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1 Cutting Plane Methods
For any convex f and any current x, we have

f(y) ≥ f(x) + ⟨∇f(x), y − x⟩ for all y. (1.1)

Let x∗ be any minimizer of f . Replacing y with x∗, we have that

f(x) ≥ f(x∗) ≥ f(x) + ⟨∇f(x), x∗ − x⟩ .

Therefore, we know that ⟨∇f(x), x∗ − x⟩ ≤ 0 .

Fact 1. For any x, x∗ lies in the halfspace

Hx
def
= {y : ⟨∇f(x), y − x⟩ ≤ 0}.

Question: How to use it to do binary search in Rn?
Cutting Plane Framework:

• Invariant: Maintain X∗ ⊂ Ω(k) where X∗ is the set of minimizers of f .

• Pick some large enough Ω(0).

• For k = 0, 1, · · ·

– If Ω(k) is small enough, return the point with smallest function value we ever queried.

– Pick some x(k) ∈ Ω(k).

– Note that X∗ ⊂ Hx(k) . So, we know X∗ ⊂ Hx(k) ∩ Ω(k).

– Pick some Ω(k+1) ⊃ Hx(k) ∩ Ω(k).

To analyze the algorithm, the main questions we need to answer are:

1. How do we choose Ω(k+1) and x(k)?

2. How do we measure progress?

3. How quickly does the method converge?

4. How expensive is each step?

2 Center of Gravity Method
Discovered by Levin and Newman on 1965 independently on opposite side of iron curtain.

1. The algorithm does not forget any information, namely Ω(k+1) = Ω(k) ∩Hx(k) . It uses the center of gravity of
Ω(k) for x(k).

center of gravity of Ω = Ex∼Ωx

2. Measure progress by volΩ(k).
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3. Each step, the volume goes down by 1− 1
e factor.

4. However, the runtime for each step is horrible.

The following theorem show the volume is cut by at least 1/e factor each step.

Theorem 2. (Grunbaum Theorem) Let K be a convex body in Rn with center of gravity z. Let H be any halfspace
containing z. Then,

vol(K ∩H) ≥
(

n

n+ 1

)n

vol(K) ≥ 1

e
vol(K).

Proof. WLOG, H = {x1 ≥ 0}. Let Kt = K ∩ {x1 = t} be the slices of K. Brunn–Minkowski theorem shows that
the “volume radius”

r(t)
def
= vol(Kt)

1
n−1

is concave. Namely, K must be either a cone or more concave than cone in terms of volume radius. It reduces to
this 1-dimension question:

Given a 1-dimension pdf p such that the mean is 0 and that p
1

n−1 is concave, solving it, we have

P(t ≥ 0) ≥
(

n

n+ 1

)n

.

Exercise 3. Read a detailed proof of Grunbaum’s theorem.

Remark: Since we decreases the volume by constant factor every step, to decrease the volume from unit ball
to ϵ-size ball requires n log(1/ϵ) steps. This is where the factor n comes from.

Exercise 4. Recall what is ellipsoid method. Suppose we are given a function f such that I ⪯ ∇2f ⪯ 2I. Show
how to modify the ellipsoid method such that it takes O(log(1/ϵ)) steps and each steps take O(n) time.

• Part 1) Shows that f(x) +∇f(x)⊤(y − x) + 1
2∥y − x∥2 ≤ f(y) ≤ f(x) +∇f(x)⊤(y − x) + ∥y − x∥2.

• Part 2) Using that, shows that given ∇f(x), f(x) and f(x∗), show that x∗ contains in a ball bounded away
from x.

• Part 3) Using above to design a new variant of ellipsoid method that converges in O(log(1/ϵ)) steps.

3 Extra: From Volume to Function Value
In the last section, we talk about how to decrease the volume. But how about how to decrease the objective value?
The following lemma shows the volume and the objective value are essentially same.

Theorem 5. Let x(k) be the sequence of points produced by the cutting plane framework for a convex function f .
Let R be a mapping from subsets of Rn to non-negative numbers satisfying

1. (Linearity) For any set S ⊆ Rn, any vector y and any scalar α ≥ 0, we have R(αS + y) = αR(S) where
αS + y = {αx+ y : x ∈ S}.

2. (Monotonic) For any set T ⊂ S, we have that R(T ) ≤ R(S).

Then, we have that

min
i=0,1,··· ,k−1

f(x(i))− min
y∈Ω(0)

f(y) ≤ R(Ω(k))

R(Ω(0))
·
(

max
z∈Ω(0)

f(z)− min
x∈Ω(0)

f(x)

)
.

Remark 6. We can think R(Ω) as some way to measure the size of Ω. It can be radius, mean-width or any other
way to measure “size”. For the center of gravity method, we use R(Ω) = vol(Ω)

1
n for which we have proved volume

decrease before. We raise the volume to power 1/n to satisfy linearity.
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Proof. For simplicity, we define Ω = Ω(0). Let x∗ be any minimizer of f over Ω. For any α > V(Ω(k))
V(Ω) and

S = (1− α)x∗ + αΩ, by the linearity of V, we have that

V(S) = αV(Ω) > V(Ω(k))

Therefore, S is not a subset of Ω(k) and hence there is a point y ∈ S\Ω(k). y is not in Ω(k). This means it is
separated by the gradient at some step i ≤ k, namely for some i ≤ k, we have

∇f(x(i))⊤(y − x(i)) > 0.

By the convexity of f , it follows that f(x(i)) ≤ f(y). Since y ∈ S, we have y = (1 − α)x∗ + αz for some z ∈ Ω.
Thus, the convexity of f implies that

f(x(i)) ≤ f(y) ≤ (1− α)f(x∗) + αf(z).

Therefore, we have

min
i=1,2,···k

f(x(i))−min
x∈Ω

f(x) ≤ α

(
max
z∈Ω

f(z)−min
x∈Ω

f(x)

)
.

Since this holds for any α > V(Ω(k))
V(Ω) , we have the result.

Combining with the last section, we have that the center of gravity method satisfies

min
i=0,1,··· ,k−1

f(x(i))− min
y∈Ω(0)

f(y) ≤
(
1− 1

n+ 1

)k

·
(

max
z∈Ω(0)

f(z)− min
x∈Ω(0)

f(x)

)
.

4 What do we know now?

4.1 Upper bound

Ω(k) x(k) Iter up to log Cost/Iter

Ω(k+1) = Ω(k) ∩H(k) Center of gravity n log(1/ϵ) n4

Ω(k+1) =smallest ellipsoid containing Ω(k) ∩H(k) Center of ellipsoid n2 log(1/ϵ) n2

Ω(k+1) = Ω(k) ∩H(k) Center of John ellipsoid n log(1/ϵ) n2.878

Some polytope having only O(n) constraints Volumetric center n log(n/ϵ) n2

All the above algorithms measure progresses by volume of something. So, the total runtime for convex opti-
mization is n3 log(1/ϵ).

Theorem 7. (Jiang Lee Song Wong 2020) Given a convex function f and a convex set K such that we can compute
the gradient of f and the separating hyperplane for K. Suppose we know the minimizer ∥x∗∥2 ≤ 1, then we can find
x ∈ K such that

f(x) ≤ min
x∈K

f(x) + ϵ(max
x∈K

f(x)−min
x∈K

f(x))

in n log( n
ϵvol(K) ) iterations, each iteration takes O(n2) time plus 1 call to the oracle.

4.2 Lower bound
Sorry, I don’t know exactly. The classical proof is Ω(n log(1/ϵ)) for the question of finding a point in convex set.
For convex optimization, I can only come up with n log 1

ϵ

logn at this last minute. The function is this:

f(x) = ∥x− x∗∥∞.

Note that the gradient of x is almost always 1-sparse vector. So, it contains just log n bit of information. Encoding
a ϵ-approximate solution for x∗ requires n log 1

ϵ bit. Hence the lower bound.
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5 Discussion
Among different proofs above, one common theme is to prove that a convex set K is approximated by some ellipsoid.
Here are two of such theorem:

Theorem 8. Given a convex set K ⊂ Rn. Let E be the ellipsoid such that x0
def
= Ex∼Kx = Ex∼Ex and Ex∼Kxx⊤ =

Ex∼Exx
⊤.Then, we have that √

n+ 1

n
(E − x0) ⊂ K − x0 ⊂

√
n(n+ 1)(E − x0).

Theorem 9. Given a convex set K ⊂ Rn. Let E be largest volume ellipsoid in K with center x0 , we have

E − x0 ⊂ K − x0 ⊂ n(E − x0).

6 Extra: What if we need exact solution?
Theorem 10. (Jiang 2022) Given an explicit lattice Λ and some convex set Ω, and convex f . Suppose argminx∈Ω f
is unique and in Λ. Then, we can find an exact minimizer of the problem

min
x∈Λ∩Ω

f(x)

using O(n log n + log volΩ
det Λ ) calls to ∇f . In particular, if Λ = Zn and Ω is the unit ball, the number of calls is

O(n log n) calls. (Unfortunately, the runtime is sub-exponential.)

Idea: If the current region Ω(k) is very narrow on some direction, then Ω(k) ∩Λ should be lower dimension and
hence we can reduce the dimension by 1 by recursing on that lower dimensional subspace.

Suppose for simplicity that the current region Ω is a unit ball, the following lemma shows when we can reduce
the dimension.

Theorem 11. If v ∈ Λ∗\{0} such that ∥v∥2 < 1
2 , then, we have

Λ ∩ {∥x− x0∥2 ≤ 1} ⊂ {x : v⊤x = [v⊤x0]}

where [v⊤x0] is the rounding of v⊤x0 to the closest integer.

Proof. First, we want to prove that for any x1, x2 ∈ Λ, we have

v⊤(x1 − x2) = 0.

Note that x1 − x2 ∈ Λ and v ∈ Λ∗, by the definition of dual lattice, we have v⊤(x1 − x2) ∈ Z. Next, we note that
∥x1 − x2∥2 ≤ 2 and hence

|v⊤(x1 − x2)| ≤ ∥v∥2∥x1 − x2∥2 < 1.

Hence, we have the claim. This proves that

Λ ∩ {∥x− x0∥2 ≤ 1} ⊂ {x : v⊤x = t}

for some t ∈ Z.
Now, it suffices to prove that t = [v⊤x0]. Suppose there is some point x ∈ Λ ∩ {∥x − x0∥2 ≤ 1} is non-empty.

Note that |v⊤(x − x0)| < 1
2 . Since x in that set, we have v⊤x = t by definition. Hence, we have |t − v⊤x0| < 1

2 .
Since t ∈ Z, we have t = [v⊤x0].

To get the precise version, we need to find v ∈ Λ∗ such that ∥v∥M < 1
2 for some matrix M depending on the

current region. Using this, we can have the following algorithm:

• Loop

– If the shortest vector v of Λ∗ is smaller than 1
10n in some norm,

∗ Reduce the dimension along normal vector v. Update Λ and Ω.
– Else
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∗ Cut Ω using gradient oracle at the center of gravity of Ω.

He showed that the potential Φ = volΩ/ detΛ

• Decreases a constant factor for every cut.

• Increases by O(n) factor for every dimension reduction.

• Φ ≥ 1
nn before every cut (Minkowski first theorem)

This proves the theorem.
Remark: This theorem is particular important as it gives the fastest (and probably tight) strongly polynomial

runtime for submodular minimization.

7 Various Tips

7.1 Computing Gradient
To apply the cutting plane method, we need gradient. It turns out the cost of computing the gradient is essentially
same as the cost of compute the function.

Theorem 12 (Auto diff). Suppose we have an algorithm to compute f exactly in time T , then, by modifying the
algorithm, we can compute ∇f exactly in time O(T ).

7.2 What if we really don’t have gradient (because we can’t even compute the value)
Imagine you have k machines. Each machine uses resources (r1, r2, · · · , rk) and produces goods (g1, g2, · · · , gℓ). We
represent the machine by simply a vector a = (r1, r2, · · · , rk, g1, g2, · · · , gℓ).

Say we have vectors a1, a2, · · · , an ∈ Rk+ℓ, the polytope

K = {
n∑

i=1

λiai ∈ Rk+ℓ|0 ≤ λi ≤ 1 for all i}

represents the set of possible feasible (input, output) pairs. Many production problems can be written as

min
z∈K

f(z).

Suppose f is simple that you can do whatever on it, what is the best way to apply cutting plane method?
Problem: It is a bit expensive to simply check in a vector z ∈ K or not, it involves solving an LP.

Definition 13. Let the dual of f defined by

f∗(θ) = max
x

θ⊤x− f(x).

Fact 14. It is know that f∗∗ = f .

Hence, we can write the problem by

min
z∈K

f(z) = min
z∈K

f∗∗(z)

= min
z∈K

max
θ

z⊤θ − f∗(θ)

= max
θ

min
z∈K

z⊤θ − f∗(θ)

Why this is better? Note that we have

∇(min
z∈K

z⊤θ − f∗(θ)) = argmin
z∈K

z⊤θ − argmax
x

(θ⊤x− f(x))
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First, note that argminz∈K z⊤θ is simple because

min
z∈K

z⊤θ = min
0≤λi≤1 for all i

n∑
i=1

λia
⊤
i θ

=

n∑
i=1

min(a⊤i θ, 0)

and the minimizer simply given by some explicit formula. Second, the second part is simple because we assume the
f is “simple”.
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