Online Algos: Worst case and Beyond Introduction and Set Cover

Anupam Gupta (NYU)

Online Algorithms

Requests arrive over time, must be served immediately/irrevocably

Goal: (say) minimize cost of the decisions taken

Competitive ratio of algorithm A:

cost of algorithm A on instance I optimal cost to serve I

worst case

max instances I

Want to minimize the competitive ratio.

[Graham 66, Sleator Tarjan 85]

Online Set Cover

Set system. n elements arrive over time, want to maintain a cover.

Goal: minimize cost of sets picked

Competitive ratio of algorithm A:

cost of algorithm *A* on instance *I* optimal cost to serve I

max instances I

Want to minimize the competitive ratio.

[Alon Awerbuch Azar Buchbinder Naor 03]

Online Load Balancing

Goal: minimize maximum load of machines

Competitive ratio of algorithm A:

cost of algorithm A on instance I optimal cost to serve I

max instances l

Want to minimize the competitive ratio.

m machines. Jobs arrive over time, can be assigned to subset of machines.

Online Convex Body Chasing

Each time convex body K_t appears. Must output $x_t \in K_t$

Goal: minimize $\sum_t |x_t - x_{t-1}|$.

Competitive ratio of algorithm A:

cost of algorithm A on instance I optimal cost to serve I

max instances I

Want to minimize the competitive ratio.

[Freedman Linial 94]

max-K finding

n people arrive over time, each has value v_i -- can pick at most K

Goal: (say) maximize sum of values of picked people

Competitive ratio of algorithm A:

vaste of a leggoit it thm A to print at sta ace & I optiminal alos to a sestance I

max instances I

Want to maximize the competitive ratio.

[Gardner 60, Dynkin 63]

goals for this week

What are the results?

What are the techniques?

What are the worst-case limitations?

How to bypass them beyond worst-case?

Connections to other sequential decision-making models/algos?

lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

Two Online Models

competitive analysis vs regret minimization

optimization in the face of uncertainty

"Reactive" settings

See request, take action

Compare to the best solution in hindsight

Obj: Competitive ratio

CR = ALG/OPT

Typically OPT = best dynamic solution

several techniques in common...

"Predictive" settings

Predict next step, then see reality

Obj: Regret

regret = ALG - OPT

Typically OPT = best static solution

two canonical online problems

online linear optimization (OLO)

each day t = 1, 2, ..., T

algorithm plays probability vector $p_t \in \Delta_n$

then sees cost vector $c_t \in [0,1]^n$

loss at time t is $\ell_t = \langle c_t | p_t \rangle$

Theorem: algorithm that achieves

 $\sum_{t} \langle c_t | p_t \rangle \leq (1 + \varepsilon) \sum_{t} \langle c_t | p^* \rangle + O\left(\frac{\log n}{\varepsilon}\right)$ for every $p^* \in \Delta_n$ "smoothed" OLO (aka uniform MTS)

each day t = 1, 2, ..., T

sees cost vector $c_t \in [0, \infty)^n$

then algorithm plays probability vector $p_t \in \Delta_n$

loss at time t is $\ell_t = \langle c_t | p_t \rangle + | p_t - p_{t-1} |_1$

Theorem: algorithm that achieves

 $\sum_{t} \langle c_{t} | p_{t} \rangle + | p_{t} - p_{t-1} | \leq O(\log n) \left(\sum_{t} \langle c_{t} | p_{t}^{*} \rangle + \sum_{t} | p_{t}^{*} - p_{t-1}^{*} | \right)$ for every $p_{1}^{*}, p_{2}^{*}, \dots p_{T}^{*} \in \Delta_{n}$

two canonical online problems

online linear optimization (OLO)

each day t = 1, 2, ..., T

algorithm plays probability vector $p_t \in \Delta_n$

then sees cost vector $c_t \in [0,1]^n$

loss at time t is $\ell_t = \langle c_t | p_t \rangle$

Theorem: algorithm that achieves

 $\sum_{t} \langle c_t | p_t \rangle \le (1 + \varepsilon) \sum_{t} \langle c_t | p^* \rangle + O\left(\frac{\log n}{\varepsilon}\right)$ for every $p^* \in \Delta_n$

"smoothed" OLO (aka uniform MTS)

each day t = 1, 2, ..., T

sees cost vector $c_t \in [0,\infty)^n$

then algorithm plays probability vector $p_t \in \Delta_n$

loss at time t is $\ell_t = \langle c_t | p_t \rangle + | p_t - p_{t-1} |_1$

Theorem: algorithm that achieves

 $\sum_{t} \langle c_t | p_t \rangle + | p_t - p_{t-1} | \leq (1+\varepsilon) \sum_{t} \langle c_t | p_t^* \rangle + O\left(\frac{\log n}{\varepsilon}\right) \sum_{t} | p_t^* - p_{t-1}^* |$ for every $p_1^*, p_2^*, ..., p_T^* \in \overline{\Delta}_n$

[Blum Burch Kalai 99]

online algorithms vs online learning

optimization in the face of uncertainty

"Reactive" settings

See request, take action

Compare to the best solution in hindsight

Obj: Competitive ratio

CR = ALG/OPT

Typically OPT = best dynamic solution

several techniques in common...

"Predictive" settings

Predict next step, then see reality

Obj: Regret

regret = ALG - OPT

Typically OPT = best static solution

(minimum) set cover

Goal: pick smallest # sets to cover all elements.

"weighted" problem: sets have costs, minimize cost of cover

$|\mathcal{U}| = n = \#$ elements $|\mathcal{F}| = m = \#$ sets

 $f = \max \#(\text{sets containing e})$

set cover as bipartite graph

F m sets

U n elements

Online Set Cover

F m sets

U n elements

online set cover: model choices

Including order of elements

Adversary fixes $(\mathcal{U}, \mathcal{F})$ and set costs (if applicable)

Algo sees elements of \mathcal{U} one by one

When element *e* seen, then find out which sets contain *e*

If *e* not covered by current set cover, pick set(s) to cover *e*

Instance is not "adaptive" to decisions of algorithm (relevant if randomized algo) Called "oblivious adversary".

Deterministic Fail

 \mathcal{F} *m* sets

$\Omega(n)$ competitive

Randomization: A New Hope

F m sets

 v_1

 v_2

 v_3

U n elements

What's a good strategy for randomizing?

Uniform Sampling (for unit costs)

$f = \max$ -degree of any element

v_2 v_3

If *e* not covered Pick uniformly random set covering *e* Theorem [Pitt 75]: *f*-competitive

$f = \max$ -degree of any element

Theorem [Pitt 75]: *f*-competitive

Extension for general costs

$f = \max$ -degree of any element

 v_3

If *e* not covered Pick set $S \ni e$ w.p. $\propto 1/c(S)$ Theorem [Pitt 75]: *f*-competitive

roadmap for today

Intro to Online Algorithms

Set cover

Online algo (using relax-and-round) Some (almost) matching hardness results [Prob Wednesday] How to go beyond worst-case? When requests from known distribution When requests from **unknown** distribution Theorem: *f*-competitive using Pitt's algo

roadmap for today

Intro to Online Algorithms

Set cover

Online algo (using relax-and-round) Some (almost) matching hardness results [Prob Wednesday] How to go beyond worst-case? When requests from known distribution When requests from **unknown** distribution Theorem: *f*-competitive using Pitt's algo

relax-and-round (offline)

Integer linear program for set cover:

- min $\sum_{S} c(S) x_{S}$
 - for all elements e $\sum_{S:e\in S} x_S \geq 1$
 - $x_{s} \in \{0,1\}$ $LP \leq OPT$ "relax the problem" $x_S \ge 0$

relax-and-round (offline)

Integer linear program for set cover:

Randomized rounding: pick each set with probability $p_S = \min\{x_S \ln n, 1\}$ Alteration: For each some element not yet covered, pick cheapest set covering it. $\Pr[\text{e not covered by RR}] = \prod_{S:e \in S} (1 - p_S) \le e^{-\sum_{S:e \in S} p_S} \le e^{-\ln n \sum_{S:e \in S} x_S} \le 1/n.$

Expected cost $\leq LP \cdot \ln n + \sum_{e} \frac{1}{n} \cdot \text{cheapest set covering } e \leq LP(1 + \ln n).$

- min $\sum_{S} c(S) x_{S}$
 - for all elements *e* $\sum_{S:e\in S} x_S \geq 1$
 - $x_{c} \in \{0,1\}$ $LP \leq OPT$ "relax the problem" $x_S \ge 0$

[folklore? Johnson?]

relax-and-round (online)

Integer linear program for set cover:

Solving: How to solve LP as elements arrive? We'll see soon. N.b. want x_s values to only increase (captures online nature)

Online rounding: at each timestep, buy each set S w.p. min($\Delta x_{s} \ln n$, 1) total cost $O(\ln n) LP$. Same analysis:

min $\sum_{S} c(S) x_{S}$

- for all elements *e* $\sum_{S:e\in S} x_S \geq 1$
 - $x_{c} \in \{0,1\}$ $LP \leq OPT$ "relax the problem" $x_S \ge 0$

[Alon Awerbuch Azar Buchbinder Naor 03]

solving set cover LP online

When element *e* arrives: Until *e* fractionally covered increase its fractional coverage "multiplicatively"

Theorem 1: get fractional set cover of cost $O(\log m) OPT$.

 \Rightarrow Theorem 2: Above+rand.round produces integer set cover with E[cost] O(log m log n) OPT.

- min $\sum_{S} c(S) x_{S}$
 - for all e $\sum_{S:e\in S} x_S \geq 1$

 $x_S \ge 0$

solving set cover LP online

Algo 1: (unit cost sets)

 $x_S \leftarrow 1/m$ for all *S* When element e arrives with $\sum_{S:e \in S} x_S < 1$: Repeatedly do $x_S \leftarrow 2x_S$ for all $S \ni e$ until $\sum_{S:e \in S} x_S \ge 1$.

Theorem: Algo 1 has cost $O(\log m)$ OPT.

Proof:

If element *e* fractionally uncovered: increase objective by ≤ 2 . Also, increase x_{S^*} where S^* is *OPT* set covering *e* "charge" cost increase to S^* x_{S^*} doubled at most log *m* times

solving set cover LP online (costs)

Algo 1: (general cost sets)

 $x_{S} \leftarrow 1/m$ When element e arrives with $\sum_{S:e\in S} x_S < 1$: Repeatedly do $x_S \leftarrow x_S \left(1 + \frac{1}{c(S)}\right)$ for all $S \ni e$ until $\sum_{S:e \in S} x_S \ge 1$.

Theorem: Algo 1 has cost $O(\log m)$ OPT.

Proof:

If element *e* fractionally uncovered: increase objective by ≤ 2 . Increase x_{S^*} where S^* is *OPT* set covering *e* "charge" cost increase to S^* x_{S^*} increased at most $c(S) \log m$ times

remove assumption: "guess and double"

Maintain a "guess" *G* for value of OPT, say $OPT \in (G, 2G]$ Discard all sets with cost more than 2*G* Run α -competitive algorithm If total cost incurred > α (2*G*), have proof that OPT > 2Gset $G \leftarrow 2G$

total cost = geometric sum, so at most $4\alpha G$

summary

When element *e* arrives: Until *e* fractionally covered: increase its fractional coverage "multiplicatively"

Theorem: get fractional set cover of cost $O(\log m) OPT$. **Theorem:** (being bit careful) fractional set cover of cost $O(\log f) OPT$. \Rightarrow Theorem: Above+rand.round produces integer set cover with E[cost] O(log f log n) OPT.

$\min \sum_{S} c(S) x_{S}$

for all e $\sum_{S:e\in S} x_S \geq 1$

 $x_S \ge 0$

roadmap for today

Intro to Online Algorithms

Set cover

Online algo (using relax-and-round) **Some (almost) matching hardness results** [Prob Wednesday] How to go beyond worst-case? When requests from known distribution When requests from **unknown** distribution Theorem: *f*-competitive using Pitt's algo

Theorem: O(log m log n)-competitive using relax-and-round

lower bounds (1)

n elements

one set for every \sqrt{n} elements: $m = \binom{n}{\sqrt{n}} = \exp(\sqrt{n}\log n)$

Input: \sqrt{n} random elements

OPT = 1

Until we pick $\leq \sqrt{n}/2$ sets, then Pr[next random element is uncovered] $\geq 1/2$.

 $\Rightarrow \mathbb{E}[cost] \ge \sqrt{n}/2 = \frac{\log m}{\log \log m}$

Lower bound holds against randomized algorithms.

"exists distribution on inputs s.t.

 \Rightarrow "best rand. algo. has comp.ratio. $\geq blah$ "

best deterministic algo. has comp.ratio. $\geq blah$ "

Det. Algos. (column player, minimizing)

Instances (row player, maximizing)

 M_{ij} = payoff to row player playing I_i from column player playing A_j

Det. Algos. (column player, minimizing)

Instances (row player, maximizing)

 $(Mq)_i$ = "payoff" of randomized algorithm q on input I_i

 $\max_{i}(Mq)_{i}$ = "payoff" of randomized algorithm q on worst-case input I_i

 $\max_{i}(Mq)_{i}$ = "payoff" of randomized algorithm q on worst-case input I_i

 $\max_{i} e_{i}^{T} M q = "payoff" of randomized algorithm q$ on worst-case input I_i

$\min_{q \sim C} \max_{e_i} e_i^T M q$

"for every rand. algo. there exists input I_i which causes comp.ratio. $\geq blah$ "

"best rand. algo. has comp.ratio. $\geq blah$ "

 $\min_{q \sim C} \max_{e_i} e_i^T Mq \geq \max_{p \sim R} \min_{e_i} p^T Me_j$

"exists distrib p on inputs s.t. best det. algo. A_i has comp.ratio. $\geq blah$ "

weak LP duality

in more detail...

for some \mathcal{D} , have $\min_{A} \mathbb{E}_{I \sim \mathcal{D}}[A(I)] \ge blah$ $\Rightarrow \max_{\mathcal{D}} \min_{A} \mathbb{E}_{I \sim \mathcal{D}}[A(I)] \ge blah$ $\Rightarrow \min_{A} \max_{I} \mathbb{E}_{A}[A(I)] \ge blah$

"best rand. algo. has comp.ratio. $\geq blah$ "

 $\max_{\mathcal{D}} \min_{A} \mathbb{E}_{I \sim \mathcal{D}} \left[\frac{A(I)}{OPT(I)} \right] \geq blah$ $\max_{\mathcal{D}} \min_{A} \frac{\mathbb{E}_{I \sim \mathcal{D}} [A(I)]}{\mathbb{E}_{I \sim \mathcal{D}} [OPT(I)]} \geq blah$

"exists distrib on inputs s.t. best det. algo. has comp.ratio. $\geq blah$ "

another set cover lower bound

Adversary: pick random leaf, give elements top-down. Sets = leaves, cover ancestors

For any deterministic algorithm A, expected cost = $(k + 1)/2 = \Omega(\log m + \log n)$

Now use Yao's lemma: exists \mathcal{D} on instances s.t. any deterministic algo has competitive ratio $\geq blah$

 \Rightarrow for any randomized algo, exists instance s.t. has competitive ratio $\geq blah$

lower bounds (3)

Theorem [Feige/Korman]: every poly-time (randomized) online algo has competitive ratio $\Omega(\log m \log n)$.

Theorem [Feige, Dinur/Steurer]: every poly-time offline (randomized) algo has approx. ratio $\Omega(\log n)$.

••••	
•••	

Different Perspective on Fractional Algo

unweighted set cover

$\overline{K_t} = \{x \ge 0 \mid \langle a^s, x \rangle \ge 1 \forall s \le t, \qquad x \ge x^{t-1}\}$

unweighted set cover

Request at time t: $\langle a^t, x \rangle \ge 1$ for some $a^t \in \{0,1\}^n$. Let $K_t = \{x \ge 0 \mid \langle a^s, x \rangle \ge 1 \forall s \le t, \ x \ge x^{t-1}\}$ Output at time t: point $x^t \in K_t$ Cost at time t: $||x^t - x^{t-1}||_1 = \sum_i |x_i^t - x_i^{t-1}|$ Total cost until time t: $||x^t||_1 = \langle \mathbf{1}, x^t \rangle$

 $\min_{x \ge 0} \langle \mathbf{1}, x^t \rangle$ $x_1 + x_2 + x_3 + \dots + x_n \ge 1$ $x_2 + x_3 + \dots + x_n \ge 1$ $x_3 + \dots + x_n \ge 1$ $x_n \ge 1$

an algorithm

$$x^0 = 1/n \mathbf{1}$$

$$x^t = \arg\min_{x \in K_t} D(x \mid \mid x^{t-1})$$

Theorem **#1**:

For any algorithm giving $\{y^t \in K_t\}_t$,

Colloquially, $Alg \leq \log n \cdot Opt + 1$

where $D(p||q) = \sum_{i} (p_i \log \frac{p_i}{q_i} - p_i + q_i)$

$||x^t|| \le \log n \cdot ||y^t|| + 1.$

an algorithm

$$x^0 = 1/n \mathbf{1}$$

 $x^t = \arg\min_{x \in K_t} D(x \mid |x^{t-1})$

Fact:
$$x^{t} = \arg \min_{x:\langle a^{t}, x \rangle \geq 1} D(x||x^{t-1})$$

Pf: the Lagrangian is $\sum_{i} (x_{i}^{t} \log \frac{x_{i}^{t}}{x_{i}^{t-1}} - x_{i}^{t} + x_{i}^{t})$
So KKT says: $\log \frac{x_{i}^{t}}{x_{i}^{t-1}} - \lambda_{t} a_{ti} = 0$
 $\Rightarrow x_{i}^{t} = x_{i}^{t-1} e^{\lambda_{t} a_{ti}}.$

Mult.weights!!! Since $a_{ti} \ge 0$, x monotone increasing and sat's older constraints too.

where $D(p||q) = \sum_{i} (p_i \log \frac{p_i}{q_i} - p_i + q_i)$

$(t^{-1}) + \lambda_t (1 - \sum_i a_{ti} x_i^t)$ for $\lambda_t \ge 0$.

).

unweighted set cover

$$D(p||q) = \sum_{i} (p_i \log \frac{p_i}{q_i} - p_i + q_i)$$

Movements are projections according to *D*

Can be used to give potential-function proof

The Price of Uncertainty

price of uncertainty

Set Cover

 $\Theta(\log n)$

can we do better in non-worst-case settings?

Offline

Online

 $\Theta(\log m \log n)$

that's it for today...

Intro to Online Algorithms

Set cover

Online algo (using relax-and-round) Some (almost) matching hardness results [Wednesday] How to go beyond worst-case? When requests from known distribution

When requests from unknown distribution

Theorem: *f*-competitive using Pitt's algo

Theorem: O(log m log n)-competitive using relax-and-round

Theorem: $O(\log m + \log n)$ -competitive using universal maps

Theorem: O(log m + log n)-competitive using learn-or-cover

d

)S

er

lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

