Online Algos: Old and New Set Cover: Beyond the Worst case

Anupam Gupta (NYU)

analysis of algorithms

Ideally: want to get algorithms that are good for

worst-case *and* best-case *and* all cases.

Worst-case: robustness when data is unpredictable

Best-case: efficiency when data follows anticipated patterns

How to model these?

let's see glimpse of ideas/techniques in context of online algos

price of uncertainty

Set Cover

 $\Theta(\log n)$

can we do better in non-worst-case settings?

Offline

Online

 $\Theta(\log m \log n)$

going beyond the worst case

Ways to model non-worst-case instances

- 1. special structure to the instances
- 2. requests are "predictable"
- 3. arrival order is not worst-case?
- 4. train NN to find patterns, give predictions

5. ...

BEYOND THE WORST-CASE **ANALYSIS** OF ALGORITHMS

Known Input Distributions

roadmap for today

Intro to Online Algorithms

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

How to go beyond worst-case?

When requests from known distribution

When requests from unknown distribution

Theorem: *f*-competitive using Pitt's algo

Theorem: O(log m log n)-competitive using relax-and-round

Stochastic Model

Given: set system (U, \mathcal{F}), possibly with set cost c(S).

Request sequence $\sigma = \{x_1, x_2, ..., x_k\}$ arrives online.

Each x_t is drawn uniformly at random from U.

On seeing request x_t that is yet uncovered, output some set S_t covering it.

Want to minimize the E[cost of sets output on σ] again, compared to E[cost of optimal solution for σ]

[Grandoni G. Leonardi Miettinen Sankowski Singh]

Special solutions: Universal Maps

Given: set system (U, \mathcal{F}), possibly with set cost c(S).

Request sequence $\sigma = \{x_1, x_2, ..., x_k\}$ arrives online.

Each x_{t} is drawn uniformly at random from U.

Up-front, give a "universal mapping" associate set S(e) in \mathcal{F} with each element e in U.

Want to minimize the E[cost of sets output on σ] again, compared to **E**[cost of optimal solution for σ]

Universal Solutions

A potential solution:

Universal Solutions

Theorem: Map given by greedy algorithm is $O(\log m + \log n)$ competitive.

Algorithm 1: Universal mapping for unweighted set cover. **Data**: Set system (U, \mathscr{S}) . while $U \neq \emptyset$ do let $S \leftarrow$ set in \mathscr{S} maximizing $|S \cap U|$; $\mathbf{S}(v) \leftarrow S$ for each $v \in S \cap U$; $U \leftarrow U \setminus S$;

Each element is mapped to first set in greedy that covers it.

Exists Good Universal Map

Fix some sequence length k. Let $\mu = E[OPT cost on length k sequence]$

Lemma: Exist 2μ sets in \mathcal{F} that cover $(1 - \delta)n$ elements of U, where $\delta = (3\mu \log m)/k$.

Proof: next slide

Note: Lemma is existential. But greedy covers as many elements using $2\mu \log n$ sets.

Exists Good Universal Map

Fix some sequence length k. Let $\mu = \mathbf{E}[\text{ OPT cost on length k sequence}]$

Lemma: Exist 2μ sets in \mathcal{F} that cover $(1 - \delta)n$ elements of U, where $\delta = (3\mu \log n)/k$.

Proof: Consider all the n^k sequences

Expected number of sets in OPT is μ $-L = m^{2\mu}$ \Rightarrow at least $\frac{1}{2}n^k$ "good" sequences can be covered by 2μ sets

Consider "bags" of elements C_1, C_2, \dots, C_L got by taking unions of 2μ sets.

For contradiction, suppose each bag has $\leq (1 - \delta)n$ elements. Another way to generate good sequences: pick C_i and pick k elements

So: $L \times [(1 - \delta)n]^k \ge \frac{1}{2}n^k \qquad \Rightarrow m^{2\mu} e^{-\delta k} \ge 1/2.$

Fix some sequence length k. Let $\mu = E[OPT cost on length k sequence]$ Lemma: Exist 2μ sets in \mathcal{F} that cover $(1 - \delta)n$ elements of U, where $\delta = (3\mu \log m)/k$.

Recap: greedy covers $(1 - \delta)n$ "happy" elements using $2\mu \log n$ sets.

Happy elements in our sequence covers by these many sets

E[sad elements in our sequence] = $\delta k = O(\mu \log m)$, one set for each

roadmap for today

Intro to Online Algorithms

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

How to go beyond worst-case?

When requests from known distribution

When requests from unknown distribution

Theorem: *f*-competitive using Pitt's algo

Theorem: O(log m log n)-competitive using relax-and-round

Theorem: $O(\log m + \log n)$ -competitive using universal maps

roadmap for today

Intro to Online Algorithms

Set cover

Online algo (using relax-and-round)

Some (almost) matching hardness results

How to go beyond worst-case?

When requests from known distribution

When requests from unknown distribution

Theorem: *f*-competitive using Pitt's algo

Theorem: O(log m log n)-competitive using relax-and-round

Theorem: $O(\log m + \log n)$ -competitive using universal maps

Random Order

Random Order (RO) model

 \mathcal{F} *m* sets

 v_1 v_2 v_3 v_4 v_5

 v_6

U *n* elements

LearnOrCover (Unit cost, exp time)

when random element v arrives if v not already covered, in parallel: 1. select random remaining hand pick random set from it 2. remove sols that don't cover vpick any set covering v

Main Q: how many elements uncovered on arrival?

[G. Kehne Levin FOCS 21]

"hands" of possible solutions

LearnOrCover (Unit cost, exp time)

when random element v arrives if v not already covered, in parallel: 1. select random remaining hand pick random set from it 2. remove sols that don't cover vpick any set covering v

Q: do $\frac{1}{2}$ of remaining hands cover $\frac{1}{2}$ of uncovered elements? Yes: random set covers many uncovered elements! **No:** random element removes many hands!!

[G. Kehne Levin FOCS 21]

"hands" of possible solutions

Case 1: $\geq 1/2$ of $P \in \mathcal{P}$ cover $\geq 1/2$ of \mathcal{U} .

 $R \text{ covers } \frac{|\mathcal{U}|}{4k}$ in expectation. \mathcal{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

Case 2: > 1/2 of $P \in \mathcal{P}$ cover < 1/2 of \mathcal{U} .

 $\geq 1/2$ of $P \in \mathcal{P}$ pruned w.p. 1/2. \mathcal{P} shrinks by 3/4 in expectation.

$|\mathcal{U}|$ initially n $O(k \log n)$ COVER steps suffice. \Rightarrow

$|\mathcal{P}|$ initially $\binom{m}{k} \approx m^k$ $\Rightarrow O(k \log m)$ LEARN steps suffice.

 $\Rightarrow O(k \log mn)$ steps suffice.

LearnOrCover (Unit cost, exp time)

Case 1: (COVER)

 \mathcal{U} shrinks by $\left(1-\frac{1}{4k}\right)$ in expectation.

$$\Phi = \frac{1}{k} \log |\mathcal{P}| + \log |\mathcal{U}|$$

<u>Claim 1</u>: $\Phi(0) = O(\log mn)$ and $\Phi(t) \ge 0$. <u>Claim 2</u>: If \mathcal{V} uncovered, then $E[\Delta \Phi] \le -\Omega\left(\frac{1}{k}\right)$.

Case 2: (LEARN)

\mathcal{P} shrinks by 3/4 in expectation.

How to make polytime?

Can we reuse LEARN/COVER intuition?

LearnOrCover (Unit cost)

Init. $x \leftarrow 1/m$. @ time t, element v arrives: If v covered, do nothing. Else: (I) Buy random $R \sim x$. (II) $\forall S \ni v$, set $x_S \leftarrow e \cdot x_S$. Renormalize $x \leftarrow x/\parallel x \parallel_1$. Buy arbitrary set to cover \mathcal{V} .

If $\mathbb{E}_{v}[x_{v}] > \frac{1}{A} \Rightarrow \mathbb{E}_{R}[k \Delta \log |\mathcal{U}^{t}|]$ drops by $\Omega(1)$. Else $\mathbb{E}_{v}[k \Delta KL]$ drops by $\Omega(1)$.

Idea: Measure convergence with potential function

 $\Phi(t) = c_1 KL(x^* | x^t) + c_2 \log |\mathcal{U}^t|$

 \mathcal{U}^t := uncovered elements @ time t x^* := uniform distribution on OPT

Claim 1: $\Phi(0) = O(\log mn)$, and $\Phi(t) \ge 0$. <u>Claim 2:</u> If \mathcal{V} uncovered, then $E[\Delta \Phi] \leq -\frac{1}{k}$.

(Recall k = |OPT|)

picture for set cover

Intro to Online Algorithms

Set cover

Online algo (using relax-and-round) Some (almost) matching hardness results

How to go beyond worst-case?

When requests from known distribution

When requests from unknown distribution

Theorem: *f*-competitive using Pitt's algo

Theorem: O(log m log n)-competitive using relax-and-round

Theorem: $O(\log m + \log n)$ -competitive using universal maps

Theorem: O(log m + log n)-competitive using learn-or-cover

Online Algos: Old and New Lecture 2b: Network Design, Worst-case and Beyond

Anupam Gupta (NYU)

Online Network Design

Goal: minimize cost of tree

Competitive ratio of algorithm *A*:

cost of algorithm *A* on instance *I* optimal cost to serve I

instances l

max

Want to minimize the competitive ratio.

Metric space. n points arrive over time, maintain a connected graph.

Steiner Tree

(steiner) tree offline

Underlying metric space \mathcal{M} , root vertex v_0

Given T terminals

find shortest tree connecting $T \cup \{v_0\}$ in \mathcal{M}

Thm 1: $MST(T \cup \{v_0\})$ is a 2-approximation

Proof:

(steiner) tree offline

Underlying metric space \mathcal{M} , root vertex v_0

Given T terminals

find shortest tree connecting $T \cup \{v_0\}$ in \mathcal{M}

Thm 1: $MST(T \cup \{v_0\})$ is a 2-approximation

Proof:

suppose this is OPT

(steiner) tree offline

Underlying metric space \mathcal{M} , root vertex v_0

Given T terminals

find shortest tree connecting $T \cup \{v_0\}$ in \mathcal{M}

Thm 1: $MST(T \cup \{v_0\})$ is a 2-approximation

Thm 2: Exist ln(4)-approx. (~1.386)

[Byrka Grandoni Rothvoss Sanita, Traub and Zenklusen]

online Steiner tree: model choices

Known Metric

Metric \mathcal{M} and root v_0 is fixed and public

Adversary chooses *T* requests

Algo sees requests v_1, v_2, \dots, v_T one-by-one Algo sees requests v_1, v_2, \dots, v_T one-by-one

 $\forall t$, when request v_t seen, must connect it to root component

Unknown Metric

root v_0 is fixed and public

Adversary chooses metric \mathcal{M} and T requests

When v_t seen, we learn $d(v_t, v_s) \forall s < t$

works in unknown metric

works in unknown metric

suppose this is OPT

Thm 1: greedy is $O(\log T)$ competitive

number of requests

 $cost \leq 2OPT$

Thm 1: greedy is $O(\log T)$ competitive

number of requests

$cost \leq 2OPT$

say, green $cost \le OPT$

Thm 1: greedy is $O(\log T)$ competitive

number of requests

crucial observation: total cost of these later requests $\leq OPT$

Thm 1: greedy is $O(\log T)$ competitive

number of requests

Now recurse on other T/2 requests

Thm 1: greedy is $O(\log T)$ competitive Thm 2: no online algorithm can do better

 G_k : "diamond graph" or fractal of $K_{2,2}$

roadmap for today

Steiner tree

Online algo (using greedy algo)

Some matching hardness results

How to go beyond worst-case?

When requests from known distribution

Theorem: $O(\log T)$ -competitive using greedy algo

Theorem: $\Omega(\log T)$ bound on diamond graphs

Btw, approach #2

approximation and randomization

Theorem:

Exists algo that takes any n point metric space M = (V, d) and

outputs a random tree T = (V, d) such that for all $x, y \in V$

- a. $d_T(x,y) \ge d_M(x,y)$
- **b.** $\mathbb{E}[d_T(x,y)] \le \alpha d_M(x,y)$

where $\alpha = O(\log n)$

distances change

by only logarithmic factor

in expectation.

Evocative example:

Theorem:

Exists algo that takes any n point metric space M = (V, d) and

outputs a random tree T = (V, d) such that for all $x, y \in V$

- a. $d_T(x,y) \ge d_M(x,y)$
- **b.** $\mathbb{E}[d_T(x,y)] \le \alpha d_M(x,y)$

where $\alpha = O(\log n)$

distances change

by only logarithmic factor

in expectation.

Algorithm #2

Underlying metric space, root vertex r Sample a random tree *T* from the theorem When request v_t comes, use unique path to r in T

Thm 1: algo is α -competitive (randomized) Recall that $\alpha = O(\log n)$

only works in known metric!!

Algorithm #2

Underlying metric space, root vertex r Sample a random tree *T* from the theorem When request v_t comes, use unique path to r in T

Thm 1: algo is α -competitive (randomized)

Recall that $\alpha = O(\log n)$

Fact #1: $ALG_T = OPT_T$ Fact #2: $\mathbb{E}[cost(OPT_T)] \leq \alpha \ OPT_M$ Fact #3: $cost(ALG_M) \leq ALG_T$ $\mathbb{E} \operatorname{cost}(ALG_M) \leq ALG_T = OPT_T \leq \alpha \ OPT_M$

[Awerbuch Azar 96]

Algorithm #2

Underlying metric space, root vertex r Sample a random tree *T* from the theorem When request v_t comes, use unique path to r in T

Thm 1: algo is α -competitive (randomized)

Recall that $\alpha = O(\log n)$

Btw, lower bound shows $\Omega(\log T)$ -competitive

- On this example: $\log T = \Theta(\log n)$
- \Rightarrow embedding diamond graphs into random trees requires $\alpha = \Omega(\log n)$.

Theorem:

Exists algo that takes any n point metric space M = (V, d) and

outputs a random tree T = (V, d) such that for all $x, y \in V$

- $d_T(x, y) \ge d_M(x, y)$ **a**.
- $\mathbb{E}[d_T(x,y)] \le \alpha d_M(x,y)$ b.

where $\alpha = O(\log n)$

Can we get a similar technique to work for unknown metric model?

"Online metric embeddings" (e.g., work by [Bartal Fandina Umboh 20])

 \Rightarrow gives matching lower bound of $\Omega(\log n)$ for α

"Theorem": Every n point metric space is "almost" a tree

Gives randomized $O(\log n)$ competitive algo for Steiner tree

Approach useful for many network design problems as well!!

roadmap for today

Steiner tree

Online algo (using greedy algo) Some matching hardness results Second Algorithm via tree embeddings

How to go beyond worst-case?

When requests from known distribution

Two-connected Network Design

Theorem: $O(\log T)$ -competitive using greedy algo

Theorem: $\Omega(\log T)$ bound on diamond graphs

Steiner Tree:

Requests from Known Distributions

stochastic (steiner) tree

Suppose n requests: vertex $R_i \sim D_i$

Connect each request on arrival

Algorithm:

For all i, take one sample $S_i \sim \mathcal{D}_i$ each Build MST on S_1, \dots, S_n

When actual requests $R_i \sim D_i$ arrive: connect to closest previous point

Goal: minimize total cost of edges

[Garg Gupta Leonardi Sankowski 08]

stochastic (steiner) tree

Suppose n requests: vertex $R_i \sim D_i$

Connect each request on arrival

Algorithm:

For all i, take one sample $S_i \sim D_i$ each

Build MST on S_1, \ldots, S_n

When actual requests $R_i \sim D_i$ arrive: connect to closest previous point

Theorem: $\mathbb{E}[Algo] \leq 2 \mathbb{E}[MST(R_1, ..., R_n)]$

Proof: $\mathbb{E}[MST(S_1, \dots, S_n)] = \mathbb{E}[MST(R_1, \dots, R_n)]$ $\mathbb{E}[cost(R_i)] \leq \mathbb{E}[dist(R_i, S)]$ $\leq \mathbb{E}[dist(R_i, S_{-i})]$ $= \mathbb{E}[dist(S_i, S_{-i})]$

 $\Rightarrow \Sigma_i \mathbb{E}[cost(R_i)] \le \Sigma_i \mathbb{E}[dist(S_i, S_{-i})] \le \mathbb{E}[MST(S)]$

roadmap for today

Steiner tree

Online algo (using greedy algo)

Some matching hardness results

How to go beyond worst-case?

When requests from known distribution

Theorem: $O(\log T)$ -competitive using greedy algo

Theorem: $\Omega(\log T)$ bound on diamond graphs

Theorem: O(1) bound for Stochastic inputs

lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

