
Online Algos: Old and New
Set Cover: Beyond the Worst case

Anupam Gupta (NYU)



analysis of algorithms

Ideally: want to get algorithms that are good for 

worst-case and best-case and …. all cases.

Worst-case: robustness when data is unpredictable

Best-case: efficiency when data follows anticipated patterns

How to model these? 

let’s see glimpse of ideas/techniques in context of online algos



price of uncertainty

can we do better in non-worst-case settings?

Offline Online

Set Cover Θ(log 𝑛) Θ(log𝑚 log 𝑛)



going beyond the worst case

Ways to model non-worst-case instances

1. special structure to the instances

2. requests are “predictable”

3. arrival order is not worst-case?

4. train NN to find patterns, give predictions

5. …



Known Input Distributions



roadmap for today

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

How to go beyond worst-case? 

When requests from known distribution

When requests from unknown distribution

Intro to Online Algorithms

Theorem: 𝑓-competitive using Pitt’s algo

Theorem: O(log m log n)-competitive using relax-and-round



Stochastic Model

Given: set system (U, ℱ), possibly with set cost c(S).

Request sequence 𝜎 = {x1, x2, …, xk} arrives online.

Each xt is drawn uniformly at random from U.

On seeing request  xt that is yet uncovered, output some set St covering it.

Want to minimize the E[ cost of sets output on 𝜎 ]
again, compared to E[ cost of optimal solution for 𝜎 ]

In general, element 𝑒 ∈ 𝑈
drawn w.p. 𝑝𝑒

[Grandoni G. Leonardi Miettinen Sankowski Singh]



Special solutions: Universal Maps

Given: set system (U, ℱ), possibly with set cost c(S).

Request sequence 𝜎 = {x1, x2, …, xk} arrives online.

Each xt is drawn uniformly at random from U.

Up-front, give a “universal mapping”
associate set S(e) in ℱ with each element e in U.

Want to minimize the E[ cost of sets output on 𝜎 ]
again, compared to E[ cost of optimal solution for 𝜎 ]



Universal Solutions

A potential solution:



Universal Solutions

Theorem: Map given by greedy algorithm is O(log m + log n) competitive.

Each element is mapped to first set in greedy that covers it.



Exists Good Universal Map

Fix some sequence length k.      Let 𝜇 = E[ OPT cost on length k sequence ]

Lemma: Exist 2𝜇 sets in ℱ that cover (1 − 𝛿)𝑛 elements of U, where 𝛿 = (3𝜇 log𝑚)/𝑘.

Note:  Lemma is existential. But greedy covers as many elements using 2𝜇 log 𝑛 sets.

Proof: next slide



Exists Good Universal Map

Fix some sequence length k.      Let 𝜇 = E[ OPT cost on length k sequence ]

Lemma: Exist 2𝜇 sets in ℱ that cover (1 − 𝛿)𝑛 elements of U, where 𝛿 = (3𝜇 log𝑚)/𝑘.

Proof: Consider all the 𝑛𝑘 sequences

Expected number of sets in OPT is 𝜇
⇒ at least ½𝑛𝑘 “good” sequences can be covered by 2𝜇 sets

Consider “bags” of elements 𝐶1, 𝐶2, … , 𝐶𝐿 got by taking unions of 2𝜇 sets. 

For contradiction, suppose each bag has ≤ 1 − 𝛿 𝑛 elements. 

𝐿 = 𝑚2𝜇

Another way to generate good sequences: pick 𝐶𝑖 and pick 𝑘 elements

So: 𝐿 × 1 − 𝛿 𝑛 𝑘 ≥ ½𝑛𝑘 ⇒ 𝑚2𝜇 𝑒−𝛿𝑘 ≥ 1/2.



Wrap-up

Fix some sequence length k.      Let 𝜇 = E[ OPT cost on length k sequence ]

Lemma: Exist 2𝜇 sets in ℱ that cover (1 − 𝛿)𝑛 elements of U, where 𝛿 = (3𝜇 log𝑚)/𝑘.

Recap: greedy covers 1 − 𝛿 𝑛 “happy” elements using 2𝜇 log 𝑛 sets. 

Happy elements in our sequence covers by these many sets

E[sad elements in our sequence] = 𝛿𝑘 = 𝑂(𝜇 log𝑚), one set for each



roadmap for today

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

How to go beyond worst-case? 

When requests from known distribution

When requests from unknown distribution

Intro to Online Algorithms

Theorem: 𝑓-competitive using Pitt’s algo

Theorem: O(log m log n)-competitive using relax-and-round

Theorem: O(log m + log n)-competitive using universal maps



roadmap for today

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

How to go beyond worst-case? 

When requests from known distribution

When requests from unknown distribution

Intro to Online Algorithms

Theorem: 𝑓-competitive using Pitt’s algo

Theorem: O(log m log n)-competitive using relax-and-round

Theorem: O(log m + log n)-competitive using universal maps



Random Order



𝑠1

Random Order (RO) model

ℱ
𝑚 sets

𝒰
𝑛 elements

𝑠2

𝑠3

𝑠4

𝑠5

𝑠6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

𝑣6



LearnOrCover
(Unit cost, exp time)

“hands” of possible solutions

𝑚
𝑘

when random element 𝑣 arrives

2. remove sols that don’t cover 𝑣

1. select random remaining hand

pick any set covering 𝑣

pick random set from it

if 𝑣 not already covered, in parallel:

Main Q: how many elements uncovered on arrival?

Sol 𝑅:

𝒰

𝒫

[G. Kehne Levin FOCS 21]



LearnOrCover
(Unit cost, exp time)

“hands” of possible solutions

when random element 𝑣 arrives

2. remove sols that don’t cover 𝑣

1. select random remaining hand

pick any set covering 𝑣

pick random set from it

if 𝑣 not already covered, in parallel:

Q: do ½ of remaining hands cover ½ of uncovered elements?

Yes: random set covers many uncovered  elements!

No: random element removes many hands!!
Sol 𝑅:

𝒫

[G. Kehne Levin FOCS 21]

𝒰



𝒰 shrinks by 1 −
1

4𝑘
 in expectation.

𝒫 shrinks by Τ3 4 in expectation.

Case 2:   > 1/2  of  𝑃 ∈ 𝒫  cover < 1/2   of   𝒰.

Case 1:   ≥ 1/2  of  𝑃 ∈ 𝒫  cover ≥ 1/2   of   𝒰.

𝑅 covers   
|𝒰|

4𝑘
   in expectation.

≥ 1/2  of  𝑃 ∈ 𝒫   pruned w.p. Τ1 2. 

|𝒰| initially 𝑛

⇒ 𝑂(𝑘 log𝑛) COVER steps suffice. 

|𝒫| initially 
𝑚
𝑘

≈ 𝑚𝑘

⇒ 𝑂(𝑘 log𝑚) LEARN steps suffice.

⇒𝑂(𝑘 log 𝑚𝑛) steps suffice.



𝒰 shrinks by 1 −
1

4𝑘
 in expectation. 𝒫 shrinks by Τ3 4 in expectation.

Case 2:  (LEARN)Case 1:  (COVER)

How to make polytime?

Can we reuse 
LEARN/COVER intuition?

Claim 1: Φ(0) = 𝑂(log 𝑚𝑛) and  Φ(𝑡) ≥ 0.

Claim 2:  If 𝑣 uncovered, then  𝐸[ΔΦ] ≤ −Ω
1

𝑘
.

Φ = +
1

𝑘
log|𝒫| log|𝒰|

LearnOrCover
(Unit cost, exp time)



LearnOrCover

Idea: Measure convergence with potential function

Claim 1: Φ(0) = 𝑂(log 𝑚𝑛), and  Φ(𝑡) ≥ 0.

Claim 2:  If 𝑣 uncovered, then  𝐸[ΔΦ] ≤ −
1

𝑘
. 

Φ(𝑡) = 𝑐1 KL(𝑥∗||𝑥𝑡) +𝑐2 log|𝒰𝑡|

𝒰𝑡  := uncovered elements @ time 𝑡

Init. 𝑥 ← 1/𝑚.

@ time 𝑡, element  𝑣  arrives:

If  𝑣  covered, do nothing. 

Else:
(I) Buy random 𝑅 ∼ 𝑥.
(II) ∀𝑆 ∋ 𝑣,  set  𝑥𝑆 ← 𝑒 ⋅ 𝑥𝑆.

    Renormalize  𝑥 ← 𝑥/∥ 𝑥 ∥1.

Buy arbitrary set to cover 𝑣.

𝑥∗ := uniform distribution on OPT 

(Recall 𝑘 = |𝑂𝑃𝑇|)

(Unit cost)

∑
𝑆
𝑥𝑆
∗log

𝑥𝑆
∗

𝑥𝑆
𝑡

If 𝔼𝑣 𝑥𝑣 >
1

4
⇒ 𝔼𝑅[𝑘 Δlog|𝒰𝑡|] drops by Ω 1 .

Else 𝔼𝑣[𝑘 Δ𝐾𝐿] drops by Ω 1 .



picture for set cover

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

How to go beyond worst-case? 

When requests from known distribution

When requests from unknown distribution

Intro to Online Algorithms

Theorem: 𝑓-competitive using Pitt’s algo

Theorem: O(log m log n)-competitive using relax-and-round

Theorem: O(log m + log n)-competitive using learn-or-cover

Theorem: O(log m + log n)-competitive using universal maps



Online Algos: Old and New
Lecture 2b: Network Design, Worst-case and Beyond

Anupam Gupta (NYU)



Metric space. n points arrive over time, maintain a connected graph.

Goal: minimize cost of tree

Competitive ratio of algorithm 𝐴:     

max
instances 𝐼

cost of algorithm 𝐴 on instance 𝐼

optimal cost to serve 𝐼

Want to minimize the competitive ratio.

Online Network Design

𝑣1

𝑣2

𝑣3
𝑣4

𝑣5

𝑣6

[Imase Waxman 91]



Steiner Tree



(steiner) tree offline

Given 𝑇 terminals

find shortest tree connecting 𝑇 ∪ {𝑣0} in ℳ

Thm 1: 𝑀𝑆𝑇(𝑇 ∪ 𝑣0 ) is a 2-approximation

Underlying metric space ℳ, root vertex 𝑣0

𝑣0

Proof:



(steiner) tree offline

Given 𝑇 terminals

find shortest tree connecting 𝑇 ∪ {𝑣0} in ℳ

Thm 1: 𝑀𝑆𝑇(𝑇 ∪ 𝑣0 ) is a 2-approximation

Underlying metric space ℳ, root vertex 𝑣0

suppose this is OPT

Proof:



(steiner) tree offline

[Byrka Grandoni Rothvoss Sanita, Traub and Zenklusen]

Thm 1: 𝑀𝑆𝑇(𝑇 ∪ 𝑣0 ) is a 2-approximation

cost ≤ 2OPT
Thm 2: Exist ln(4)-approx. (~1.386)

Given 𝑇 terminals

find shortest tree connecting 𝑇 ∪ {𝑣0} in ℳ

Underlying metric space ℳ, root vertex 𝑣0



online Steiner tree: model choices

Adversary chooses 𝑇 requests

Algo sees requests 𝑣1, 𝑣2, … , 𝑣𝑇 one-by-one

∀𝑡, when request 𝑣𝑡 seen, must connect it to root component

Metric ℳ and root 𝑣0 is fixed and public

Adversary chooses metric ℳ and 𝑇 requests

Algo sees requests 𝑣1, 𝑣2, … , 𝑣𝑇 one-by-one

When 𝑣𝑡 seen, we learn 𝑑 𝑣𝑡 , 𝑣𝑠 ∀𝑠 < 𝑡

Unknown MetricKnown Metric

root 𝑣0 is fixed and public



online (steiner) tree

[Imase Waxman 91]

Thm 1: greedy is 𝑂(log 𝑇) competitive

number of requests

works in unknown metric

connect 𝑣𝑡 to argmin
𝑠<𝑡

𝑑(𝑣𝑠, 𝑣𝑡)



online (steiner) tree

[Imase Waxman 91]

Thm 1: greedy is 𝑂(log 𝑇) competitive

number of requests
suppose this is OPT

works in unknown metric

connect 𝑣𝑡 to argmin
𝑠<𝑡

𝑑(𝑣𝑠, 𝑣𝑡)



online (steiner) tree

[Imase Waxman 91]

Thm 1: greedy is 𝑂(log 𝑇) competitive

number of requests

cost ≤ 2OPT



online (steiner) tree

[Imase Waxman 91]

Thm 1: greedy is 𝑂(log 𝑇) competitive

number of requests

cost ≤ 2OPT

say, green cost ≤ OPT



online (steiner) tree

[Imase Waxman 91]

Thm 1: greedy is 𝑂(log 𝑇) competitive

number of requests

𝑢

𝑣

crucial observation: 
total cost of these later requests ≤ 𝑂𝑃𝑇



online (steiner) tree

[Imase Waxman 91]

Thm 1: greedy is 𝑂(log 𝑇) competitive

number of requests

Now recurse on other 𝑇/2 requests



online (steiner) tree

[Imase Waxman 91]

Thm 2: no online algorithm can do better

Thm 1: greedy is 𝑂(log 𝑇) competitive

𝐺0

𝐺1

𝐺2

𝐺3

𝐺𝑘: “diamond graph” or fractal of 𝐾2,2



roadmap for today

Steiner tree

Online algo (using greedy algo)

Some matching hardness results

How to go beyond worst-case? 

When requests from known distribution

Theorem: 𝑂(log 𝑇)-competitive using greedy algo

Theorem: Ω(log 𝑇) bound on diamond graphs



Btw, approach #2



“Theorem”: Every n point metric space is “almost” a tree

in two senses:

approximation and randomization



Theorem:

Exists algo that takes any n point metric space 𝑀 = (𝑉, 𝑑) and 

outputs a random tree 𝑇 = (𝑉, 𝑑) such that for all 𝑥, 𝑦 ∈ 𝑉

a. 𝑑𝑇 𝑥, 𝑦 ≥ 𝑑𝑀 𝑥, 𝑦

b. 𝔼 𝑑𝑇 𝑥, 𝑦 ≤ 𝛼 𝑑𝑀 𝑥, 𝑦

where 𝛼 = 𝑂(log 𝑛)
distances change 

by only logarithmic factor

in expectation.

[Alon Karp Peleg West 94, Bartal 96, … , Fakcharoenphol Rao Talwar 04]



[Alon Karp Peleg West 94, Bartal 96, … , Fakcharoenphol Rao Talwar 04]

Evocative example:

𝐶𝑛



Theorem:

Exists algo that takes any n point metric space 𝑀 = (𝑉, 𝑑) and 

outputs a random tree 𝑇 = (𝑉, 𝑑) such that for all 𝑥, 𝑦 ∈ 𝑉

a. 𝑑𝑇 𝑥, 𝑦 ≥ 𝑑𝑀 𝑥, 𝑦

b. 𝔼 𝑑𝑇 𝑥, 𝑦 ≤ 𝛼 𝑑𝑀 𝑥, 𝑦

where 𝛼 = 𝑂(log 𝑛)
distances change 

by only logarithmic factor

in expectation.

[Alon Karp Peleg West 94, Bartal 96, … , Fakcharoenphol Rao Talwar 04]



Algorithm #2

[Awerbuch Azar 96]

Sample a random tree 𝑇 from the theorem

Thm 1: algo is 𝛼-competitive (randomized)

When request 𝑣𝑡 comes, use unique path to 𝑟 in 𝑇

Underlying metric space, root vertex 𝑟

Recall that 𝛼 = 𝑂(log 𝑛)

only works in known metric!!



Algorithm #2

[Awerbuch Azar 96]

Sample a random tree 𝑇 from the theorem

Thm 1: algo is 𝛼-competitive (randomized)

When request 𝑣𝑡 comes, use unique path to 𝑟 in 𝑇

Underlying metric space, root vertex 𝑟

Recall that 𝛼 = 𝑂(log 𝑛)

Fact #1: 𝐴𝐿𝐺𝑇 = 𝑂𝑃𝑇𝑇

Fact #2: 𝔼 𝑐𝑜𝑠𝑡 𝑂𝑃𝑇𝑇 ≤ 𝛼 𝑂𝑃𝑇𝑀

Fact #3: 𝑐𝑜𝑠𝑡(𝐴𝐿𝐺𝑀) ≤ 𝐴𝐿𝐺𝑇

𝑐𝑜𝑠𝑡(𝐴𝐿𝐺𝑀) ≤ 𝐴𝐿𝐺𝑇 = 𝑂𝑃𝑇𝑇𝔼 ≤ 𝛼 𝑂𝑃𝑇𝑀



Algorithm #2

Sample a random tree 𝑇 from the theorem

Thm 1: algo is 𝛼-competitive (randomized)

When request 𝑣𝑡 comes, use unique path to 𝑟 in 𝑇

Underlying metric space, root vertex 𝑟

Recall that 𝛼 = 𝑂(log 𝑛)

Btw, lower bound shows Ω(log 𝑇)-competitive

On this example: log 𝑇 = Θ log 𝑛

⇒ embedding diamond graphs into random trees requires 𝛼 = Ω(log 𝑛).



Theorem:

Exists algo that takes any n point metric space 𝑀 = (𝑉, 𝑑) and 

outputs a random tree 𝑇 = (𝑉, 𝑑) such that for all 𝑥, 𝑦 ∈ 𝑉

a. 𝑑𝑇 𝑥, 𝑦 ≥ 𝑑𝑀 𝑥, 𝑦

b. 𝔼 𝑑𝑇 𝑥, 𝑦 ≤ 𝛼 𝑑𝑀 𝑥, 𝑦

where 𝛼 = 𝑂(log 𝑛)

[Alon Karp Peleg West 94, Bartal 96, … , Fakcharoenphol Rao Talwar 04]

⇒ gives matching lower bound 
of Ω(log 𝑛) for 𝛼Can we get a similar technique to work 

for unknown metric model?

“Online metric embeddings” (e.g., work by [Bartal Fandina Umboh 20])



“Theorem”: Every n point metric space is “almost” a tree

Approach useful for many network design problems as well!!

Gives randomized 𝑂 log𝑛 competitive algo for Steiner tree



roadmap for today

Steiner tree

Online algo (using greedy algo)

Some matching hardness results

How to go beyond worst-case? 

When requests from known distribution

Two-connected Network Design

Theorem: 𝑂(log 𝑇)-competitive using greedy algo

Second Algorithm via tree embeddings

Theorem: Ω(log 𝑇) bound on diamond graphs



Steiner Tree:

Requests from Known Distributions



stochastic (steiner) tree

Suppose n requests: vertex 𝑅𝑖 ~ 𝒟𝑖

Algorithm: 

For all i, take one sample 𝑆𝑖 ~ 𝒟𝑖 each

Build MST on 𝑆1, … , 𝑆𝑛

When actual requests 𝑅𝑖 ~ 𝒟𝑖 arrive:
connect to closest previous point

Connect each request on arrival

Goal: minimize total cost of edges
[Garg Gupta Leonardi Sankowski 08]



stochastic (steiner) tree

Suppose n requests: vertex 𝑅𝑖 ~ 𝒟𝑖

Algorithm: 

For all i, take one sample 𝑆𝑖 ~ 𝒟𝑖 each

Build MST on 𝑆1, … , 𝑆𝑛

When actual requests 𝑅𝑖 ~ 𝒟𝑖 arrive:
connect to closest previous point

Connect each request on arrival

𝔼 𝑀𝑆𝑇 𝑆1, … , 𝑆𝑛 = 𝔼 𝑀𝑆𝑇 𝑅1, … , 𝑅𝑛

𝔼 𝑐𝑜𝑠𝑡 𝑅𝑖 ≤ 𝔼[𝑑𝑖𝑠𝑡 𝑅𝑖 , 𝑆 ]

≤ 𝔼[𝑑𝑖𝑠𝑡 𝑅𝑖 , 𝑆−𝑖 ]

= 𝔼[𝑑𝑖𝑠𝑡 𝑆𝑖 , 𝑆−𝑖 ]

Proof: 

⇒ Σ𝑖 𝔼 𝑐𝑜𝑠𝑡 𝑅𝑖 ≤ Σ𝑖 𝔼 𝑑𝑖𝑠𝑡 𝑆𝑖 , 𝑆−𝑖 ≤ 𝔼 𝑀𝑆𝑇 𝑆

Theorem: 𝔼 𝐴𝑙𝑔𝑜 ≤ 2 𝔼[𝑀𝑆𝑇 𝑅1, … , 𝑅𝑛 ]



roadmap for today

Steiner tree

Online algo (using greedy algo)

Some matching hardness results

How to go beyond worst-case? 

When requests from known distribution

Theorem: 𝑂(log 𝑇)-competitive using greedy algo

Theorem: Ω(log 𝑇) bound on diamond graphs

Theorem: O(1) bound for Stochastic inputs



lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)


	Slide 1: Online Algos: Old and New Set Cover: Beyond the Worst case 
	Slide 2: analysis of algorithms
	Slide 3: price of uncertainty
	Slide 4: going beyond the worst case
	Slide 5: Known Input Distributions
	Slide 6: roadmap for today
	Slide 7: Stochastic Model
	Slide 8: Special solutions: Universal Maps
	Slide 9: Universal Solutions
	Slide 10: Universal Solutions
	Slide 11: Exists Good Universal Map
	Slide 12: Exists Good Universal Map
	Slide 13: Wrap-up
	Slide 14: roadmap for today
	Slide 15: roadmap for today
	Slide 16: Random Order
	Slide 17: Random Order (RO) model
	Slide 18: LearnOrCover
	Slide 19: LearnOrCover
	Slide 20
	Slide 21: LearnOrCover
	Slide 22: LearnOrCover
	Slide 23: picture for set cover
	Gupta_lec2b-network-design.pdf
	Slide 1: Online Algos: Old and New Lecture 2b: Network Design, Worst-case and Beyond 
	Slide 2: Online Network Design
	Slide 3
	Slide 4: (steiner) tree offline
	Slide 5: (steiner) tree offline
	Slide 6: (steiner) tree offline
	Slide 7: online Steiner tree: model choices
	Slide 8: online (steiner) tree
	Slide 9: online (steiner) tree
	Slide 10: online (steiner) tree
	Slide 11: online (steiner) tree
	Slide 12: online (steiner) tree
	Slide 13: online (steiner) tree
	Slide 14: online (steiner) tree
	Slide 15: roadmap for today
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Algorithm #2
	Slide 22: Algorithm #2
	Slide 23: Algorithm #2
	Slide 24
	Slide 25
	Slide 26: roadmap for today
	Slide 27
	Slide 28: stochastic (steiner) tree
	Slide 29: stochastic (steiner) tree
	Slide 30: roadmap for today
	Slide 31: lecture plan


