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lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)



Metrical Task System = Function Chasing

[Borodin Linial Saks 92]

Metric space 𝑋, 𝑑 , 𝑥0 ∈ 𝑋

@ time t:
    see cost function 𝑓𝑡: 𝑋 → ℝ≥0

    play point 𝑥𝑡 ∈ 𝑋

cost = σ𝑡 𝑓𝑡 𝑥𝑡 + 𝑑(𝑥𝑡, 𝑥𝑡−1)



Metrical Service System = Set Chasing

[Borodin Linial Saks 92]

@ time t:
    see subset 𝑆𝑡 ⊆ 𝑋
    play point 𝑥𝑡 ∈ 𝑆𝑡

cost = σ𝑡 𝑑(𝑥𝑡, 𝑥𝑡−1)

Metric space 𝑋, 𝑑 , 𝑥0 ∈ 𝑋



Set Chasing

Uniform Metric



Uniform Metric Set Chasing

n points, unit distance from each other

see set 𝑆𝑡 ⊆ [𝑛] at each timestep, must move to 𝑥𝑡 ∈ 𝑆𝑡

minimize number of moves

Algo 0: Move to arbitrary point in 𝑆𝑡

𝑆1 = {2,3,4,5 … 𝑛}

𝑆2 = {1,3,4,5, … 𝑛}

𝑆3 = {2,3,4,5 … 𝑛}

𝑆4 = {1,3,4,5, … 𝑛}

…

𝑥0 = 1

𝑥1 = 2

𝑥2 = 1

𝑥3 = 2

𝑥4 = 1

OPT = 1

E[ALG] = Θ(𝑛)



Uniform Metric Set Chasing

n points, unit distance from each other

see set 𝑆𝑡 ⊆ [𝑛] at each timestep, must move to 𝑥𝑡 ∈ 𝑆𝑡

minimize number of moves

Algo 0: Move to arbitrary point in 𝑆𝑡

Algo 1: Move to random point in 𝑆𝑡

Adversary:

Pick random goal 𝑔 ∈ {1 … 𝑛}

for 𝑡 = 1 𝑡𝑜 𝑛10

     pick random ℎ from 𝑛
     define 𝑆𝑡 = 𝑛 ∖ ℎ ∪ {𝑔}

OPT = 1

E[ALG] = Θ(𝑛)



Uniform Metric Set Chasing

n points, unit distance from each other

see set 𝑆𝑡 ⊆ [𝑛] at each timestep, must move to 𝑥𝑡 ∈ 𝑆𝑡

minimize number of moves

Algo 2: Random marking

Random Marking

At time 𝑡:
   Mark all points not in 𝑆𝑡  
   If 𝑥𝑡−1 ∈ 𝑆𝑡 set 𝑥𝑡 ← 𝑥𝑡−1

   else 
       𝑥𝑡 = random unmarked pt in 𝑆𝑡

If all points marked, unmark all

OPT ≥ 1 in an epoch

ALG ≤ 𝑂(log 𝑛)Epoch

Last marked 
node in epoch Epoch: times between two unmarks

Thm 1: Random marking is 𝑂(log 𝑛) competitive



Uniform Metric Set Chasing

n points, unit distance from each other

see set 𝑆𝑡 ⊆ [𝑛] at each timestep, must move to 𝑥𝑡 ∈ 𝑆𝑡

minimize number of moves

Thm 1: Random marking is 𝑂(log 𝑛) competitive

Thm 2: Every (rand) algorithm is Ω(log 𝑛) competitive

𝑆𝑡 = n ∖ uniformly random node

Yao’s lemma

Epoch ends when all pages have been
         antiset in this epoch

“antiset”

Epoch length = 𝑛𝐻𝑛

OPT ≅ 1 per epoch (move to last antiset)

E[ALG] pays 1/𝑛 per step



Uniform Metric Function Chasing

n points, unit distance from each other

see set 𝑓𝑡: 𝑛 → 𝑅+ at each timestep, must play 𝑥𝑡

minimize 𝑓𝑡 𝑥𝑡 + 1(𝑥𝑡 ≠ 𝑥𝑡−1)

Thm 1: variant of Random marking is 𝑂(log 𝑛) competitive

Thm 2: Every (rand) algorithm is Ω(log 𝑛) competitive (follows from previous lower bound)



General Metric Function Chasing

General metric space 𝑉, 𝑑  on 𝑛 points

Each time function 𝑓𝑡: 𝑉 → ℝ+

Thm 3: 𝑂(log2 𝑛) competitive algo                                                              [Bubeck Cohen Lee Lee 17, Coester Lee 19]

Thm 4: Every (rand) algorithm is Ω(log2 𝑛) competitive                            [Bubeck Coester Rabani 22]

must play 𝑥𝑡, pay 𝑓𝑡 𝑥𝑡 + 𝑑(𝑥𝑡, 𝑥𝑡−1)



Further directions

Many of these ideas extend to paging and 𝑘-server:

        k servers moving in a metric space

        requests arrive at location, must choose which server to move to it



Convex Function Chasing



Convex Body Chasing: definition

3

𝐴𝐿𝐺 = 3

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays ||  𝑥𝑡 − 𝑥𝑡−1 ||

algorithm controls point in ℝ𝑑

[Friedman Linial 94]
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𝐴𝐿𝐺 = 3 + 3𝐴𝐿𝐺 = 3

at time t:

convex body 𝐾𝑡 arrives
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Convex Body Chasing: definition

3

3

5

𝐴𝐿𝐺 = 3 + 3 + 5𝐴𝐿𝐺 = 3 + 3
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Convex Body Chasing: definition

3

3

5

3

𝐴𝐿𝐺 = 3 + 3 + 5 + 3𝐴𝐿𝐺 = 3 + 3 + 5

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays ||  𝑥𝑡 − 𝑥𝑡−1 ||

algorithm controls point in ℝ𝑑

[Friedman Linial 94]



Convex Body Chasing: definition

3

3

5

3

2
4

5

𝐴𝐿𝐺 = 3 + 3 + 5 + 3 = 14
𝑂𝑃𝑇 = 2 + 4 + 5 = 11

cr(𝐴𝐿𝐺) ≔ max
𝜎

𝐴𝐿𝐺 𝜎

𝑂𝑃𝑇 𝜎

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays ||  𝑥𝑡 − 𝑥𝑡−1 ||

algorithm controls point in ℝ𝑑

[Friedman Linial 94]



Nested Version

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays ||  𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]
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Nested Version  

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays ||  𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]



Nested Version  

𝐴𝐿𝐺

𝑂𝑃𝑇

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays ||  𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]



a closely related problem: convex function chasing

algorithm controls point in ℝ𝑑

at time t:

convex function 𝑓𝑡 arrives

algorithm moves to 𝑥𝑡

pays ||  𝑥𝑡 − 𝑥𝑡−1 || + 𝑓(𝑥𝑡)

[Friedman Linial 94]



Reductions:  CBC𝑑 ≤ CFC𝑑 ≤ CBC𝑑+1 

[Bubeck, Lee, Li, Sellke STOC 2019]

algorithm controls point in ℝ𝑑

at time t:

convex function 𝑓𝑡 arrives

algorithm moves to 𝑥𝑡

pays ||  𝑥𝑡 − 𝑥𝑡−1 || + 𝑓(𝑥𝑡)

within 𝑂(1) of CBC in d + 1 dim



why do we care about convex body chasing?

Generalization of (fractional version) of many online problems
▪ paging and k-server
▪ set cover and other packing/covering problems

      get generic online convex program solvers?

      get a unified algorithm for these problems?



a brief history



contains, among many things: two algorithms



a lower bound



a lower bound



a lower bound



a lower bound

𝐴𝐿𝐺 ≥ 2 ⋅ 𝑂𝑃𝑇

𝐴𝐿𝐺 ≥ 𝑑 ⋅ 𝑂𝑃𝑇

𝐴𝐿𝐺
𝑂𝑃𝑇



a reduction to half-spaces



a reduction to half-spaces



and a conjecture



rest of the talk

1. Nested Convex Set Chasing (part I)
   - Some failed algos
   - 𝑂(𝑑 log 𝑑) algo via recursive centroid

2. Nested Convex Set Chasing (part II)
   - Steiner point
   - move to Steiner point

3. General Convex Set Chasing
   - reduction to nested Steiner point algo



simpler “bounded” version

Convex sets 𝐵 0, 𝑟 = 𝐾0, followed by 𝐾1, 𝐾2 … all subsets of 𝐵(0, 𝒓)

      Promise:  𝑂𝑃𝑇 ≈ 𝒓

      Want:  𝐴𝐿𝐺 ≤  𝑓 𝑑 ⋅ 𝒓

Fact:  implies 𝑂 𝑓 𝑑 -competitive for CBC.

Proof:  guess-and-double.
𝒓



simpler “bounded” version

Convex sets 𝐵 0, 𝑟 = 𝐾0, followed by 𝐾1, 𝐾2 …  all subsets of 𝐵(0, 𝟏)

      Promise:  𝑂𝑃𝑇 ≈ 𝟏

      Want:  𝐴𝐿𝐺 ≤  𝑓 𝑑 ⋅ 𝟏

Fact:  implies 𝑂 𝑓 𝑑 -competitive for CBC.

Proof:  guess-and-double.
𝟏



strawman #1: greedy

move to the closest point in 𝐾𝑡



strawman #1: greedy
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strawman #1: greedy

move to the closest point in 𝐾𝑡



strawman #1: greedy

𝐴𝐿𝐺

𝑂𝑃𝑇

move to the closest point in 𝐾𝑡

unbounded competitive ratio!



Nested Case



Grunbaum’s Inequality [1960]

For any convex body, 
   any half-space that cuts off the centroid

cuts volume by at least (1 − 1/𝑒)

Branko Grunbaum, https://opc.mfo.de/detail?photo_id=7667

%volume = 1 −
1

𝑛

𝑛



Algo for Nested Case: 
Move to centroid of current body

Hope: each time volume decreases a lot

Maybe don’t need to move very often



strawman #2 (for nested case): centroid

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
   half-space cuts off centroid ⇒ 

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]
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[Argue Bubeck Cohen Gupta Lee 19]
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strawman #2 (for nested case): centroid

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
   half-space cuts off centroid ⇒ 

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]



strawman #2 (for nested case): centroid

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
   half-space cuts off centroid ⇒ 

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]



strawman #2 (for nested case): centroid

Volume ↓↓↓

☺

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
   half-space cuts off centroid ⇒ 

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]



but alas…

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
   half-space cuts off centroid ⇒ 

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]
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but alas…

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
   half-space cuts off centroid ⇒ 

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]



but alas…

▪ 𝐴𝐿𝐺 unbounded

▪ 𝑂𝑃𝑇 =  𝑂(1)

▪ Not competitive

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
   half-space cuts off centroid ⇒ 

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]



fix using recursive centroid: a sketch

suppose recursive cuts don’t reduce diameter ⇒ make body into “pancake”
      
        fat directions: width more than 1/poly 𝑑

project out thin directions, run centroid algo on fat directions

thin directions are “thin enough” ⇒ “movement in them controlled”

𝑂(log 𝑑) steps to get another thin direction. 
𝑑 directions. ⇒  𝑂(𝑑 log 𝑑)

[Argue Bubeck Cohen Gupta Lee 19]

}



Theorem:                    [Argue Bubeck Cohen Gupta Lee 2019]

    Recursive centroid algorithm is 𝑂(𝑑 log 𝑑) competitive.

Proof idea: use volume (projected onto “fat” directions) as potential function.
                    projections increase it, but Grunbaum cuts decrease it.

Theorem:               [Bubeck Klartag Lee Li Sellke 2020]

    Gaussian version of recursive centroid is 𝑂( 𝑑 log 𝑑) competitive.

    Almost tight for Euclidean norm

Algorithm idea: centroid with respect to Gaussian measure, dampens movement, retains volume drop.

results for nested case

how to generalize to the non-nested case?



Theorem:        [Bubeck Lee Li Sellke 2020]

    (substantial extension of) recursive centroid algorithm is  2𝑂 𝑑  competitive.

Proof:

    It’s complicated. 

    Contains several clever ideas, we’ll discuss another day.

a breakthrough for the general case…

instead let’s approach the problem via a different angle…



Theorem: [Argue Gupta Guruganesh Tang 2020] [Sellke 2020]

    the work function Steiner point algorithm is  𝑂 𝑑 -competitive.

rest of the talk: a simpler, better result



Towards the General Case

Another Algo for Nested Case



another algo for nested case

support function of convex body

Steiner point of convex body 

⇒  new O(d)-competitive algo for nested convex bodies



support function ℎ𝐾 𝜃  of convex body

𝜃

ℎ𝐾 𝜃 ≔ max 
𝑥∈𝐾

⟨𝜃, 𝑥⟩

∇ℎ𝐾 𝜃 ≔ arg max 
𝑥∈𝐾

⟨𝜃, 𝑥⟩

inner product with farthest point in K
   in direction of 𝜃

farthest point in K in direction of 𝜃
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another algo for nested case

support function of convex body

Steiner point of convex body 

⇒  new O(d)-competitive algo for nested convex bodies



the Steiner point

Alternate “center” of convex body

Introduced by Jakob Steiner in 1840

𝑠𝑡(𝐾)



the Steiner point

Average of extreme points 
    in all directions

𝑠𝑡(𝐾)

⇒ Average of extreme points    
           weighted by size of normal cone

𝑠𝑡(𝐾)



𝑠𝑡(𝐾)

       𝛻ℎ𝐾 𝜃 ≔ argmax
𝑥∈𝐾

𝜃, 𝑥

= න

𝜃 =1

∇ℎ𝐾 𝜃 𝑑𝜃

ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

 ⟨𝜃, 𝑥⟩

the Steiner point

= 𝔼𝐺 ~ 𝑁 0,1 𝑑[∇ℎ𝐾 𝐺 ]

𝑠𝑡(𝐾)

𝜇 = density function for
      d-dimensional standard Gaussian

= න

𝑔

∇ℎ𝐾 𝑔 𝑑𝜇(𝑔)



𝑠𝑡(𝐾) = 𝔼𝐺[ ∇ℎ𝐾 𝐺 ]

an equivalent definition

Algebraically useful

= 𝔼𝐺[ 𝐺 ℎ𝐾 𝐺 ]

Visually intuitive

       𝛻ℎ𝐾 𝜃 ≔ argmax
𝑥∈𝐾

𝜃, 𝑥ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

 ⟨𝜃, 𝑥⟩

𝑠𝑡(𝐾)

𝐺 ~ (𝑁 0,1 , 𝑁 0,1 , … , 𝑁 0,1 )



𝔼𝐺[ ∇𝑓 𝐺 ]

proving the equivalence

= 𝔼𝐺[ 𝐺 𝑓 𝐺 ]

𝔼𝐺[ 𝑓′ 𝐺 ] = ∫ 𝑓′ 𝑥  𝜇 𝑥  𝑑𝑥

In 1-dimension:



𝔼𝐺[ ∇𝑓 𝐺 ]

proving the equivalence

= 𝔼𝐺[ 𝐺 𝑓 𝐺 ]

𝔼𝐺[ 𝑓′ 𝐺 ] = ∫ 𝑓′ 𝑥  𝜇 𝑥  𝑑𝑥

In 1-dimension:

= 𝑓 ∞ 𝜇 ∞ −  𝑓 −∞ 𝜇 −∞ − ∫ 𝑓 𝑥  𝜇′ 𝑥  𝑑𝑥 

𝜇 𝑥 ∝ 𝑒−𝑥2/2 

⇒  𝜇′ 𝑥 ∝  𝑒−𝑥2/2 ⋅ (−2𝑥/2)

= − ∫ 𝑓 𝑥  (−𝑥 𝜇 𝑥 ) 𝑑𝑥

=  ∫ 𝑥 𝑓 𝑥  𝜇 𝑥  𝑑𝑥

simple case of
   Gaussian integration-by-parts

= 𝔼𝐺[ 𝐺 𝑓 𝐺 ]



𝑠𝑡(𝐾) = 𝔼𝐺[ ∇ℎ𝐾 𝐺 ]

Steiner point

Algebraically useful

= 𝔼𝐺[ 𝐺 ℎ𝐾 𝐺 ]

Visually intuitive

       𝛻ℎ𝐾 𝜃 ≔ argmax
𝑥∈𝐾

𝜃, 𝑥ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

 ⟨𝜃, 𝑥⟩



another algo for nested case

support function of convex body

Steiner point of convex body 

⇒  new O(d)-competitive algo for nested convex bodies



remember: suffices to solve bounded case (nested)

Given:   nested convex sets 𝐵 0, 𝑟 = 𝐾0 ⊃ 𝐾1 ⊃  … ⊃ 𝐾𝑡

Want: xt ∈ 𝐾𝑡 and 𝐴𝐿𝐺 ≤  𝑓 𝑑 ⋅  𝑟

𝑟



algorithm for nested case

Move to the Steiner point of 𝐾𝑡

[Bubeck Klartag Lee Li Sellke 2020]



𝑥𝑡 = 𝑠𝑡 𝐾𝑡

bad example (revisited)
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bad example (revisited)

𝑥𝑡 = 𝑠𝑡 𝐾𝑡

Steiner point algo:  smoother version of recursive centroid
▪ 𝑂(𝑑) competitive!

▪ memoryless!



d-competitive for nested case

Move to the Steiner point of 𝐾𝑡

[Bubeck Klartag Lee Li Sellke 2020]



Finally: General Case



suffices to solve bounded case (non-nested)

Given:   convex sets 𝐵 0, 𝒓 = 𝐾0, 𝐾1, 𝐾2, … , 𝐾𝑡

Want: xt ∈ 𝐾𝑡 and 𝐴𝐿𝐺 ≤  𝑓 𝑑 ⋅  𝒓

𝒓



𝐾1

0

𝑎

Ω1

Define Ω𝑡 ≔ {where OPT might be at time 𝑡, having paid ≤ 𝑟}



Ω𝑡 form convex, nested sets

0

Ω1

𝐾1

𝑟
𝐵(0, 𝑟)

𝑥

𝑦𝑦1

𝑥1
(𝑥 + 𝑦)/2

(𝑥1 + 𝑦1)/2

𝐾1

⇒ 𝑓(𝑑)-competitive algo for nested case on Ω1, … , Ω𝑇 pays 𝑓 𝑑 ⋅ 𝑟 



Black-box algorithm to chase Ω𝑡 may be infeasible

𝐾1

Ω1 xt ∈ Ω𝑡            but is  xt ∈ 𝐾𝑡?



Key lemma: 𝑠𝑡 𝛺𝑡 ∈ 𝐾𝑡

𝐾𝑡

Ω𝑡



Theorem: [Argue Gupta Guruganesh Tang 2020] [Sellke 2020]

    the work function Steiner point algorithm is  𝑂(𝑑) competitive.

that proves



functional Steiner point

Given a convex function 𝑓

𝑠𝑡 𝑓 ≔  න

𝜃∈𝐵∗

𝛻𝑓∗ 𝜃 𝑑𝜃

where 𝑓∗ 𝜃 = Fenchel dual, and 𝐵∗ ≔ dual space unit ball

Can define work function for function chasing
Algo: move to functional Steiner point of work function

▪ doesn’t need guess-and-double
▪ works for all norms
▪ gives general unified view, potentially useful in other contexts

[Sellke SODA 20]



other directions

Chasing lines and subspaces

   can reduce chasing k-dim affine subspaces in ℝ𝑑 to O(k)-dim chasing.                       [Argue Guruganesh Gupta] 

     see also [Antoniadis Barcelo Nugent Pruhs Schewior Scquizzato] [Bienkowski Byrka Coester Jez Koutsoupias]

Multi-server chasing

    2-servers 2-d not chaseable, but special cases (k-median/means) doable                         [Bubeck Rabani Sellke]

Chasing well-conditioned functions

    can chase fns having condition number 𝜅 with comp.ratio 𝑂 𝜅

            lower bd of 𝜅1/3.  Close gap?                                                                                 [Argue Guruganesh Gupta] 

    can chase locally-polyhedral fns, other classes                                [Chen Goel Wierman, Goel Lin Sun Wierman]



wrap-up, and open questions

▪ 𝑂(𝑑) competitive algo for general convex body chasing algorithm

▪ 𝑂( 𝑑 log 𝑑) competitive algo for nested bodies

▪ Ω(𝑑1/2) lower bound

▪ better algorithms for special classes of convex body chasing?
▪ e.g., faces of a given polytope (arises in k-server, paging)?

▪ broader classes of multiserver chasing?

▪ tight bounds for well-conditioned function-chasing?

▪ deeper understanding of connections to online learning?



lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)
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