors of m

Fast Multipoint Evaluation

Theorem: Given the 2^n coefficients of a multilinear polynomial h in n variables, h(a) can be computed on all points $a \in \{0, 1\}^n$ in $2^n poly(n)$ time.

Can write: $h(x_1, ..., x_n) = x_1 h_1(x_2, ..., x_n) + h_2(x_2, ..., x_n)$ Want a 2^n table T that contains the value of h on all 2^n points. Algorithm: If n = 1 then return T = [h(0), h(1)]Recursively compute the 2^{n-1} -length table T_1 for the values of h_1 , and the 2^{n-1} -length table T_2 for the values of h_2 Return the table $T = (T_2)(T_1 + T_2)$ of 2^n entries Running time has the recurrence $R(2^n) \le 2 \cdot R(2^{n-1}) + 2^n \operatorname{poly}(n)$

Corollary: We can evaluate g of h on all $a \in \{0, 1\}^n$, in only $2^n poly(n)$ time

ACC Satisfiability Algorithm

Theorem: For every d, m, there is an $\varepsilon > 0$ such that ACC-SAT on circuits with n inputs, $2^{n^{\varepsilon}}$ size, depth d, and MODm gates is solvable in $2^{n-n^{\varepsilon}}$ time

The LB Connection: If ACC-SAT on circuits with *n* inputs and $2^{n^{\varepsilon}}$ size is in $O(2^n/n^{10})$ time, then $\mathbb{E}^{\mathbb{NP}}$ doesn't have $2^{n^{\varepsilon}}$ size ACC-circuits. Given circuit $C : \{0, 1\}^n \to \{0, 1\}$, let tt(C) be its truth table: the output of C on all 2^n assignments, in lexicographical order

Succinct 3SAT: Given a circuit C, does tt(C) encode a satisfiable 3CNF?

Key Idea: Succinct 3SAT is NEXP-complete, in a very strong way...

Lemma 1 Succinct 3SAT for ACO circuits of *n* inputs and n^{10} size is solvable in nondeterministic $2^n poly(n)$ time but **not** in nondeterministic $\frac{2^n}{n^5}$ time.

<u>Upper bound:</u> Evaluate the ACO circuit on all 2^n inputs, get a 2^n -length 3CNF instance, guess and check a SAT assignment, in $2^n poly(n)$ time <u>Lower bound:</u> [JMV'13] Every $L \in NTIME[2^n]$ can be reduced in poly-time to a Succinct 3SAT instance which is ACO, $m = n + 4\log(n)$ inputs, n^{10} size So, if Succinct3SAT is in $2^m/m^5$ time, then L can be decided in time $o(2^n)$ *Contradicts the nondeterministic time hierarchy theorem!*

<u>The LB Connection</u>: If E^{NP} has $2^{n^{\varepsilon}}$ size ACC-circuits and

ACC-SAT on circuits with n inputs and $2^{n^{\varepsilon}}$ size is in $O(2^n/n^{10})$ time, then contradiction

Succinct 3SAT: Given a circuit C, does tt(C) encode a satisfiable 3CNF?

Lemma 1 Succinct 3SAT for ACC circuits of *n* inputs and n^{10} size is solvable in nondeterministic $2^n poly(n)$ time but **not** in nondeterministic $\frac{2^n}{n^5}$ time.

Goal: Use ACC circuits for E^{NP} & the ACC-SAT algorithm, to solve Succinct 3SAT faster.

Say that Succinct 3SAT has "succinct" SAT assignments if

for every *C* (of *n* inputs and n^{10} size) such that tt(C) encodes a satisfiable 3CNF *F*, there is an ACC circuit *D* of $2^{n^{10\varepsilon}}$ size such that

tt(D) encodes a variable assignment A that satisfies F.

(Imagine F has variables x_1, \ldots, x_{2^n} . Then D(i) outputs a 0-1 assignment to variable x_i in F)

If a succinct SAT assignment exists, we only have to guess a witness of length $2^{n^{10arepsilon}}$

Lemma 2 If E^{NP} has $2^{n^{\varepsilon}}$ size ACC circuits then Succinct 3SAT has "succinct" SAT assignments

<u>The LB Connection</u>: If E^{NP} has $2^{n^{\varepsilon}}$ size ACC-circuits and

ACC-SAT on circuits with n inputs and $2^{n^{\varepsilon}}$ size is in $O(2^n/n^{10})$ time, then contradiction

Succinct 3SAT: Given a circuit C, does tt(C) encode a satisfiable 3CNF?

Lemma 2 If E^{NP} has $2^{n^{\varepsilon}}$ size ACC circuits then

Succinct 3SAT has "succinct" SAT assignments

Proof The following is an **E**^{NP} procedure:

On input (C, i), where $i \in \{1, ..., 2^n\}$, C has n inputs & n^{10} size Compute F = tt(C), think of F as a 3CNF formula. Use a SAT oracle and search-to-decision for SAT, to find the lexicographically first SAT assignment to F. Output the *i*-th bit of this assignment.

 E^{NP} has $2^{n^{\varepsilon}}$ size ACC circuits \Rightarrow there is a $2^{|C|^{\varepsilon}} \leq 2^{n^{10\varepsilon}}$ size ACC circuit D(C, i)which outputs the *i*-th bit of a satisfying assignment to F = tt(C). Now for any circuit C' of n^{10} size, define the circuit E(i) := D(C', i)Then E has $2^{n^{10\varepsilon}}$ size, and the assignment tt(E) satisfies tt(C')

<u>The LB Connection</u>: If E^{NP} has $2^{n^{\varepsilon}}$ size ACC-circuits and

ACC-SAT on circuits with n inputs and $2^{n^{\varepsilon}}$ size is in $O(2^n/n^{10})$ time, then contradiction

Succinct 3SAT: Given a circuit C, does tt(C) encode a satisfiable 3CNF?

Goal: Use ACC circuits for E^{NP} & the ACC-SAT algorithm to put Succinct3SAT in $NTIME[2^n/n^5]$ (contradiction!)

Outline of Succinct3SAT algorithm:

Given a Succinct3SAT instance C (an ACO circuit of n^{10} size, n inputs)

1. Guess a $2^{n^{10\varepsilon}}$ size ACC circuit Y encoding a SAT assignment for the exponentially-long 3CNF $F \coloneqq tt(C)$ Lemma 2 If E^{NP} has $2^{n^{\varepsilon}}$ size ACC circuits then

Succinct 3SAT has "succinct" SAT assignments

2. Check that tt(Y) satisfies F in $O(2^n/n^5)$ time, using the $O(2^n/n^{10})$ -time ACC-SAT algorithm.

The entire process will take $O(2^n/n^5)$ nondeterministic time.

Faster Algorithm for Succinct3SAT

Given Succinct3SAT instance *C* (an *n*-input, n^{10} -size AC0 circuit) <u>Guess</u>: ACC circuit *Y* of $2^{n^{10\varepsilon}}$ size

[Want: Y(i) outputs the *i*-th bit of a satisfying assignment for $F \coloneqq tt(C)$] To <u>check</u> Y, construct the following circuit D of $O(2^{n^{10\varepsilon}})$ size:

D is UNSAT \Leftrightarrow for all *i*, $D(i) = 0 \Leftrightarrow$ for all *i*, tt(Y) satisfies *i*-th clause of *F* $\Leftrightarrow tt(Y)$ is a satisfying assignment to *F*. Using ACC-SAT algorithm, takes $o(2^n)$ time to check! **Theorem** If ACC SAT with n inputs, $2^{n^{\varepsilon}}$ size is in O(2ⁿ/n¹⁰) time, then Quasi-NP doesn't have n^{O(1)} size ACC circuits.

Proceed just as before, but use the following lemma:

Lemma [MW'18] "Easy Witness Lemma for Quasi-NP" If Quasi-NP \subseteq P/poly then for all $\varepsilon \in (0,1)$, Succinct 3SAT on *n*-input circuits of size $2^{n^{\varepsilon}}$ has $2^{O(n^{\varepsilon})}$ -size circuits encoding SAT assignments.

Idea: The problem *Succinct 3SAT on n-input circuits* of size $2^{n^{\varepsilon}}$ is actually a Quasi-NP (complete) problem:

- input is of length $N \sim 2^{n^{\varepsilon}}$
- takes about $O(2^n) \le O(2^{(\log N)^{n}(1/\epsilon)})$ time to guess-and-check a variable assignment, and verify it is satisfying

[MW'18] shows Quasi-NP in P/poly implies every Quasi-NP verifier has witnesses encoded by poly-size circuits!

Theorem If ACC SAT with n inputs, $2^{n^{\varepsilon}}$ size is in O(2ⁿ/n¹⁰) time, then Quasi-NP doesn't have n^{O(1)} size ACC circuits.

Proceed just as before, but use the following lemma:

Lemma [MW'18] "Easy Witness Lemma for Quasi-NP" If Quasi-NP \subseteq P/poly then for all $\varepsilon \in (0,1)$, Succinct 3SAT on *n*-input circuits of size $2^{n^{\varepsilon}}$ has $2^{O(n^{\varepsilon})}$ -size circuits encoding SAT assignments.

Lemma If $P \subseteq ACC$ then all poly-size *unrestricted* circuit families have equivalent poly-size ACC circuit families (*exercise!*)

Therefore we can assume WLOG that the $2^{O(n^{\varepsilon})}$ size circuits encoding SAT assignments are in fact ACC circuits, and apply the previous argument (with minor modifications)

Weak Derandomization Suffices for Lower Bounds!

Gap-*C***-SAT:** Given $K(\mathbf{x}_1,...,\mathbf{x}_n)$ from *C*, and the **promise** that either (a) $K \equiv \mathbf{0}$, or (b) $Pr_x[K(x) = \mathbf{1}] \ge \mathbf{1}/2$, **decide** which is true.

Theorem If Gap-*C*-SAT on circuits with *n* inputs and $2^{n^{\varepsilon}}$ size is in $O(2^n/n^{10})$ time, then E^{NP} doesn't have $2^{n^{\varepsilon}}$ size *C*-circuits.

Proof Idea: Same as before, but replace the reduction to Succinct 3SAT with a succinct PCP reduction to "Succinct MAX CSP"!

Lemma 3 [BGHSV'05,...,BV'14] For all $L \in NTIME(2^n)$, there is a reduction S_L from L to MAX CSP such that:

- $x \in L \Rightarrow$ All constraints of $S_L(x)$ are satisfiable by some assignment
- $x \notin L \Rightarrow$ No assignment satisfies more than ½ of the constraints of $S_L(x)$
- $|S_L(x)| = 2^n poly(n)$, each constraint of $S_L(x)$ is on O(1) variables
- There is a poly-size ACO circuit that given *i*, outputs the *i*-th constraint of S_L(x). (Exercise: Verify that this means we can replace ACC-SAT with Gap-ACC-SAT!)

Open Problems

• Replace Quasi-NP with smaller complexity classes Could we prove NP is not in polynomial-size ACC?

• Replace ACC with stronger circuits

Current strongest: "MAJ of SUM of ACC of THR" [Chen-Lu-Lyu-Oliveira'21] *Obtained from a #SAT algorithm for ACC of THR* Design SAT/#SAT algorithms for stronger circuits!

Example Open Problem: Can Boolean formulas of size s be evaluated on all n-variable assignments in $2^{s^{o(1)}} + 2^n \cdot poly(n)$ time?

- Simplify the proofs!
- More connections between algorithms and lower bounds (next lecture!)

How to Prove Lower Bounds With Algorithms

Lecture 3: The Mysteries of the Missing String

(based on work with Nikhil Vyas, ITCS 2023)

Nearly all of them... "Most" functions require huge circuits!

Theorem [Shannon '49, Lupanov '58]

With high probability, a randomly chosen function $f : \{0, 1\}^n \rightarrow \{0, 1\}$ does not have circuits of size less than $\sim 2^n/n$ (and: every f has a circuit of size about $\sim 2^n/n$)

What is the "smallest" complexity class containing a function of maximum $(2^n/n)$ circuit complexity?

Smallest known class: $E^{\Sigma_2 P} = TIME[2^{O(n)}]^{\Sigma_2 P}$ [1970s]

Theorem: There is a function $f \in E^{\Sigma_2 P}$ that requires *maximum* circuit complexity.

Recall: $f \in \Sigma_2 P \Leftrightarrow$ there is a polynomial p(n) and a p(n)-time verifier V(x, y, z)such that for all x, $f(x) = 1 \Leftrightarrow (\exists p \text{-length } y)(\forall p \text{-length } z)[V(x, y, z) \text{ accepts}]$

A Canonical Problem in $\Sigma_2 P$: Circuit Minimization

Input: Boolean circuit *C*

Decide: Is there a circuit smaller than *C* that computes the same function?

" $\Sigma_2 P$ algorithm" for **Circuit Minimization**:

Existentially guess circuit C' of size less than C, with an equal number of inputs

Universally check over all inputs x that C(x) = C'(x)

A Function With Max Circuit Complexity

Theorem: There is a function $f \in E^{\Sigma_2 P}$ that requires *maximum* circuit complexity. Proof Sketch: On $x \in \{0,1\}^*$ of length n,

// first, find the max circuit complexity s^* of a function on n inputs $s \coloneqq 2^n$

while $(\forall f: \{0,1\}^n \rightarrow \{0,1\}, f \text{ has a circuit of size at most } s)$ // can formulate this as an $2^{O(n)}$ -length query to a $\Sigma_2 P$ oracle

s := s - 1

// at this point, max circuit complexity $s^* = s + 1$

Use a "search-to-decision" reduction on the $\Sigma_2 P$ oracle to find the *lexicographically first* truth table $T \in \{0,1\}^{2^n}$ that has circuits of size s Output x-th bit of T

A Function With Max Circuit Complexity

Theorem: There is a function $f \in E^{\Sigma_2 P}$ that requires *maximum* circuit complexity. Proof Sketch: On $x \in \{0,1\}^*$ of length n,

// first, find the max circuit complexity s^* of a function on n inputs $s \coloneqq 2^n$

while $(\forall f: \{0,1\}^n \rightarrow \{0,1\}, f \text{ has a circuit of size at most } s)$

// can formulate this as an $2^{O(n)}$ -length query to a $\Sigma_2 P$ oracle

s := s - 1

// at this point, max circuit complexity $s^* = s + 1$ **Problem:** "Complexity"

Input: (f, s) where $f \in \{0, 1\}^{2^n}$, $k \in \{1, ..., s\}$

Decide: Is there a 2^n -bit g < f that has circuit complexity at least s?

Complexity $\in \Sigma_2 P$ [guess g < f, check g is different from all circuits C of size < s] We can construct the lex. first truth table that needs circuits of size at least s, using 2^n queries to Complexity of length $O(2^n)$ [start with $f \coloneqq 1^{2^n}$, try to set bits of f to 0, and check if $(f, s) \in$ Complexity]

What is the smallest complexity class containing a function of
maximum $(2^n/n)$ circuit complexity?Smallest known: $E^{\Sigma_2 P} = TIME[2^{O(n)}]^{\Sigma_2 P}$ [1970s]
Recall: $f \in \Sigma_2 P \Leftrightarrow$ there is a polynomial p(n) and a p(n)-time verifier V(x, y, z) such that
for all $x, f(x) = 1 \Leftrightarrow (\exists p$ -length $y)(\forall p$ -length z)[V(x, y, z) accepts]

Theorem: There is a function $f \in E^{\Sigma_2 P}$ that requires *maximum* circuit complexity. This lower bound relativizes! Let $A: \{0,1\}^* \to \{0,1\}$ be an arbitrary "oracle"

 $f \in \Sigma_2 P^A \Leftrightarrow$ there is a polynomial p(n) and a p(n)-time verifier $V^A(x, y, z)$ such that for all x, $f(x) = 1 \Leftrightarrow (\exists p \text{-length } y)(\forall p \text{-length } z)[V^A(x, y, z) \text{ accepts}]$

Theorem: There's $f \in E^{\Sigma_2 P^A}$ that requires *maximum A*-oracle circuit complexity. [*A*-oracle circuit: can have unbounded fan-in gates that compute *A*]

What is the *smallest* complexity class containing a function of *maximum* $(2^n/n)$ circuit complexity? Smallest known: $E^{\Sigma_2 P} = TIME[2^{O(n)}]^{\Sigma_2 P}$ [1970s] *Recall:* $f \in \Sigma_2 P \Leftrightarrow$ there is a polynomial p(n) and a p(n)-time verifier V(x, y, z) such that for all x, $f(x) = 1 \Leftrightarrow (\exists p$ -length $y)(\forall p$ -length z)[V(x, y, z) accepts]

Theorem: There is a function $f \in E^{\Sigma_2 P}$ that requires **maximum** circuit complexity.

Corollary: If P = NP then there is an $f \in E$ that requires maximum circuit complexity. **Proof:** $P = NP \Rightarrow E^{\Sigma_2 P} = E^{NP^{NP}} = E^{NP^P} = E^{NP} = E^P = E$

Thus, one could prove $P \neq NP$, if one could show that every function in E has circuit complexity at most H(n) - 1[where H(n)=maximum circuit complexity for n-bit functions]

What is the *smallest* complexity class containing a function of *maximum* $(2^n/n)$ circuit complexity? Smallest known: $E^{\Sigma_2 P} = TIME [2^{O(n)}]^{\Sigma_2 P}$ [1970s]

Theorem: There is a function $f \in E^{\Sigma_2 P}$ that requires **maximum** circuit complexity.

If we could show E^{NP} needs $2^{\Omega(n)}$ -size circuits (for example), then by derandomization [NW,IW], we would have $BPP \subseteq P^{NP}$ [major open problem!] There doesn't seem to be **any** real barrier to improving the $E^{\Sigma_2 P}$ to $\Sigma_2 E$ [Recall: $\Sigma_2 E = NTIME [2^{O(n)}]^{NP}$, the exponential-time analogue of $\Sigma_2 P$] (one consequence would be $BPP \subseteq \Sigma_2 P$, but we already know this is true!)

What is the *smallest* complexity class containing a function of maximum $(2^n/n)$ circuit complexity?

Smallest known: $E^{\Sigma_2 P} = TIME[2^{O(n)}]^{\Sigma_2 P}$ [1970s]

Does $\Sigma_2 E$ contain a function requiring $2^{\Omega(n)}$ -size circuits? [Recall: $\Sigma_2 E = NEXP^{NP}$, the exponential-time analogue of $\Sigma_2 P$] Kannan [1981] $\Sigma_2 E$ requires $n^{polylog n}$ -size circuits (in fact "sub-half-exponential") But we don't even know if there is an oracle A under which $\Sigma_2 E$ has $2^{o(n)}$ -size circuits! That is, the following is open: Is there an oracle A such that $\Sigma_2 E^A$ has an A-oracle circuit of $2^{o(n)}$ size?

(note: there **is** an oracle A such that $\Sigma_2 E^A$ requires $2^{\Omega(n)}$ -size A-oracle circuits) So it remains possible there is a **relativizing proof** that $\Sigma_2 E$ requires $2^{\Omega(n)}$ -size circuits, i.e., one that works by standard "black-box" techniques!

We will give a completely new way of thinking about this question!

The MISSING STRING Problem

If the list is truth tables of "easy" functions, we are asking you to find a "hard" function!

Theorem [Folklore? K'81] There is an $\tilde{O}(M)$ -time algorithm for MISSING STRING.

After $(\log_2 m) + 1$ rounds, no strings are left. Fill any remaining x_i 's with zeroes.

Proof: *"Halving Algorithm".* Our missing string will be $x = x_1 x_2 \cdots x_N$

Probe the 1st bit of each string.

- Set x_1 = "minority" bit of those M bits
- Probe the 2nd bits of all $t_2 \leq M/2$ strings with first bit = x_1
- Set x_2 = "minority" bit of those t_2 bits

Probe the 3rd bits of all $t_3 \le M/4$ strings with first two bits = $x_1 x_2$

Set x_3 = "minority" bit of those t_3 bits

Total number of probes is O(M).

 $\leq M/4$ probes

There is a strong *equivalence* between questions like:

Is there an oracle A such that $\Sigma_2 E^A$ has an A-oracle circuit of $2^{o(n)}$ size?

And the circuit complexity of MISSING STRING!

"Efficient" circuits for Missing String correspond to "efficient" constructions of hard functions! <u>Example Theorem</u>:

 \bigcirc

For every oracle A, $\Sigma_2 E^A$ requires $2^{\varepsilon n}$ -size A-oracle circuit complexity (a.e.)

There are uniform depth-3 ACO circuits for MISSING STRING of $2^{poly(N)}$ size and poly(N) bottom fan-in, on all lists of length $M \approx 2^{N^{\varepsilon}}$

Note: since $M \approx 2^{N^{\varepsilon}}$ we're asking for a circuit that has size *quasi-polynomial* in its input length!

There is a strong *equivalence* between questions like:

Is there an oracle A such that $\Sigma_2 E^A$ has an A-oracle circuit of $2^{o(n)}$ size?

And the circuit complexity of MISSING STRING!

"Efficient" circuits for Missing String correspond to "efficient" constructions of hard functions! <u>Example Theorem</u>:

 \Leftrightarrow

For every oracle A, NE^A requires $2^{\varepsilon n}$ -size A-oracle circuit complexity (a.e.)

Known to be FALSE [Wilson'84]

There are *uniform depth-2* ACO circuits for **MISSING STRING** of $2^{poly(N)}$ size and poly(N) bottom fan-in, on all lists of length $M \approx 2^{N^{\varepsilon}}$

Therefore, no depth-2 circuits!

Depth 3 is crucial here!

There is a strong *equivalence* between questions like:

Is there an oracle A such that $\Sigma_2 E^A$ has an A-oracle circuit of $2^{o(n)}$ size?

And the circuit complexity of MISSING STRING!

"Efficient" circuits for Missing String correspond to "efficient" constructions of hard functions! Example Theorem:

 \Leftrightarrow

For every oracle A, $\Sigma_3 E^A$ requires $2^{\varepsilon n}$ -size A-oracle circuit complexity (a.e.)

Known to be TRUE [Kannan'81]

There are *uniform* **depth-4** ACO circuits for **MISSING STRING** of $2^{poly(N)}$ size and poly(N) bottom fan-in, on all lists of length $M \approx 2^{N^{\varepsilon}}$

Therefore, depth-4 circuits exist!

Depth 3 is crucial here!

Theorem [Easier Case]:Also works for AND-OR-AND circuits

There are *uniform* **OR-AND-OR** circuits for **MISSING STRING** of $2^{poly(N)}$ size and poly(N) bottom fan-in, on all lists of length $M = 2^{O(N^{\varepsilon} \log N)}$

 $\Rightarrow \Sigma_2 E$ requires $2^{\varepsilon n}$ -size circuit complexity

Proof Sketch:

This is the "algorithms imply lower bounds" direction!

Our $\Sigma_2 E$ function will evaluate the depth-3 circuit for MISSING STRING with its input fixed to be: the list of all 2^n -bit truth-tables of functions $f: \{0,1\}^n \to \{0,1\}$ with circuits of size $2^{\varepsilon n}$ $N = 2^n$, $M = 2^{O(2^{\varepsilon n}n)}$ [there are $2^{O(2^{\varepsilon n}n)}$ circuits of size $2^{\varepsilon n}$]

On input $x \in \{0,1\}^n$, our $\Sigma_2 E$ function evaluates the x-th output of the MISSING STRING circuit: Existentially guess an input wire to the output OR gate which is true, coming from an AND gate g Universally try all input wires to the AND gate g, coming from an OR gate h Evaluate all poly(N) literals with wires into h, accept iff at least one literal is true. Both the existential and universal guesses take poly(N) bits to write down (fan-in is $2^{poly(N)}$) Assuming we can compute local information about the gates of the circuit in poly(N) time, the above process can be implemented in $poly(N) = 2^{O(n)}$ time on a Σ_2 machine.