
Local Algorithms for Finding a Missing String

Cantor’s Diagonal Argument shows: 

If 𝑀 ≤ 𝑁, then we can find a missing string by taking the diagonal of the list

MISSING STRING: Given a list of 𝑀 strings of length 𝑁 (𝑀 < 2𝑁), find a string not on the list

1 2 3 … k …

x1 1 0 1 0

x2 1 0 1 1

⋮

xk 1 0 0 1

⋮

𝑁

𝑀



Local Algorithms for Finding a Missing String

Cantor’s Diagonal Argument shows: 

If 𝑀 ≤ 𝑁, then we can find a missing string by taking the diagonal of the list

MISSING STRING: Given a list of 𝑀 strings of length 𝑁 (𝑀 < 2𝑁), find a string not on the list

1 2 3 … k …

x1 0 0 1 0

x2 1 1 1 1

⋮

xk 1 0 0 0

⋮

𝑁

𝑀

For all 𝑖 = 1,… ,𝑁, we can obtain
the 𝑖-th bit of a missing string with 
only one bit probe into the input
[probe the 𝑖-th bit of the 𝑖-th string, 
output the opposite bit]
That is, when 𝑴 ≤ 𝑵, there’s a “1-
probe” algorithm for MISSING STRING

Under what conditions can we 
use only 𝒌 probes? (Why?)

If the list is truth tables of “easy” functions, we are asking you to find a “hard” function!



Local Algorithms for Finding a Missing String

If 𝑀 ≤ 𝑁, then we can find a missing string by taking the diagonal of the list

Theorem 1 (easy): For 𝑀 = 𝑘𝑁, there is no 𝑘 − 1 probe algorithm for MISSING STRING.

Proof: Suppose for each 𝑖 = 1,… ,𝑁, 
your algorithm makes only 𝑘 − 1 probes and computes a missing string 𝑦. 

The total number of different strings you probed, over all 𝑖, is ≤ 𝑘 − 1 𝑁 < 𝑀. 

So there’s some string on the list you haven’t probed at all. 

Your algorithm fails on every input that includes 𝑦 among those non-probed strings.

MISSING STRING: Given a list of 𝑀 strings of length 𝑁 (𝑀 < 2𝑁), find a string not on the list

For all 𝑖 = 1,… ,𝑁, we can obtain the 𝑖-th bit of a missing string with only one bit probe
That is, there is a “1-probe” algorithm for MISSING STRING

What can we do with 𝒌 probes?



Local Algorithms for Finding a Missing String

Theorem 2: For 𝑀 ≤ 𝑘𝑁, there is an 𝑂(𝑘 log 𝑘)-probe algorithm for MISSING STRING.

Idea: Combine the diagonal argument and the algorithm that makes 𝑂 𝑀 probes!

MISSING STRING: Given a list of 𝑀 strings of length 𝑁 (𝑀 < 2𝑁), find a string not on the list

𝑁

𝑀
= 𝑘𝑁

Divide the 𝑁 bits of each string into ∼ 𝑁/𝑏 blocks of length 𝑏
Divide the 𝑀 strings into ∼ 𝑀/𝑡 blocks of length 𝑡, where 𝑡 ≤ 2𝑏 − 1.  

If 
𝑀

𝑡
≤

𝑁

𝑏
, then if we find a missing string for each purple block, 

their concatenation is a missing string for the entire set! 
Have: 𝑀 = 𝑘𝑁, Want: 𝑀 ≤ (2𝑏 − 1) 𝑁/𝑏. We therefore set: 

𝑏 = log 𝑘 + loglog 𝑘 + 𝑂(1)
Then, to get any particular bit of the missing string, number of probes is 

𝑂 𝑡 ≤ 𝑂 2𝑏 ≤ 𝑂(𝑘 log 𝑘)



What Good are Local Algorithms?

Theorem 2: For 𝑀 ≤ 𝑘𝑁, there is an 𝑂(𝑘 log 𝑘)-probe algorithm for MISSING STRING.

Corollary: New Time Hierarchy Theorems, against Non-Uniform Programs!

The time hierarchy can be generalized to work for “small non-uniform advice”

Define 𝒇 ∈ TIME[𝒈(𝒏)]/𝒂(𝒏) if  for every 𝑛, there is some program of length 𝑎(𝑛), 
running in time 𝑔(𝑛), that decides 𝑓.

Time Hierarchy Theorem: For “reasonable” 𝒈, 𝒉 where 𝒉(𝒏) >> 𝒈(𝒏),

TIME(𝒉(𝒏)) ⊈ TIME(𝒈(𝒏))

Time Hierarchy Against Advice [Folklore]: For “reasonable” 𝒈, 𝒉 where 𝒉(𝒏) >> 𝒈(𝒏),

TIME(h(𝒏)) ⊈ TIME(𝒈(𝒏))/𝒏

contains uncomputable stuff!Idea: The hard function running in 𝑂 ℎ 𝑛 time 

treats its input of length 𝑛 as a program, and simulates
the program on its own code, outputting the opposite answer.



What Good are Local Algorithms?

Theorem 2: For 𝑀 ≤ 𝑘𝑁, there is an 𝑂(𝑘 log 𝑘)-probe algorithm for MISSING STRING.

Corollary: New Time Hierarchy Theorems, against Non-Uniform Programs!

The time hierarchy can be generalized to work for “small non-uniform advice”

Define 𝒇 ∈ TIME[𝒈(𝒏)]/𝒂(𝒏) if  for every 𝑛, there is some program of length 𝑎(𝑛), 
running in time 𝑔(𝑛), that decides 𝑓.

Time Hierarchy Theorem: For “reasonable” 𝒈, 𝒉 where 𝒉(𝒏) >> 𝒈(𝒏),

TIME(𝒉(𝒏)) ⊈ TIME(𝒈(𝒏))

Time Hierarchy Against Advice, Version 2 [Folklore]: For “reasonable” 𝒈, 𝒉

TIME(𝟐𝒏+𝒈(𝒏) ⋅ 𝒉(𝒏)) ⊈ TIME(𝒉(𝒏))/𝒈(𝒏)

Idea: The hard function enumerates all 2𝑔 𝑛 programs of length 𝑔(𝑛), 
and simulates each of them on every possible 𝑛-bit input.

Then it computes a missing string from the list of 𝑀 = 2𝑔 𝑛 strings of length 𝑁 = 2𝑛



What Good are Local Algorithms?

Theorem 2: For 𝑀 ≤ 𝑘𝑁, there is an 𝑂(𝑘 log 𝑘)-probe algorithm for MISSING STRING.

Corollary: New Time Hierarchy Theorems, against Non-Uniform Programs!

Old Time Hierarchies Against Advice: For “reasonable” 𝒈, 𝒉 where 𝒉(𝒏) >> 𝒈(𝒏),

TIME(h(𝒏)) ⊈ TIME(𝒈(𝒏))/(𝒏)

New Hierarchy Against Advice [informally]: for 𝒈 𝒏 ≥ 𝒏, 𝒉 𝒏 ≥ 𝒏,

TIME(𝟐𝒈 𝒏 ⋅ 𝒈 𝒏 ⋅ 𝒉(𝒏)/𝟐𝒏) ⊈ TIME(𝒉(𝒏))/(𝒈(𝒏))

Finding a function not in TIME(𝒉(𝒏))/(𝒈(𝒏)) amounts to finding a missing string
of length 𝑁 = 2𝑛 from a list of 𝑀 = 𝑂(2𝑔(𝑛)) strings [all programs of length 𝑔(𝑛)]
where any particular bit of any particular string can be determined in 𝑂 ℎ(𝑛) time.

For 𝑘 = 2𝑔 𝑛 −𝑛, we have 𝑀 ≤ 𝑘𝑁. Thus we can compute any bit of some missing string,

probing 𝑂 𝑘 log 𝑘 ≤ 𝑂 2𝑔 𝑛 −𝑛 ⋅ 𝑔(𝑛) bit positions, each probe taking 𝑂(ℎ(𝑛)) time.

TIME(𝟐𝒏+𝒈(𝒏) ⋅ 𝒉(𝒏)) ⊈ TIME(𝒉(𝒏))/𝒈(𝒏)



What Good are Local Algorithms?

Theorem 2: For 𝑀 ≤ 𝑘𝑁, there is an 𝑂(𝑘 log 𝑘)-probe algorithm for MISSING STRING.

Corollary: New Time Hierarchy Theorems, against Non-Uniform Programs!

Some New Hierarchies:

TIME(𝟓𝒏) ⊈ TIME(𝟐𝒏)/(𝟐𝒏)

TIME(𝒏𝟐𝒄+𝟏) ⊈ TIME(𝒏𝒄)/(𝒏 + 𝒄 log(𝒏))

Note: All the above hierarchies relativize, 
and there is an oracle 𝑨 such that 𝐓𝐈𝐌𝐄𝐀[𝟐𝒄𝒏] ⊆ 𝐓𝐈𝐌𝐄𝐀[𝑶(𝒏)] /(𝐜𝒏 + 𝒏) !!

TIME(𝟐𝒄𝒏 ⋅ 𝒑𝒐𝒍𝒚(𝒏)) ⊈ TIME(𝑶(𝒏))/(𝒄𝒏 + 𝒏)



(Main) Open Problems

• Does MISSING STRING have small uniform depth-3 circuits, or not?

(it cannot have depth-2 circuits, and it does have depth-4 circuits)

• How many probes (as a function of 𝑘) are necessary and 
sufficient to find a missing string, when 𝑀 ≤ 𝑘 𝑁? 
The answer is somewhere between 𝑘 and 𝑂(𝑘 log 𝑘)

• More connections between MISSING STRING and lower bounds?



How to Prove Lower 
Bounds With Algorithms

Lecture 4: The Power of Constructing Bad Inputs
(based on work with Lijie Chen, Ce Jin, and Rahul Santhanam, FOCS 2022)



Lower Bounds are Hard to Prove

There are many barriers 
• Relativization  [Baker-Gill-Solovay, 70’s]
• Natural Properties     [Razborov-Rudich, 90’s]
• Algebrization [Aaronson-Wigderson, 00’s]

We apparently know a lot about what strong lower 

bounds CANNOT look like. We know many 
limitations on how such proofs must proceed.

Summary: The standard methods that we use to reason 
about generic computation cannot resolve P ≠ NP
(or P ≠ PSPACE, or EXP ≠ ZPP, or NEXP ≠ BPP, etc.)



What could a proof of P ≠ NP look like?

We seem to know a lot about what a proof of P ≠ NP 
(and P ≠ PSPACE, EXP ≠ ZPP, NEXP ≠ BPP, etc.) 
cannot look like… 

… can we identify properties that such lower 
bound proofs must possess? 

What properties are missing from lower bounds we 
know how to prove, which we will have to include 
in a proof of NEXP ≠ BPP (or any of the above)?



What could a proof of P ≠ NP look like?

Let 𝑓: 0,1 ∗ → {0,1} and let 𝓐 be a class of algorithms.

A lower bound "𝑓 ∉ 𝓐" is a claim of the form:
∀𝑨 ∈ 𝓐 (∃∞ 𝒏) ∃𝒙𝑨 ∈ 𝟎, 𝟏 𝒏 𝑨 𝒙𝑨 ≠ 𝒇 𝒙𝑨

Fix a lower bound problem 𝑓 ∉𝓐, and fix an algorithm 𝑨.
What is the complexity of constructing a “bad” 𝒙𝑨 of length 𝒏?

The literature on lower bounds gives roughly two types of answers:

1. “Random” or non-constructive ways of choosing 𝒙𝑨
Proofs relying on counting/information-theoretic arguments

2. “Efficient” ways of choosing 𝒙𝑨
Proofs based on diagonalization arguments



Our starting inspiration is from [Gutfreund-Shaltiel-Ta Shma’05]
If 𝑷 ≠ 𝑵𝑷, then 

“bad inputs to SAT algorithms can be efficiently constructed”.

The following theorem can be derived from their paper:

For every 𝑛𝑘-time algorithm 𝐴, 
there is an algorithm 𝑅𝐴 that for infinitely many 𝑛, 𝑅𝐴 1𝑛 outputs a 
formula 𝐹𝑛 of length 𝑛 such that 𝐹𝑛 is SAT ⇔𝐴(𝐹𝑛) = 0. 

Furthermore, 𝑅𝐴 runs in 𝑛𝑂 𝑘2 time.
refuter
[K’00]

What could a proof of P ≠ NP look like?



If 𝑷 ≠ 𝑵𝑷, then for infinitely many input lengths, 
“bad inputs to SAT algorithms can be efficiently constructed”

Let’s start by getting a refuter for an 𝑛𝑘-time algorithm 𝐴 trying to print 
SAT assignments, when they exist. (It first attempts to print a SAT 
assignment, and outputs UNSAT if that assignment fails to satisfy.)

All bad inputs are satisfiable formulas on which 𝐴 prints UNSAT

𝑅𝐴 1𝑛 : Construct a formula 𝐹𝑛 encoding the property:

(∃ 𝐺, |𝐺| = 𝑛 and assignment 𝑎)[𝐺(𝑎) = 1 ∧ 𝐴(𝐺) outputs UNSAT]
Run 𝐴 on 𝐹𝑛. If 𝐴 prints some 𝐺′, then output 𝐺′ else output 𝐹𝑛

We are asking 𝐴 to print its own counterexamples 𝐺′. If 𝐴 does this for 
∞ many 𝑛, then we are done. If 𝐴 does not do this for ∞ many 𝑛,
then {𝐹𝑛} is printed for almost every 𝑛. This set contains ∞ many 
counterexamples, because we assumed 𝑃 ≠ 𝑁𝑃.

Gutfreund-Shaltiel-Ta Shma ‘05

𝒏𝑶 𝒌 size



If 𝑷 ≠ 𝑵𝑷, then for infinitely many input lengths, 
“bad inputs to SAT algorithms can be efficiently constructed”

Getting a refuter for an 𝑛𝑘-time algorithm 𝐴 trying to decide SAT:

𝑅𝐴 1𝑛 : Construct a formula 𝐹𝑛 encoding the property:
(∃ 𝐺, |𝐺| = 𝑛 and assignment 𝑎)[𝐺(𝑎) = 1 ∧ 𝐴(𝐺) outputs UNSAT]
Use search-to-decision on 𝐴 to search for a SAT assignment to 𝐹𝑛.
(Try setting a variable 𝑥 to 0, then as 1, seeing what 𝐴 reports…)

Cases: (1) 𝐴(𝐹𝑛) = “UNSAT”. Then output 𝐹𝑛
(2) We find a SAT assignment 𝐺′. Then output 𝐺′

(3) We find a subformula 𝐹′′ such that 𝐴 𝐹′′ =“SAT”, 
but 𝐴 𝐹′′ 𝑥 = 0 = 𝐴(𝐹′′ 𝑥 = 1 )=“UNSAT” 

In case (3), 𝐴 is wrong on at least one of the 3 subformulas! 
Can report the set as “bad”. (To get an 𝑅𝐴 so that only one is reported, 
consider three different algs 𝑅𝐴

1, 𝑅𝐴
2, 𝑅𝐴

3 such that 𝑅𝐴
𝑖 reports the 𝑖-th)

Gutfreund-Shaltiel-Ta Shma ‘05



Our starting inspiration is from [Gutfreund-Shaltiel-Ta Shma’05]
If 𝑷 ≠ 𝑵𝑷, then 

“bad inputs to SAT algorithms can be efficiently constructed”.

The following theorem can be derived from their paper:

For every 𝑛𝑘-time algorithm 𝐴, 
there is an algorithm 𝑅𝐴 that for infinitely many 𝑛, 𝑅𝐴 1𝑛 outputs a 
formula 𝐹𝑛 of length 𝑛 such that 𝐹𝑛 is SAT ⇔𝐴(𝐹𝑛) = 0. 

Furthermore, 𝑅𝐴 runs in 𝑛𝑂 𝑘2 time.

Say there is a 𝑷-constructive separation of 𝒇 ∉ 𝓐
if for all 𝓐-algorithms 𝑨, there is a poly-time algorithm 𝑹𝑨 which 
(for ∞𝒏) given 𝟏𝒏 can output 𝒙𝑨 such that 𝑨 𝒙𝑨 ≠ 𝒇 𝒙𝑨 .

[GST’05] 𝑷 ≠ 𝑵𝑷⟹ There’s a 𝑷-constructive separation of SAT ∉ 𝑷

refuter
[K’00]

What could a proof of P ≠ NP look like?



There is a 𝑷-constructive separation of "𝒇 ∉ 𝓐"
if for all 𝓐-algorithms 𝑨, there is a poly-time algorithm 𝑹𝑨 which 
(for ∞𝒏) given 𝟏𝒏 can output 𝒙𝑨 such that 𝑨 𝒙𝑨 ≠ 𝒇 𝒙𝑨 .

[GST’05] 𝑷 ≠ 𝑵𝑷⟹ There’s a 𝑷-constructive separation of SAT ∉ 𝑷

Which lower bound problems require constructive 
separations, and which do not?

This is an algorithmic question about the nature of the 
lower bound. What algorithms are implied by separations? 

Constructive Separations



We Argue: Constructive Separations Are Key!

1. Essentially all open separation problems regarding polynomial
time require constructive separations

Thm: For all 𝑪 ∈ {𝑷, 𝒁𝑷𝑷,𝑩𝑷𝑷} and 𝑫 ∈ 𝑵𝑷,𝑷𝑺𝑷𝑨𝑪𝑬, 𝑬𝑿𝑷,𝑵𝑬𝑿𝑷,…
If 𝑪 ≠ 𝑫 then there is a 𝑪-constructive separation of 𝑪 ≠ 𝑫. 

2. Making many known lower bounds constructive, 
implies major lower bounds!

Example 1: [Maass 84] PALINDROMES ∉ 𝑵𝑻𝑰𝑴𝑬𝟏[𝒐(𝒏𝟐)]. 

Thm: Making Maass’ lower bound 𝑷-constructive implies 𝑻𝑰𝑴𝑬(𝟐𝑶 𝒏 )
contains functions of exponential circuit complexity. “Constructivizing” 
this lower bound implies universal derandomization! [IW97]

Therefore, “constructivity” is a property we want of lower bounds!

More examples of 
how algorithms can 
imply lower bounds!



2. Making many known lower bounds constructive, 
requires resolving other major lower bound problems

Example 2: Randomized streaming algorithm lower bounds.
Many problems (including simple ones like DISJOINTNESS) are well-
known to require 𝛀(𝒏)-space randomized streaming algorithms 

Thm: For any 𝚷 ∈ 𝑵𝑷, a 𝑷𝑵𝑷-constructive separation of 𝚷 from 
log 𝒏 𝝎 𝟏 space randomized streaming algs implies 𝑬𝑿𝑷𝑵𝑷 ≠ 𝑩𝑷𝑷.

Example 3: Randomized query lower bounds. 
Promise-MAJORITY: distinguish bit strings with > ½+ 𝝐 ones from 

strings with < ½ - 𝝐 ones. Well-known to require 𝚯
𝟏

𝝐𝟐
queries.

Thm: A “uniform 𝑨𝑪𝟎”-constructive separation of Promise-MAJORITY 

from randomized query algorithms using 𝒐(
𝟏

𝝐𝟐
) queries and 𝒑𝒐𝒍𝒚(

𝟏

𝝐
)

time implies 𝑷 ≠ 𝑵𝑷. 

Many more results in the paper…



Thm: If 𝑷 ≠ 𝑷𝑺𝑷𝑨𝑪𝑬 then there is a 𝑷-constructive separation of 
𝑷 ≠ 𝑷𝑺𝑷𝑨𝑪𝑬

Proof Idea: Instead of SAT, look at TQBF (true quant. Boolean formulas)

Getting a refuter for an 𝑛𝑘-time algorithm 𝐴 trying to decide TQBF:

𝑅𝐴 1𝑛 : Construct a formula 𝐹𝑛 encoding the property:
∃ 𝑄𝐵𝐹 " 𝑄𝑥 𝐺 𝑥 ", 𝐺 = 𝑛

[either 𝐴 ∀𝑥 𝐺 𝑥 ≠ 𝐴 𝐺 0 ∧ 𝐴 𝐺 1
or 𝐴 ∃𝑥 𝐺 𝑥 ≠ 𝐴 𝐺 0 ∨ 𝐴 𝐺 1 ]

Cases: (1) 𝐴(𝐹𝑛) = “false”. Then output 𝐹𝑛
(2) 𝐴 𝐹𝑛 = “true”. Try using search-to-decision to find 
" 𝑄𝑥 𝐺 𝑥 “. Either this fails (in which case you get 3 bad formulas)
or it succeeds, but then one of 𝑄𝑥 𝐺 𝑥 , 𝐺 1 , 𝐺 0 must be wrong!

Can report set of 3 as “bad”. (Can also modify 𝑅𝐴 to only report one)

Constructive Separation of P ≠ PSPACE

where 𝑮 itself 
is a QBF, 𝑸 ∈ {∃, ∀}

𝑨 is inconsistent 
on these three

In general, we just need a 
“downward self-reduction”



Making One-Tape TM Lower Bounds Constructive?

[Maass 84] PALINDROMES ∉ 𝑵𝑻𝑰𝑴𝑬𝟏[𝒐(𝒏𝟐)]. 

Thm: Making Maass’ lower bound 𝑃-constructive implies that 𝐸
contains functions of circuit complexity > 2𝜖𝑛 for some 𝜖 > 0

Proof Sketch: We make a nondeterministic one-tape TM 𝑀 that takes 
𝑁1+𝑂(𝜖) time and correctly decides all palindromes of length 𝑁 = 2𝑛

with circuit complexity < 2𝜖𝑛.

Therefore, any 𝑃 algorithm that (on 1𝑛) prints a “bad” input for 𝑀 must 
print a hard function. (The consequence follows by padding.)

𝑀 guesses a circuit 𝐶 of size 𝑁𝜖 encoding the input 𝑥, and guesses |𝑥|. 
“Dragging along” the description of 𝐶 as it reads the bits of 𝑥,
it verifies the truth table of 𝐶 equals 𝑥. It verifies 𝑥 is a palindrome by 

using 𝐶 to check that the bits of the 2nd half of 𝑥 match the 1st half, 
and it uses |𝑥| to determine when to start checking the 2nd half.



Some Open Questions

• Relativization tells us that “direct” diagonalization-based proof 
methods are limited…
But any major separation against 𝑷 (or 𝑩𝑷𝑷, or 𝒁𝑷𝑷) will 
require a key property of diagonalization-based proofs: 
the ability to efficiently produce “bad” inputs. 
What other methods of proof could yield this consequence?

• What about separations against LOGSPACE? NC? ACC0? 
E.g. Does NP ≠ LOGSPACE imply a constructive separation?

• Are there equivalences between “derandomization” and 
constructive separations based on the probabilistic method? 



Thank you!


