Online Algos: Worst case and Beyond

Introduction and Set Cover

Anupam Gupta (NYU) NYU | COURANT

Online Algorithms

Requests arrive over time, must be served immediately/irrevocably

Goal: (say) minimize cost of the decisions taken

of algorithm A:
cost of algorithm A on instance I
- Nnax _
worst case! instances | optimal cost to serve I

Want to minimize the competitive ratio.

[Graham 66, Sleator Tarjan 85]

Online Set Cover

Set system. n elements arrive over time, want to maintain a cover.

Goal: minimize cost of sets picked

51
of algorithm A:
cost of algorithm A on instance I
max -
instances I optimal cost to serve I
53

Want to minimize the competitive ratio.
52

[Alon Awerbuch Azar Buchbinder Naor O3]

Online Load Balancing

m machines. Jobs arrive over time, can be assigned to subset of machines.

Goal: minimize maximum load of machines

of algorithm A:

cost of algorithm A on instance I

max _ -
instances I optimal cost to serve I

Want to minimize the competitive ratio. -

[Azar Naor Rom 92]

Online Convex Body Chasing

Each time convex body K; appears. Must output x; € K;

Goal: minimize). | x; — x¢_1].

&

of algorithm A:

v

cost of algorithm A on instance I

max -
instances I optimal cost to serve I

Want to minimize the competitive ratio.

[Freedman Linial 94]

max-K finding

n people arrive over time, each has value v; -- can pick at most K

Goal: (say) sum of values of picked people
of algorithm A:
— cast o baggpitithnA Apnriststnoed |
instances I optipmalaidost@n sesvanice |

Want to mmimize: tihe competitive rathio.

[Gardner 60, Dynkin 63]

goals for this week

What are the results?
What are the techniques?
What are the worst-case limitations?

How to bypass them beyond worst-case?

Connections to other sequential decision-making models/algos?

lecture plan

Lecture #1: Set Cover (worst case)
Lecture #2: Set Cover (beyond worst case), Network design (both)
Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

Two Online Models

competitive analysis vs regret minimization

optimization in the face of uncertainty

“Reactive” settings “Predictive” settings

See request, take action Predict next step, then see reality

Compare to the best solution in hindsight

Obj: Competitive ratio Obj: Regret
CR = ALG/OPT regret = ALG - OPT
Typically OPT = best dynamic solution Typically OPT = best static solution

several techniques in common...

two canonical online problems

online linear optimization (OLO) “smoothed” OLO (aka uniform MTS)
eachdayt=1,2,...,T eachdayt=1,2,...,T
algorithm plays probability vector p, € A, sees cost vector ¢, € [0, 00)™
then sees cost vector ¢, € [0,1]" then algorithm plays probability vector p, € A,
loss at time tis €, = {(c;|p;) loss at time tis €, = (c.lps) + | vy — Pr_1ls
Theorem: algorithm that achieves Theorem: algorithm that achieves
Yo (eelpe) < A+ &) T, (eelp”) + 0 (57 e {celpe) + [pe = peei| < 0Qogn) (T (celpd) + Yelpi — pisal)

for every p* € A, for every pi,p5,..n7 € A,

two canonical online problems

online linear optimization (OLO) “smoothed” OLO (aka uniform MTS)
eachdayt=1,2,...,T eachdayt=1,2,...,T

algorithm plays probability vector p; € A, sees cost vector ¢; € [0, 00)™
then sees cost vector ¢, € [0,1]" then algorithm plays probability vector p, € A,
loss at time tis £, = (c;|p;) loss at time tis £, = (c:|p;) + | v — vy l4

Theorem: algorithm that achieves Theorem: algorithm that achieves

- logn ogn *
2t (celpe) < (L +) Xy (celp™) + 0(f) 2t (celpe) + |pe —peq| S (L +€) X (celpe) + 0 (1 f)Zt bt — Pe-1l

for every p* € A, for every pi,ps, ..pr € A,

[Blum Burch Kalai 99]

online algorithms vs online learning

optimization in the face of uncertainty

“Reactive” settings “Predictive” settings

See request, take action Predict next step, then see reality

Compare to the best solution in hindsight

Obj: Competitive ratio Obj: Regret
CR = ALG/OPT regret = ALG - OPT
Typically OPT = best dynamic solution Typically OPT = best static solution

several techniques in common...

Set Cover

(minimum) set cover

|'U| = n =# elements
|F| = m =# sets

[= max #(sets containing e)
e

XXX IR IIgIg

Goal: pick smallest # sets to cover all elements.

“weighted” problem: sets have costs, minimize cost of cover

set cover as bipartite graph

<f
S1 (21
. \\ %
2 (%,
PSSR .,
m sets 3 /"\ : N elements
54 (2
55 Ve

Online Set Cover

S3 Z U3
m sets \ N elements
54 ’ 22/

online set cover: model choices

/ Including order of elements

Adversary fixes (U, F) and set costs (if applicable)

Algo sees elements of U one by one

When element e seen, then find out which sets contain e

If e not covered by current set cover, pick set(s) to cover e

Instance is not “adaptive” to decisions of algorithm (relevant if randomized algo)

Called “oblivious adversary”.

Deterministic Fail

%1

74
g/

)
N

. T v
F Vs U
m sets . %//) N elements
S: / ALG =n,0PT =1

(A(n) competitive

Randomization: A New Hope

%1

|
4

74
g/

KT

N elements

N
NS

S5

S3
m sets
Sy %
6

What's a good strategy for randomizing?

Uniform Sampling (for unit costs)

f = max-degree
of any element

S1 \’ {// :1

W

// .

If e not covered

v

Pick uniformly random set covering e

Theorem [Pitt 75]: f-competitive

Proof

f = max-degree
of any element

i[Geom(1/f)] = f

Theorem [Pitt 75]: f-competitive

Extension for general costs

f = max-degree
of any element

S1 \' {// :1

W

// .

If e not covered

v

PicksetS3e w.p. « 1/c(S)

Theorem [Pitt 75]: f-competitive

roadmap for today

Intro to Online Algorithms

Set cover Theorem: f-competitive using Pitt's algo
Online algo (using relax-and-round)
Some (almost) matching hardness results

|[Prob Wednesday] How to go beyond worst-case?
When requests from known distribution

When requests from unknown distribution

roadmap for today

Intro to Online Algorithms

Set cover Theorem: f-competitive using Pitt's algo
Online algo (using relax-and-round)
Some (almost) matching hardness results

|[Prob Wednesday] How to go beyond worst-case?
When requests from known distribution

When requests from unknown distribution

relax-and-round (offline)

Intcger linear program for set cover: min)¢ c(S) xg

YeoecXs = 1 forall elements e

Xe £ 1U,1} “relax the problem” LP = OPT

XSEO

[folklore? Johnson?]

relax-and-round (offline)

Intcger linear program for set cover: min)¢ c(S) xg

YeoecXs = 1 forall elements e

Xe £ 1U,1} “relax the problem” LP = OPT

XSZO

Randomized rounding: pick each set with probability p¢ = min{xsInn, 1}

Alteration: For each some element not yet covered, pick cheapest set covering it.

Prle not covered by RR] = Ig.ces(1 — ps) < e~ 2sieesPs < g™ MM 2sees*s < 1/n.

Expected cost < LP - Inn +)., 1/ - cheapest set coveringe < LP(1 + Inn).

[folklore? Johnson?]

relax-and-round (online)

Intcger linear program for set cover: min)¢ c(S) xg

YeoecXs = 1 forall elements e

Xe £ 1U,1} “relax the problem” LP = OPT

XSZO

Solving: How to solve LP as elements arrive? We'll see soon.

N.b. want x¢ values to only increase (captures online nature)

Online rounding: at each timestep, buy each set S w.p. min(AxsInn,1)

Same analysis: total cost O(Inn) LP.

[Alon Awerbuch Azar Buchbinder Naor 03]

solving set cover LP online min T e(5) %

dseesXs = 1 foralle

xs =0

When element e arrives:
Until e fractionally covered

increase its fractional coverage “multiplicatively”

Theorem 1: get fractional set cover of cost O(logm) OPT.

= Theorem 2: Above+rand.round produces integer set cover with E[cost] O(logmlogn) OPT.

solving set cover LP online min Ss s

Xg = 0
Algo 1: (unit cost sets)
x¢ < 1/mforall S
When element e arrives with) ¢..co xs < 1: Ve
Repeatedly do x¢ « 2x forall S 3 e until) ¢..co x5 = 1.
1/8
Theorem: Algo 1 has cost O(log m) OPT.
@
Proof:
@
If element e fractionally uncovered:
increase objective by < 2. Also, increase x¢+ Where S* is OPT set covering e
|

“charge” cost increase to S*

x¢+ doubled at most log m times 112%

for all e

solving set cover LP online (costs) min Z5¢(9) %

dseesXs = 1 foralle

xs =0

Algo 1: (general cost sets)

Xg — 1 /m Assume: c(S) < OPT for all sets S

When element e arrives with) ¢..cq x5 < 1:

1

) forall S 3 e until) ¢.,ec xs = 1.

c(S)
\ new cost old cost old coverage
|
2 c(S) xg (1 + —) = 2 c(S)xs + Z X

Repeatedly do x¢ < xg (1 |

Theorem: Algo 1 has cost O(log m) OPT. c(S))

S S S

Proof:

If element e fractionally uncovered:
Increase objective by < 2. Increase x¢+ where S* is OPT set covering e

“charge” cost increase to S*

x¢+ Increased at most c(S) log m times

remove assumption: “guess and double”

Maintain a "guess” G for value of OPT, say OPT € (G, 2G]

Discard all sets with cost more than 2G
Run a-competitive algorithm
If total cost incurred > a (2G), have proof that OPT > 2G

set G « 2G

total cost = geometric sum, so at most 4a G

Summary min)¢ c(S) xg

dseesXs = 1 foralle

xs =0

When element e arrives:
Until e fractionally covered:

increase its fractional coverage “multiplicatively”

Theorem: get fractional set cover of cost O(logm) OPT.
Theorem: (being bit careful) fractional set cover of cost O(log) OPT.

= Theorem: Above+rand.round produces integer set cover with E[cost] O(log f logn) OPT.

roadmap for today

Intro to Online Algorithms

Set cover Theorem: f-competitive using Pitt’s algo
Online algo (using relax-and-round) Theorem: O(log m log n)-competitive using relax-and-round
Some (almost) matching hardness results

|[Prob Wednesday] How to go beyond worst-case?
When requests from known distribution

When requests from unknown distribution

lower bounds (1)

n elements

one set for every \/n elements: m = (\}"ﬁ) = exp(y/nlogn)

Input: v/n random elements
OPT =1
Until we pick < /n/2 sets, then Pr[next random element is uncovered | > 1/2.

logm

= E[cost] = n/2 =

loglogm

Lower bound holds against randomized algorithms.

Yao’'s lemma

“exists distribution on inputs s.t.
best deterministic algo. has comp.ratio. > blah”

= “best rand. algo. has comp.ratio. > blah”

Yao’'s lemma

Det. Algos. (column player, minimizing)

Instances (row player, maximizing)

M;; = payoff to row player playing I;
from column player playing A;

Yao’'s lemma

Det. Algos. (column player, minimizing)

Instances (row player, maximizing)

M;; = “payoff” of algorithm 4;
on input I;

Yao’'s lemma

Det. Algos. (column player, minimizing)

Instances (row player, maximizing)

(Mq); = “payoff” of randomized algorithm g M;; = “payoff” of algorithm 4;
on input I; on input I;

Yao’'s lemma

Det. Algos. (column player, minimizing)

Instances (row player, maximizing)

miax(Mq)l- = “payoff” of randomized algorithm g M;; = “payoff” of algorithm 4;
on worst-case input I; on input /;

Yao’s lemma

Det. Algos. (column player, minimizing)

Instances (row player, maximizing)

miax(Mq)l- = “payoff” of randomized algorithm g M;; = “payoff” of algorithm 4;
on worst-case input I; on input /;

Yao’'s lemma

Det. Algos. (column player, minimizing)

Instances (row player, maximizing)

max e; Mq = “payoff” of randomized algorithm g M;; = “payoff” of algorithm A;
l
on worst-case input I; on Input /;

Yao’'s Lemma

min max e; Mq
q~C e

Yao’'s Lemma

min max e; Mg = maxminp’ Me;
q~C e; P~R e;

“for every rand. algo. there exists input I; “exists distrib p on inputs s.t.
which causes comp.ratio. > blah” best det. algo. A; has comp.ratio. > blah”

“best rand. algo. has comp.ratio. > blah”

weak LP duality

INn more detail...

for some D, have minE,_,[A(I) | = blah “exists distrib on inputs s.t. | ”
A best det. algo. has comp.ratio. = blah

= mgxmAin E,.p[A(I) | = blah

= mAin max E,[A(I) | = blah

“best rand. algo. has comp.ratio. > blah”

in [E -A(I)->blh
max min Ity = a
DA P |OPT(D) | E[A(D)]
] = min max > blah
CEp AD] = bia A 1 OPT()
5 A E,_o[0OPT(D] —

another set cover lower bound

Adversary: pick random leaf, give elements top-down. Sets = leaves, cover ancestors

For any deterministic algorithm A, expected cost = (k + 1)/2 = Q(log m + log n)

Now use Yao's lemma: exists D on instances s.t. any deterministic algo has competitive ratio > blah

= for any randomized algo, exists instance s.t. has competitive ratio = blah

lower bounds (3)

Theorem [Feige/Korman]: every poly-time (randomized) online algo has competititve ratio Q(logmlogn).

Theorem [Feige, Dinur/Steurer]: every poly-time offline (randomized) algo has approx. ratio Q(logn).

!....!F!!._!F!
Iotco”ﬂuu
[oeeeTFeTF1E] [eeeeTr1F1F]
Lo lo]l]] ‘ ‘ Lo [l l]]
SRR
O O O O==

= 1FIFIF]
Leeee fee]le]e] [eeeeTlTF10] oo leTF1F]
eeeefiilih feeen ieefibifl

Different Perspective
on Fractional Algo

unweighted set cover

K,={x>0]|(a%x)=>1Vs <t, x > xt1)

W

.\\\

unweighted set cover

Request at time t:
(at,x) > 1 for some a* € {0,1}".
m>i(r)1 (1, xt)
= {x > S x) > < > xt-1 x_
let K, ={x>20|(a’,x)=>21Vs<t, x=x""} Xy 4 %0 X + o x> 1

Output at time t: point x* € K; Xy + X3+ o+ Xy =1

X3 + ... + xn 2 1
- . —1 _ t t—1
Costattimet: || xt — x|, =X, | xf — x] X, =1

Total cost until time t: ||xf|]; = (1, x%)

an algorithm

XO — 1/n 1
xt = argmin D(x || x*7) where D(pllq) = Xi(pi log "/q; — pi + q:)
Theorem #1.:

For any algorithm giving {y* € K,},, [|xt|] < logn - ||yt]| + 1.

Colloquially, Alg <logn-Opt + 1

an algorithm

XO — 1/n 1
xt = argmin D (x || xth where D(pllq) = X;(p;log */q; — pi + ;)

Fact: x! =arg min D(x]||xt™1)
x{at x)=1

t
Pf: the Lagrangian is }}; (x; logxi/x,;_1 —x; +x;)+ A1 =3, a,xf) for A, = 0.
r
So KKT says: l()gx"/x!;_1 — Aray; = 0.
= xf = x!7t eMtau

Mult.weights!!! Since a;; = 0, x monotone increasing and sat’s older constraints too.

unweighted set cover

D(pllq) = 2(1% log pi/qi —pi +qi)
L

Movements are projections according to D

Can be used to give
/ potential-function proof

.\\\ ‘

The Price of Uncertainty

price of uncertainty

Offline Online

Set Cover O(logn) O(logmlogn)

can we do better in non-worst-case settings?

that’s it for today...

Intro to Online Algorithms

Set cover Theorem: f-competitive using Pitt’s algo
Online algo (using relax-and-round) Theorem: O(log m log n)-competitive using relax-and-round

Some (almost) matching hardness results

lecture plan

Lecture #1: Set Cover (worst case)
Lecture #2: Set Cover (beyond worst case), Network design (both)
Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

	Slide 1: Online Algos: Worst case and Beyond Introduction and Set Cover
	Slide 2: Online Algorithms
	Slide 3: Online Set Cover
	Slide 4: Online Load Balancing
	Slide 5: Online Convex Body Chasing
	Slide 6: max-K finding
	Slide 7: goals for this week
	Slide 8: lecture plan
	Slide 9: Two Online Models
	Slide 10: competitive analysis vs regret minimization
	Slide 11: two canonical online problems
	Slide 12: two canonical online problems
	Slide 13: online algorithms vs online learning
	Slide 14: Set Cover
	Slide 15: (minimum) set cover
	Slide 16: set cover as bipartite graph
	Slide 17: Online Set Cover
	Slide 18: online set cover: model choices
	Slide 19: Deterministic Fail
	Slide 20: Randomization: A New Hope
	Slide 21: Uniform Sampling (for unit costs)
	Slide 22: Proof
	Slide 23: Extension for general costs
	Slide 24: roadmap for today
	Slide 25: roadmap for today
	Slide 26: relax-and-round (offline)
	Slide 27: relax-and-round (offline)
	Slide 28: relax-and-round (online)
	Slide 29: solving set cover LP online
	Slide 30: solving set cover LP online
	Slide 31: solving set cover LP online (costs)
	Slide 32: remove assumption: “guess and double”
	Slide 33: summary
	Slide 34: roadmap for today
	Slide 35: lower bounds (1)
	Slide 36: Yao’s lemma
	Slide 37: Yao’s lemma
	Slide 38: Yao’s lemma
	Slide 39: Yao’s lemma
	Slide 40: Yao’s lemma
	Slide 41: Yao’s lemma
	Slide 42: Yao’s lemma
	Slide 43: Yao’s Lemma
	Slide 44: Yao’s Lemma
	Slide 46: in more detail…
	Slide 47: another set cover lower bound
	Slide 48: lower bounds (3)
	Slide 49: Different Perspective on Fractional Algo
	Slide 50: unweighted set cover
	Slide 51: unweighted set cover
	Slide 52: an algorithm
	Slide 53: an algorithm
	Slide 54: unweighted set cover
	Slide 55: The Price of Uncertainty
	Slide 56: price of uncertainty
	Slide 57: that’s it for today…
	Slide 58: lecture plan

