Online Algos: Old and New

Set Cover: Beyond the Worst case

Anupam Gupta (NYU) NYU | COURANT

analysis of algorithms

ldeally: want to get algorithms that are good for

worst-case andbest-case and.... all cases.

Worst-case: robustness when data is unpredictable

efficiency when data follows anticipated patterns

How to model these?

let’s see glimpse of ideas/techniques in context of online algos

price of uncertainty

Offline Online

Set Cover O(logn) O(logmlogn)

can we do better in non-worst-case settings?

going beyond the worst case

Ways to model non-worst-case instances B[Y[]Nﬂ THE

WORSI-CASE
1. special structure to the instances AN AI.YSJS * 0F Ry =

2. requests are “predictable” ‘ Alﬁ UR”"HMS

3. arrival order is not worst-case?

| RV S Edited by
" TIM ROUGHGARDEN

4. train NN to find patterns, give predictions

S. ...

Known Input Distributions

roadmap for today

Intro to Online Algorithms

Set cover Theorem: f-competitive using Pitt’s algo
Online algo (using relax-and-round) Theorem: O(log m log n)-competitive using relax-and-round
Some (almost) matching hardness results

How to go beyond worst-case?
When requests from known distribution

When requests from unknown distribution

Stochastic Model

Given: set system (U, F), possibly with set cost c(S).

In general, elemente € U
Request sequence g = {X4, X,, ..., X} arrives online. / drawn w.p. p,
Each x, Is drawn uniformly at random from U.
On seeing request x, that is yet uncovered, output some set S, covering it.

Want to minimize the E| cost of sets output on o |
again, compared to E| cost of optimal solution for o |

[Grandoni G. Leonardi Miettinen Sankowski Singh]

Special solutions: Universal Maps

Given: set system (U, F), possibly with set cost c(S).

Request sequence o = {X4, X,, ..., X.} arrives online.

Each x, Is drawn uniformly at random from U.

Up-front, give a “universal mapping”

associate set S(e) in F with each element e in U.

Want to minimize the E[cost of sets output on o]
again, compared to E[cost of optimal solution for o]

Universal Solutions

A potential solution:

Universal Solutions

Theorem: Map given by greedy algorithm is O(log m + log n) competitive.

Algorithm 1: Universal mapping for unweighted set cover.
Data: Set system (U,.7).
while U £ 0 do

let S < set in .¥” maximizing |[SNU|;
S(v) — Sforeachve SNU ;
Uc—U\S:

Each element is mapped to first set in greedy that covers it.

Exists Good Universal Map

Fix some sequence length k. Let u = E[OPT cost on length k sequence |

Lemma: Exist 2u sets in F that cover (1 — §)n elements of U, where 6 = (3ulogm)/k.

Proof: next slide

Note: Lemma is existential. But greedy covers as many elements using 2ulogn sets.

Exists Good Universal Map

Fix some sequence length k. Let u = E[OPT cost on length k sequence |

Lemma: Exist 2u sets in F that cover (1 — §)n elements of U, where 6 = (3ulogm)/k.

Proof: Consider all the n* sequences

Expected number of sets in OPT is u
= at least ¥%4n* “good” sequences can be covered by 2u sets L = m4H

Consider “bags” of elements C,, C,, ..., C; got by taking unions of 2u sets.

For contradiction, suppose each bag has < (1 — §)n elements.

Another way to generate good sequences: pick C; and pick k elements

So: L x [(1 = &)n]* = 16nk = m?t e %k > 1/2.

Wrap-up

Fix some sequence length k. Let u = E[OPT cost on length k sequence |

Lemma: Exist 2u sets in F that cover (1 — §)n elements of U, where 6 = (3ulogm)/k.

Recap: greedy covers (1 — 6)n “happy” elements using 2ulogn sets.

Happy elements in our sequence covers by these many sets

E[sad elements in our sequence] = §k = O(ulogm), one set for each

roadmap for today

Intro to Online Algorithms

Set cover Theorem: f-competitive using Pitt’s algo
Online algo (using relax-and-round) Theorem: O(log m log n)-competitive using relax-and-round

Some (almost) matching hardness results
How to go beyond worst-case?
When requests from known distribution Theorem: O(log m + log n)-competitive using universal maps

When requests from unknown distribution

roadmap for today

Intro to Online Algorithms

Set cover Theorem: f-competitive using Pitt’s algo
Online algo (using relax-and-round) Theorem: O(log m log n)-competitive using relax-and-round
Some (almost) matching hardness results

How to go beyond worst-case?
When requests from known distribution Theorem: O(log m + log n)-competitive using universal maps

When requests from unknown distribution

Random Order

Random Order (RO) model

U

N elements

m sets

|G. Kehne Levin FOCS 21]

Lea rnOr “hands” of possible solutions

(Unit cost, exp time)

when random element v arrives
if v not already covered, in parallel:
1. select random remaining hand

pick random set from it
2. remove sols that don’t cover v
pick any set covering v

Main Q: how many elements uncovered on arrival?

|G. Kehne Levin FOCS 21]

Lea rnOr “hands” of possible solutions

(Unit cost, exp time)

when random element v arrives
if v not already covered, in parallel:
1. select random remaining hand

pick random set from it
2. remove sols that don’t cover v
pick any set covering v

Q: do % of remaining hands cover % of uncovered elements?

Yes: random set covers many uncovered elements! Sol R
ol R:

No: random element removes many hands!!

: > 1/2 of PEP cover=1/2 of U.

Ul . .
R covers 2 expectation.
1 _
‘U shrinks by (1 — E) in expectation. ‘U] initially 1

= 0O(klogn) steps suffice.

Case2: > 1/2 of PEP cover< 1/2 of U.

Pinitially () =~ m*

>1/2 of PEP dw.p.1/2.
/ O pruned w.p / = 0O(k logm) LEARN steps suffice.

P shrinks by 3 /4 in expectation.

= 0(k log mn) steps suffice.

LearnOr

(Unit cost, exp time)

Case 1: Case 2: (LEARN)

1
‘U shrinks by (1 — E) in expectation. P shrinks by 3 /4 in expectation.

How to make polytime?

Claim1: ®(0) = O(log mn) and ®(t) = 0.

Can we reuse
LEARN/ intuition?

Claim 2: If V uncovered, then E[A®]| < —() (%) .

LearnOr

(Unit cost)

Init. x « 1/m.

@ time t, element vV arrives:

If

Else:

If UV covered, do nothing.

ldea: Measure convergence with potential function

Buy random R ~ x.

VS 3 v, set x¢ « e - xs.

Renormalize x <« x /|l x Il;.

Buy arbitrary set to cover V.

L Xy, | >

1
4

=

A=

drops by Q(1).

L,k AKL| drops by Q(1).

Claim 2: If V uncovered, then E[AP]| < -

d(t) = ¢; KL(x*||x") +c,

U -= uncovered elements @ time €

* .= uniform distribution on OPT

Claim 1: ®(0) = O(log mn), and ®(t) = 0.

1

(Recall k = |OPT})

picture for set cover

Intro to Online Algorithms

Set cover Theorem: f-competitive using Pitt’s algo
Online algo (using relax-and-round) Theorem: O(log m log n)-competitive using relax-and-round

Some (almost) matching hardness results
How to go beyond worst-case?
When requests from known distribution Theorem: O(log m + log n)-competitive using universal maps

When requests from unknown distribution Theorem: O(log m + log n)-competitive using learn-or-cover

Online Algos: Old and New

Lecture 2b: Network Design, Worst-case and Beyond

Anupam Gupta (NYU) NYU | COURANT

Online Network Design

Metric space. n points arrive over time, maintain a connected graph.

Goal: minimize cost of tree

Competitive ratio of algorithm A:

cost of algorithm A on instance I

max -
instances I optimal cost to serve I

Want to minimize the competitive ratio.

[Imase Waxman 91]

Steiner Tree

(steiner) tree offline

Underlying metric space M, root vertex v, ®

Given T terminals ®

find shortest tree connecting T U {vy} iIn M

Thm 1: MST(T U {v,}) is a 2-approximation

Proof:

(steiner) tree offline

Underlying metric space M, root vertex v,

Given T terminals

find shortest tree connecting T U {vy} iIn M

Thm 1: MST(T U {vy}) is a 2-approximation

Proof:

suppose this is OPT

(steiner) tree offline

Underlying metric space M, root vertex v,

Given T terminals

find shortest tree connecting T U {vy} iIn M

Thm 1: MST(T U {vy}) is a 2-approximation

t < 20PT
Thm 2: Exist In(4)-approx. (~1.386) COSES

[Byrka Grandoni Rothvoss Sanita, Traub and Zenklusen]

online Steiner tree: model choices

Known Metric Unknown Metric
Metric M and root v, is fixed and public root v, Is fixed and public
Adversary chooses T requests Adversary chooses metric M and T requests
Algo sees requests v4, v,, ..., V7 One-by-one Algo sees requests v4, v,, ..., V7 one-by-one

When v; seen, we learn d(v;, v5) Vs < t

Vt, when request v; seen, must connect it to root component

online (steiner) tree

connect v; to arg mi? d(vg, Vg)
s<

Thm 1: greedy is O(log T) competitive

N

number of requests

works in unknown metric

[Imase Waxman 91]

online (steiner) tree

connect v; to arg m<1£1 d(vg, Vg)
S

Thm 1: greedy is O(log T) competitive -~)

\
‘ .
number of requests
Suppose this is OPT

works in unknown metric

[Imase Waxman 91]

online (steiner) tree

Thm 1: greedy is O(log T) competitive

\

number of requests

cost < 20PT

[Imase Waxman 91]

online (steiner) tree

Thm 1: greedy is O(log T) competitive

\

number of requests

/

cost < 20PT

™

say, green cost < OPT

[Imase Waxman 91]

online (steiner) tree

Thm 1: greedy is O(log T) competitive

\

number of requests

/

™

crucial observation:
total cost of these later requests < OPT

[Imase Waxman 91]

online (steiner) tree

Thm 1: greedy is O(log T) competitive

\

number of requests

Now recurse on other T /2 requests

[Imase Waxman 91]

online (steiner) tree

Thm 1: greedy is O(log T) competitive

Thm 2: no online algorithm can do better

Gr: "diamond graph” or fractal of K, ,

[Imase Waxman 91]

roadmap for today

Steiner tree
Online algo (using greedy algo) Theorem: O(log T)-competitive using greedy algo
Some matching hardness results Theorem: Q(log T) bound on diamond graphs

How to go beyond worst-case?

When requests from known distribution

Btw, approach #2

“Theorem”: Every n point metric space is “almost” a tree

in two senses:

approximation and randomization

Theorem:
Exists algo that takes any n point metric space M = (V,d) and

outputs arandomtree T = (V,d) such that forall x,y e V

d. dT(x,y) = dM(X;J’)

b- *[dT(x,y)]SadM(x,y)

distances change
where a = 0 (logn)
by only logarithmic factor

In expectation.

[Alon Karp Peleg West 94, Bartal 96, ... , Fakcharoenphol Rao Talwar 04]

Evocative example:

Cn

[Alon Karp Peleg West 94, Bartal 96, ... , Fakcharoenphol Rao Talwar 04]

Theorem:
Exists algo that takes any n point metric space M = (V,d) and

outputs arandomtree T = (V,d) such that forall x,y e V

d. dT(x,y) = dM(X;J’)

b- *[dT(x,y)]SadM(x,y)

distances change
where a = 0 (logn)
by only logarithmic factor

In expectation.

[Alon Karp Peleg West 94, Bartal 96, ... , Fakcharoenphol Rao Talwar 04]

Algorithm #2

Underlying metric space, root vertex r

Sample a random tree T from the theorem

When request v, comes, use unique pathtor in T

Thm 1: algo is a-competitive (randomized)

Recalythat a = O(logn)

only works in known metric!!

[Awerbuch Azar 96]

Algorithm #2

Underlying metric space, root vertex r

Sample a random tree T from the theorem

When request v, comes, use unique pathtor in T

Thm 1: algo is a-competitive (randomized)

Fact #2: E|cost(OPT;)] < a OPT)y,

Recall that @ = O(logn)
Fact #3: cost(ALGy) < ALGt

L cost(ALGyy) < ALGy = OPTy < a OPTy,

[Awerbuch Azar 96]

Algorithm #2

Underlying metric space, root vertex r

Sample a random tree T from the theorem

When request v, comes, use unique pathtor in T

Thm 1: algo is a-competitive (randomized)

Recall that a = O(logn)

Btw, lower bound shows (Q(log T)-competitive
On this example: log T = 0(log n)

= embedding diamond graphs into random trees requires a = Q(logn).

Theorem:
Exists algo that takes any n point metric space M = (V,d) and

outputs arandomtree T = (V,d) such that forall x,y e V

d. dT(x,y) = dM(X;J’)

b- *[dT(x,y)]SadM(x,y)

where a = 0 (logn)

= gives matching lower bound
Can we get a similar technique to work of Q(logn) for a
for unknown metric model?

“Online metric embeddings” (e.g., work by [Bartal Fandina Umboh 20])
[Alon Karp Peleg West 94, Bartal 96, ... , Fakcharoenphol Rao Talwar 04]

“Theorem”: Every n point metric space is “almost” a tree

Gives randomized O (log n) competitive algo for Steiner tree

Approach useful for many network design problems as well!!

roadmap for today

Steiner tree
Online algo (using greedy algo) Theorem: O(log T)-competitive using greedy algo

Some matching hardness results Theorem: Q(log T) bound on diamond graphs
Second Algorithm via tree embeddings

How to go beyond worst-case?
When requests from known distribution

Two-connected Network Design

Steiner Tree:

Requests from Known Distributions

stochastic (steiner) tree

@
Suppose n requests: vertex R; ~ D;
@
Connect each request on arrival ®
Algorithm:
: @
For all i, take one sample S; ~ D; each
o—
Build MST on §4, ..., S,
When actual requests R; ~ D; arrive:
connect to closest previous point @

Goal: minimize total cost of edges
[Garg Gupta Leonardi Sankowski 08]

stochastic (steiner) tree

Suppose n requests: vertex R; ~ D;

Connect each request on arrival

Algorithm:

For all i, take one sample S; ~ D; each

Build MST on S5, ..., S,

When actual requests R; ~ D; arrive:
connect to closest previous point

Theorem:

| Algo] < 2

[MST (R, ...,

Ry)]

= X; E[cost(R;)] < Z;

B [MST(Sl,

E[cost(R;)] <

) Sn)] —

L [diSt(Ri, S)]

<

: [diSt(Rii S—i)]

E[dist(S;, S-1)]

L [diSt(Si, S—i)] <

:[MST(R4, ..., R.)]

2| MST(S) |

roadmap for today

Steiner tree
Online algo (using greedy algo) Theorem: O(log T)-competitive using greedy algo

Some matching hardness results Theorem: Q(log T) bound on diamond graphs

How to go beyond worst-case?

When requests from known distribution Theorem: 0(1) bound for Stochastic inputs

lecture plan

_ecture #1: Set Cover (worst case)
Yecture #2: Set Cover (beyond worst case), Network design (both)
Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

	Slide 1: Online Algos: Old and New Set Cover: Beyond the Worst case
	Slide 2: analysis of algorithms
	Slide 3: price of uncertainty
	Slide 4: going beyond the worst case
	Slide 5: Known Input Distributions
	Slide 6: roadmap for today
	Slide 7: Stochastic Model
	Slide 8: Special solutions: Universal Maps
	Slide 9: Universal Solutions
	Slide 10: Universal Solutions
	Slide 11: Exists Good Universal Map
	Slide 12: Exists Good Universal Map
	Slide 13: Wrap-up
	Slide 14: roadmap for today
	Slide 15: roadmap for today
	Slide 16: Random Order
	Slide 17: Random Order (RO) model
	Slide 18: LearnOrCover
	Slide 19: LearnOrCover
	Slide 20
	Slide 21: LearnOrCover
	Slide 22: LearnOrCover
	Slide 23: picture for set cover
	Gupta_lec2b-network-design.pdf
	Slide 1: Online Algos: Old and New Lecture 2b: Network Design, Worst-case and Beyond
	Slide 2: Online Network Design
	Slide 3
	Slide 4: (steiner) tree offline
	Slide 5: (steiner) tree offline
	Slide 6: (steiner) tree offline
	Slide 7: online Steiner tree: model choices
	Slide 8: online (steiner) tree
	Slide 9: online (steiner) tree
	Slide 10: online (steiner) tree
	Slide 11: online (steiner) tree
	Slide 12: online (steiner) tree
	Slide 13: online (steiner) tree
	Slide 14: online (steiner) tree
	Slide 15: roadmap for today
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21: Algorithm #2
	Slide 22: Algorithm #2
	Slide 23: Algorithm #2
	Slide 24
	Slide 25
	Slide 26: roadmap for today
	Slide 27
	Slide 28: stochastic (steiner) tree
	Slide 29: stochastic (steiner) tree
	Slide 30: roadmap for today
	Slide 31: lecture plan

