
Online Algos: Worst case and Beyond
Introduction and Set Cover

Anupam Gupta (NYU)

Online Algorithms

Requests arrive over time, must be served immediately/irrevocably

Goal: (say) minimize cost of the decisions taken

Competitive ratio of algorithm 𝐴:

max
instances 𝐼

cost of algorithm 𝐴 on instance 𝐼

optimal cost to serve 𝐼

Want to minimize the competitive ratio.

[Graham 66, Sleator Tarjan 85]

worst case!

Online Set Cover

Set system. n elements arrive over time, want to maintain a cover.

Goal: minimize cost of sets picked

Competitive ratio of algorithm 𝐴:

max
instances 𝐼

cost of algorithm 𝐴 on instance 𝐼

optimal cost to serve 𝐼

Want to minimize the competitive ratio.

𝑆1

𝑣2

𝑣3𝑣1

𝑆2

𝑆3

[Alon Awerbuch Azar Buchbinder Naor 03]

Online Load Balancing

𝑚 machines. Jobs arrive over time, can be assigned to subset of machines.

Goal: minimize maximum load of machines

Competitive ratio of algorithm 𝐴:

max
instances 𝐼

cost of algorithm 𝐴 on instance 𝐼

optimal cost to serve 𝐼

Want to minimize the competitive ratio.

[Azar Naor Rom 92]

Online Convex Body Chasing

Each time convex body 𝐾𝑡 appears. Must output 𝑥𝑡 ∈ 𝐾𝑡

Goal: minimize σ𝑡 | 𝑥𝑡 − 𝑥𝑡−1| .

Competitive ratio of algorithm 𝐴:

max
instances 𝐼

cost of algorithm 𝐴 on instance 𝐼

optimal cost to serve 𝐼

Want to minimize the competitive ratio.

[Freedman Linial 94]

𝑥1
𝑥2
𝑥3

Competitive ratio of algorithm 𝐴:

max
instances 𝐼

cost of algorithm 𝐴 on instance 𝐼

optimal cost to serve 𝐼

Want to minimize the competitive ratio.

max-K finding

𝑛 people arrive over time, each has value 𝑣𝑖 -- can pick at most 𝐾

Goal: (say) maximize sum of values of picked people

Competitive ratio of algorithm 𝐴:

min
instances 𝐼

value of algorithm 𝐴 on instance 𝐼

optimal value on instance 𝐼

Want to maximize the competitive ratio.

[Gardner 60, Dynkin 63]

goals for this week

What are the results?

What are the techniques?

What are the worst-case limitations?

How to bypass them beyond worst-case?

Connections to other sequential decision-making models/algos?

lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

Two Online Models

competitive analysis vs regret minimization

Obj: Competitive ratio

“Predictive” settings

Compare to the best solution in hindsight

Typically OPT = best dynamic solution Typically OPT = best static solution

See request, take action

“Reactive” settings

Obj: Regret

Predict next step, then see reality

CR = ALG/OPT regret = ALG - OPT

optimization in the face of uncertainty

several techniques in common…

two canonical online problems

online linear optimization (OLO)

each day t = 1, 2, …, T

algorithm plays probability vector 𝑝𝑡 ∈ Δ𝑛

then sees cost vector 𝑐𝑡 ∈ 0,1 𝑛

loss at time t is ℓ𝑡 = 𝑐𝑡 𝑝𝑡

Theorem: algorithm that achieves

σ𝑡 𝑐𝑡 𝑝𝑡 ≤ 1 + 𝜀 σ𝑡 𝑐𝑡 𝑝
∗ + 𝑂

log 𝑛

𝜀

for every 𝑝∗ ∈ Δ𝑛

“smoothed” OLO (aka uniform MTS)

each day t = 1, 2, …, T

then algorithm plays probability vector 𝑝𝑡 ∈ Δ𝑛

sees cost vector 𝑐𝑡 ∈ 0,∞ 𝑛

loss at time t is ℓ𝑡 = 𝑐𝑡 𝑝𝑡 + | 𝑝𝑡 − 𝑝𝑡−1|1

Theorem: algorithm that achieves

σ𝑡 𝑐𝑡 𝑝𝑡 + |𝑝𝑡 − 𝑝𝑡−1| ≤ 𝑂 log 𝑛 σ𝑡 𝑐𝑡 𝑝𝑡
∗ + σ𝑡 𝑝𝑡

∗ − 𝑝𝑡−1
∗

for every 𝑝1
∗, 𝑝2

∗, … 𝑝𝑇
∗ ∈ Δ𝑛

two canonical online problems

online linear optimization (OLO)

each day t = 1, 2, …, T

algorithm plays probability vector 𝑝𝑡 ∈ Δ𝑛

then sees cost vector 𝑐𝑡 ∈ 0,1 𝑛

loss at time t is ℓ𝑡 = 𝑐𝑡 𝑝𝑡

Theorem: algorithm that achieves

σ𝑡 𝑐𝑡 𝑝𝑡 ≤ 1 + 𝜀 σ𝑡 𝑐𝑡 𝑝
∗ + 𝑂

log 𝑛

𝜀

for every 𝑝∗ ∈ Δ𝑛

“smoothed” OLO (aka uniform MTS)

each day t = 1, 2, …, T

then algorithm plays probability vector 𝑝𝑡 ∈ Δ𝑛

sees cost vector 𝑐𝑡 ∈ 0,∞ 𝑛

loss at time t is ℓ𝑡 = 𝑐𝑡 𝑝𝑡 + | 𝑝𝑡 − 𝑝𝑡−1|1

Theorem: algorithm that achieves

σ𝑡 𝑐𝑡 𝑝𝑡 + |𝑝𝑡 − 𝑝𝑡−1| ≤ 1 + 𝜀 σ𝑡 𝑐𝑡 𝑝𝑡
∗ + 𝑂

log 𝑛

𝜀
σ𝑡 |𝑝𝑡

∗ − 𝑝𝑡−1
∗ |

for every 𝑝1
∗, 𝑝2

∗, … 𝑝𝑇
∗ ∈ Δ𝑛

[Blum Burch Kalai 99]

online algorithms vs online learning

Obj: Competitive ratio

“Predictive” settings

Compare to the best solution in hindsight

Typically OPT = best dynamic solution Typically OPT = best static solution

See request, take action

“Reactive” settings

Obj: Regret

Predict next step, then see reality

CR = ALG/OPT regret = ALG - OPT

optimization in the face of uncertainty

several techniques in common…

Set Cover

(minimum) set cover

|ℱ| = 𝑚 =# sets

|𝒰| = 𝑛 =# elements

Goal: pick smallest # sets to cover all elements.

“weighted” problem: sets have costs, minimize cost of cover

𝑓 = max
𝑒

#(sets containing e)

set cover as bipartite graph

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

ℱ
𝑚 sets

𝒰
𝑛 elements

≤ 𝑓

𝑣6

𝑣5

𝑣4

𝑣3

𝑣2

𝑣1

Online Set Cover

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝒰
𝑛 elements

ℱ
𝑚 sets

online set cover: model choices

Adversary fixes (𝒰, ℱ) and set costs (if applicable)

Algo sees elements of 𝒰 one by one

When element 𝑒 seen, then find out which sets contain 𝑒

If 𝑒 not covered by current set cover, pick set(s) to cover 𝑒

Instance is not “adaptive” to decisions of algorithm (relevant if randomized algo)

Called “oblivious adversary”.

Including order of elements

𝑣2

𝑣1

Deterministic Fail

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝒰
𝑛 elements

ℱ
𝑚 sets

Ω(𝑛) competitive

𝑣3

𝐴𝐿𝐺 = 𝑛, 𝑂𝑃𝑇 = 1

𝑣2

𝑣1

Randomization: A New Hope

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝒰
𝑛 elements

ℱ
𝑚 sets

𝑣3

What’s a good strategy for randomizing?

𝑣2

𝑣1

Uniform Sampling (for unit costs)

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣3

If 𝑒 not covered

Pick uniformly random set covering 𝑒

Theorem [Pitt 75]: 𝑓-competitive

𝑓 = max-degree
of any element

Proof

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑓 = max-degree
of any element𝑂𝑃𝑇

Theorem [Pitt 75]: 𝑓-competitive

𝔼 𝐺𝑒𝑜𝑚 1/𝑓 = 𝑓

𝑣2

𝑣1

Extension for general costs

𝑠1

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣3

𝑓 = max-degree
of any element

If 𝑒 not covered

Pick set 𝑆 ∋ 𝑒 w.p. ∝ 1/𝑐(𝑆)

Theorem [Pitt 75]: 𝑓-competitive

roadmap for today

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

[Prob Wednesday] How to go beyond worst-case?

When requests from known distribution

When requests from unknown distribution

Intro to Online Algorithms

Theorem: 𝑓-competitive using Pitt’s algo

roadmap for today

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

[Prob Wednesday] How to go beyond worst-case?

When requests from known distribution

When requests from unknown distribution

Intro to Online Algorithms

Theorem: 𝑓-competitive using Pitt’s algo

relax-and-round (offline)

Integer linear program for set cover: min σ𝑆 𝑐 𝑆 𝑥𝑆

σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1 for all elements 𝑒

𝑥𝑆 ∈ {0,1}

𝑥𝑆 ≥ 0

“relax the problem” 𝐿𝑃 ≤ 𝑂𝑃𝑇

[folklore? Johnson?]

relax-and-round (offline)

Integer linear program for set cover: min σ𝑆 𝑐 𝑆 𝑥𝑆

σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1 for all elements 𝑒

𝑥𝑆 ∈ {0,1}

𝑥𝑆 ≥ 0

Randomized rounding: pick each set with probability 𝑝𝑆 = min{𝑥𝑆 ln 𝑛 , 1}

Alteration: For each some element not yet covered, pick cheapest set covering it.

“relax the problem”

Pr[e not covered by RR] = Π𝑆∶𝑒∈𝑆 1 − 𝑝𝑆 ≤ e− σ𝑆:𝑒∈𝑆 𝑝𝑆 ≤ e− ln 𝑛 σ𝑆:𝑒∈𝑆 𝑥𝑆 ≤ 1/𝑛.

Expected cost ≤ 𝐿𝑃 ⋅ ln𝑛 + σ𝑒 Τ1 𝑛 ⋅ cheapest set covering 𝑒 ≤ 𝐿𝑃(1 + ln𝑛).

𝐿𝑃 ≤ 𝑂𝑃𝑇

[folklore? Johnson?]

relax-and-round (online)

Integer linear program for set cover: min σ𝑆 𝑐 𝑆 𝑥𝑆

σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1 for all elements 𝑒

𝑥𝑆 ∈ {0,1}

𝑥𝑆 ≥ 0

“relax the problem” 𝐿𝑃 ≤ 𝑂𝑃𝑇

Solving: How to solve LP as elements arrive? We’ll see soon.

Online rounding: at each timestep, buy each set 𝑆 w.p. min(Δ𝑥𝑆 ln 𝑛 , 1)

N.b. want 𝑥𝑆 values to only increase (captures online nature)

Same analysis: total cost O ln𝑛 𝐿𝑃.

[Alon Awerbuch Azar Buchbinder Naor 03]

solving set cover LP online min σ𝑆 𝑐 𝑆 𝑥𝑆

σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1 for all 𝑒

𝑥𝑆 ≥ 0

When element 𝑒 arrives:

Until 𝑒 fractionally covered

increase its fractional coverage “multiplicatively”

Theorem 1: get fractional set cover of cost O log 𝑚 𝑂𝑃𝑇.

⇒ Theorem 2: Above+rand.round produces integer set cover with E[cost] O log 𝑚 log𝑛 𝑂𝑃𝑇.

solving set cover LP online min σ𝑆 𝑥𝑆

σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1 for all 𝑒

𝑥𝑆 ≥ 0

Algo 1: (unit cost sets)

𝑥𝑆 ← 1/𝑚 for all 𝑆

When element e arrives with σ𝑆:𝑒∈𝑆 𝑥𝑆 < 1:

Repeatedly do 𝑥𝑆 ← 2𝑥𝑆 forall 𝑆 ∋ 𝑒 until σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1.

Theorem: Algo 1 has cost O log 𝑚 OPT.

Proof:

If element 𝑒 fractionally uncovered:
increase objective by ≤ 2. Also, increase 𝑥𝑆∗ where 𝑆∗ is 𝑂𝑃𝑇 set covering 𝑒

𝑥𝑆∗ doubled at most log 𝑚 times

“charge” cost increase to 𝑆∗

1/8

1/8

1/32

1/4

1/4

1/16

1/2

1/2

1/8

solving set cover LP online (costs) min σ𝑆 𝑐 𝑆 𝑥𝑆

σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1 for all 𝑒

𝑥𝑆 ≥ 0
Algo 1: (general cost sets)

𝑥𝑆 ← 1/𝑚

When element e arrives with σ𝑆:𝑒∈𝑆 𝑥𝑆 < 1:

Repeatedly do 𝑥𝑆 ← 𝑥𝑆 1 +
1

𝑐 𝑆
forall 𝑆 ∋ 𝑒 until σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1.

Theorem: Algo 1 has cost O log 𝑚 OPT.

Proof:

If element 𝑒 fractionally uncovered:
increase objective by ≤ 2. Increase 𝑥𝑆∗ where 𝑆∗ is 𝑂𝑃𝑇 set covering 𝑒

𝑥𝑆∗ increased at most 𝑐(𝑆) log 𝑚 times

“charge” cost increase to 𝑆∗

𝑆

𝑐 𝑆 𝑥𝑆 1 +
1

𝑐 𝑆
=

𝑆

𝑐 𝑆 𝑥𝑆 +

𝑆

𝑥𝑆

new cost old cost old coverage

Assume: 𝒄 𝑺 ≤ 𝑶𝑷𝑻 for all sets S

remove assumption: “guess and double”

Maintain a “guess” 𝐺 for value of OPT, say 𝑂𝑃𝑇 ∈ (𝐺, 2𝐺]

Discard all sets with cost more than 2𝐺

Run 𝛼-competitive algorithm

If total cost incurred > 𝛼 (2𝐺), have proof that 𝑂𝑃𝑇 > 2𝐺

set 𝐺 ← 2𝐺

total cost = geometric sum, so at most 4𝛼 𝐺

summary min σ𝑆 𝑐 𝑆 𝑥𝑆

σ𝑆:𝑒∈𝑆 𝑥𝑆 ≥ 1 for all 𝑒

𝑥𝑆 ≥ 0

When element 𝑒 arrives:

Until 𝑒 fractionally covered:

increase its fractional coverage “multiplicatively”

Theorem: get fractional set cover of cost O log 𝑚 𝑂𝑃𝑇.

⇒ Theorem: Above+rand.round produces integer set cover with E[cost] O log 𝑓 log𝑛 𝑂𝑃𝑇.

Theorem: (being bit careful) fractional set cover of cost O log 𝑓 𝑂𝑃𝑇.

roadmap for today

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

[Prob Wednesday] How to go beyond worst-case?

When requests from known distribution

When requests from unknown distribution

Intro to Online Algorithms

Theorem: 𝑓-competitive using Pitt’s algo

Theorem: O(log m log n)-competitive using relax-and-round

lower bounds (1)

𝑛 elements

one set for every 𝑛 elements: 𝑚 = 𝑛
𝑛

= exp 𝑛 log𝑛

Input: 𝑛 random elements

𝑂𝑃𝑇 = 1

Until we pick ≤ 𝑛/2 sets, then Pr[next random element is uncovered] ≥ 1/2.

⇒ 𝔼 𝑐𝑜𝑠𝑡 ≥ 𝑛/2 =
log𝑚

log log𝑚

Lower bound holds against randomized algorithms.

Yao’s lemma

“exists distribution on inputs s.t.
best deterministic algo. has comp.ratio. ≥ 𝑏𝑙𝑎ℎ”

⇒ “best rand. algo. has comp.ratio. ≥ 𝑏𝑙𝑎ℎ”

Yao’s lemma

Det. Algos. (column player, minimizing)

In
st

an
ce

s
(r

ow
 p

la
ye

r,
m

ax
im

iz
in

g)

𝑀𝑖𝑗 = payoff to row player playing 𝐼𝑖
from column player playing 𝐴𝑗

Yao’s lemma

Det. Algos. (column player, minimizing)

In
st

an
ce

s
(r

ow
 p

la
ye

r,
m

ax
im

iz
in

g)

𝑀𝑖𝑗 = “payoff” of algorithm 𝐴𝑗
on input 𝐼𝑖

Yao’s lemma

Det. Algos. (column player, minimizing)

In
st

an
ce

s
(r

ow
 p

la
ye

r,
m

ax
im

iz
in

g)

𝑀𝑖𝑗 = “payoff” of algorithm 𝐴𝑗
on input 𝐼𝑖

𝑀𝑞 𝑖 = “payoff” of randomized algorithm 𝑞
on input 𝐼𝑖

Yao’s lemma

Det. Algos. (column player, minimizing)

In
st

an
ce

s
(r

ow
 p

la
ye

r,
m

ax
im

iz
in

g)

𝑀𝑖𝑗 = “payoff” of algorithm 𝐴𝑗
on input 𝐼𝑖

max
𝑖

𝑀𝑞 𝑖 = “payoff” of randomized algorithm 𝑞

on worst-case input 𝐼𝑖

Yao’s lemma

Det. Algos. (column player, minimizing)

In
st

an
ce

s
(r

ow
 p

la
ye

r,
m

ax
im

iz
in

g)

𝑀𝑖𝑗 = “payoff” of algorithm 𝐴𝑗
on input 𝐼𝑖

max
𝑖

𝑀𝑞 𝑖 = “payoff” of randomized algorithm 𝑞

on worst-case input 𝐼𝑖

Yao’s lemma

Det. Algos. (column player, minimizing)

In
st

an
ce

s
(r

ow
 p

la
ye

r,
m

ax
im

iz
in

g)

𝑀𝑖𝑗 = “payoff” of algorithm 𝐴𝑗
on input 𝐼𝑖

max
𝑖

𝑒𝑖
𝑇𝑀𝑞 = “payoff” of randomized algorithm 𝑞

on worst-case input 𝐼𝑖

Yao’s Lemma

min
𝑞~𝐶

max
𝑒𝑖

𝑒𝑖
𝑇𝑀𝑞

Yao’s Lemma

min
𝑞~𝐶

max
𝑒𝑖

𝑒𝑖
𝑇𝑀𝑞 ≥ max

𝑝~𝑅
min
𝑒𝑗

𝑝𝑇𝑀𝑒𝑗

“exists distrib 𝑝 on inputs s.t.
best det. algo. 𝐴𝑗 has comp.ratio. ≥ 𝑏𝑙𝑎ℎ”

“best rand. algo. has comp.ratio. ≥ 𝑏𝑙𝑎ℎ”

“for every rand. algo. there exists input 𝐼𝑖
which causes comp.ratio. ≥ 𝑏𝑙𝑎ℎ”

weak LP duality

in more detail…

⇒ max
𝒟

min
𝐴

𝔼𝐼∼𝒟[𝐴 𝐼] ≥ 𝑏𝑙𝑎ℎ

⇒ min
𝐴

max
𝐼

𝔼𝐴[𝐴 𝐼] ≥ 𝑏𝑙𝑎ℎ

for some 𝒟, have min
𝐴

𝔼𝐼∼𝒟[𝐴 𝐼] ≥ 𝑏𝑙𝑎ℎ “exists distrib on inputs s.t.
best det. algo. has comp.ratio. ≥ 𝑏𝑙𝑎ℎ”

“best rand. algo. has comp.ratio. ≥ 𝑏𝑙𝑎ℎ”

max
𝒟

min
𝐴

𝔼𝐼∼𝒟
𝐴 𝐼

𝑂𝑃𝑇(𝐼)
≥ 𝑏𝑙𝑎ℎ

max
𝒟

min
𝐴

𝔼𝐼∼𝒟[𝐴 𝐼]

𝔼𝐼∼𝒟[𝑂𝑃𝑇 𝐼]
≥ 𝑏𝑙𝑎ℎ

⇒ min
𝐴

max
𝐼

𝔼[𝐴 𝐼]

𝑂𝑃𝑇(𝐼)
≥ 𝑏𝑙𝑎ℎ

another set cover lower bound

Adversary: pick random leaf, give elements top-down. Sets = leaves, cover ancestors

For any deterministic algorithm 𝐴, expected cost = (𝑘 + 1)/2 = Ω(log 𝑚 + log 𝑛)

Now use Yao’s lemma: exists 𝒟 on instances s.t. any deterministic algo has competitive ratio ≥ 𝑏𝑙𝑎ℎ

⇒ for any randomized algo, exists instance s.t. has competitive ratio ≥ 𝑏𝑙𝑎ℎ

lower bounds (3)

Theorem [Feige/Korman]: every poly-time (randomized) online algo has competititve ratio Ω log𝑚 log𝑛 .

Theorem [Feige, Dinur/Steurer]: every poly-time offline (randomized) algo has approx. ratio Ω log𝑛 .

Different Perspective
on Fractional Algo

unweighted set cover

𝐾𝑡 = 𝑥 ≥ 0 𝑎𝑠, 𝑥 ≥ 1 ∀𝑠 ≤ 𝑡, 𝑥 ≥ 𝑥𝑡−1}

unweighted set cover

Request at time t:
𝑎𝑡 , 𝑥 ≥ 1 for some 𝑎𝑡 ∈ 0,1 𝑛.

Let 𝐾𝑡 = 𝑥 ≥ 0 𝑎𝑠, 𝑥 ≥ 1 ∀𝑠 ≤ 𝑡, 𝑥 ≥ 𝑥𝑡−1}

Output at time t: point 𝑥𝑡 ∈ 𝐾𝑡

Cost at time t: | 𝑥𝑡 − 𝑥𝑡−1| 1 = σ𝑖 | 𝑥𝑖
𝑡 − 𝑥𝑖

𝑡−1 |

Total cost until time t: | 𝑥𝑡| 1 = 𝟏, 𝑥𝑡

min
𝑥≥0

𝟏, 𝑥𝑡

𝑥1 + 𝑥2 + 𝑥3 + … + 𝑥𝑛 ≥ 1

𝑥2 + 𝑥3 + … + 𝑥𝑛 ≥ 1

𝑥3 + … + 𝑥𝑛 ≥ 1

𝑥𝑛 ≥ 1

an algorithm

𝑥0 = Τ1 𝑛 𝟏

𝑥𝑡 = argmin
𝑥∈𝐾𝑡

𝐷(𝑥 || 𝑥𝑡−1) where 𝐷(𝑝| 𝑞 = σ𝑖(𝑝𝑖 log Τ𝑝𝑖 𝑞𝑖 − 𝑝𝑖 + 𝑞𝑖)

Theorem #1:

For any algorithm giving 𝑦𝑡 ∈ 𝐾𝑡 𝑡, | 𝑥𝑡 | ≤ log 𝑛 ⋅ | 𝑦𝑡 | + 1.

Colloquially, 𝐴𝑙𝑔 ≤ log 𝑛 ⋅ 𝑂𝑝𝑡 + 1

an algorithm

𝑥0 = Τ1 𝑛 𝟏

𝑥𝑡 = argmin
𝑥∈𝐾𝑡

𝐷(𝑥 || 𝑥𝑡−1) where 𝐷(𝑝| 𝑞 = σ𝑖(𝑝𝑖 log Τ𝑝𝑖 𝑞𝑖 − 𝑝𝑖 + 𝑞𝑖)

Fact: 𝑥𝑡 = arg min
𝑥: 𝑎𝑡,𝑥 ≥1

𝐷(𝑥||𝑥𝑡−1)

Pf: the Lagrangian is σ𝑖 (𝑥𝑖
𝑡 log ൘

𝑥𝑖
𝑡

𝑥𝑖
𝑡−1 − 𝑥𝑖

𝑡 + 𝑥𝑖
𝑡−1) + 𝜆𝑡(1 − σ𝑖 𝑎𝑡𝑖𝑥𝑖

𝑡) for 𝜆𝑡 ≥ 0.

So KKT says: log ൘
𝑥𝑖
𝑡

𝑥𝑖
𝑡−1 − 𝜆𝑡𝑎𝑡𝑖 = 0.

⇒ 𝑥𝑖
𝑡 = 𝑥𝑖

𝑡−1 𝑒𝜆𝑡𝑎𝑡𝑖 .

Mult.weights!!! Since 𝑎𝑡𝑖 ≥ 0, 𝑥 monotone increasing and sat’s older constraints too.

unweighted set cover

𝐷(𝑝| 𝑞 =

𝑖

(𝑝𝑖 log ൗ
𝑝𝑖

𝑞𝑖 − 𝑝𝑖 + 𝑞𝑖)

Movements are projections according to 𝐷

Can be used to give
potential-function proof

The Price of Uncertainty

price of uncertainty

can we do better in non-worst-case settings?

Offline Online

Set Cover Θ(log 𝑛) Θ(log𝑚 log 𝑛)

that’s it for today…

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

[Wednesday] How to go beyond worst-case?

When requests from known distribution

When requests from unknown distribution

Intro to Online Algorithms

Theorem: 𝑓-competitive using Pitt’s algo

Theorem: O(log m log n)-competitive using relax-and-round

Theorem: O(log m + log n)-competitive using learn-or-cover

Theorem: O(log m + log n)-competitive using universal maps

lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

	Slide 1: Online Algos: Worst case and Beyond Introduction and Set Cover
	Slide 2: Online Algorithms
	Slide 3: Online Set Cover
	Slide 4: Online Load Balancing
	Slide 5: Online Convex Body Chasing
	Slide 6: max-K finding
	Slide 7: goals for this week
	Slide 8: lecture plan
	Slide 9: Two Online Models
	Slide 10: competitive analysis vs regret minimization
	Slide 11: two canonical online problems
	Slide 12: two canonical online problems
	Slide 13: online algorithms vs online learning
	Slide 14: Set Cover
	Slide 15: (minimum) set cover
	Slide 16: set cover as bipartite graph
	Slide 17: Online Set Cover
	Slide 18: online set cover: model choices
	Slide 19: Deterministic Fail
	Slide 20: Randomization: A New Hope
	Slide 21: Uniform Sampling (for unit costs)
	Slide 22: Proof
	Slide 23: Extension for general costs
	Slide 24: roadmap for today
	Slide 25: roadmap for today
	Slide 26: relax-and-round (offline)
	Slide 27: relax-and-round (offline)
	Slide 28: relax-and-round (online)
	Slide 29: solving set cover LP online
	Slide 30: solving set cover LP online
	Slide 31: solving set cover LP online (costs)
	Slide 32: remove assumption: “guess and double”
	Slide 33: summary
	Slide 34: roadmap for today
	Slide 35: lower bounds (1)
	Slide 36: Yao’s lemma
	Slide 37: Yao’s lemma
	Slide 38: Yao’s lemma
	Slide 39: Yao’s lemma
	Slide 40: Yao’s lemma
	Slide 41: Yao’s lemma
	Slide 42: Yao’s lemma
	Slide 43: Yao’s Lemma
	Slide 44: Yao’s Lemma
	Slide 46: in more detail…
	Slide 47: another set cover lower bound
	Slide 48: lower bounds (3)
	Slide 49: Different Perspective on Fractional Algo
	Slide 50: unweighted set cover
	Slide 51: unweighted set cover
	Slide 52: an algorithm
	Slide 53: an algorithm
	Slide 54: unweighted set cover
	Slide 55: The Price of Uncertainty
	Slide 56: price of uncertainty
	Slide 57: that’s it for today…
	Slide 58: lecture plan

