
Online Algos: Old and New
Lecture 4: Search Problems

Anupam Gupta (NYU)

lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

Metrical Task System = Function Chasing

[Borodin Linial Saks 92]

Metric space 𝑋, 𝑑 , 𝑥0 ∈ 𝑋

@ time t:
 see cost function 𝑓𝑡: 𝑋 → ℝ≥0

 play point 𝑥𝑡 ∈ 𝑋

cost = σ𝑡 𝑓𝑡 𝑥𝑡 + 𝑑(𝑥𝑡, 𝑥𝑡−1)

Metrical Service System = Set Chasing

[Borodin Linial Saks 92]

@ time t:
 see subset 𝑆𝑡 ⊆ 𝑋
 play point 𝑥𝑡 ∈ 𝑆𝑡

cost = σ𝑡 𝑑(𝑥𝑡, 𝑥𝑡−1)

Metric space 𝑋, 𝑑 , 𝑥0 ∈ 𝑋

Set Chasing

Uniform Metric

Uniform Metric Set Chasing

n points, unit distance from each other

see set 𝑆𝑡 ⊆ [𝑛] at each timestep, must move to 𝑥𝑡 ∈ 𝑆𝑡

minimize number of moves

Algo 0: Move to arbitrary point in 𝑆𝑡

𝑆1 = {2,3,4,5 … 𝑛}

𝑆2 = {1,3,4,5, … 𝑛}

𝑆3 = {2,3,4,5 … 𝑛}

𝑆4 = {1,3,4,5, … 𝑛}

…

𝑥0 = 1

𝑥1 = 2

𝑥2 = 1

𝑥3 = 2

𝑥4 = 1

OPT = 1

E[ALG] = Θ(𝑛)

Uniform Metric Set Chasing

n points, unit distance from each other

see set 𝑆𝑡 ⊆ [𝑛] at each timestep, must move to 𝑥𝑡 ∈ 𝑆𝑡

minimize number of moves

Algo 0: Move to arbitrary point in 𝑆𝑡

Algo 1: Move to random point in 𝑆𝑡

Adversary:

Pick random goal 𝑔 ∈ {1 … 𝑛}

for 𝑡 = 1 𝑡𝑜 𝑛10

 pick random ℎ from 𝑛
 define 𝑆𝑡 = 𝑛 ∖ ℎ ∪ {𝑔}

OPT = 1

E[ALG] = Θ(𝑛)

Uniform Metric Set Chasing

n points, unit distance from each other

see set 𝑆𝑡 ⊆ [𝑛] at each timestep, must move to 𝑥𝑡 ∈ 𝑆𝑡

minimize number of moves

Algo 2: Random marking

Random Marking

At time 𝑡:
 Mark all points not in 𝑆𝑡
 If 𝑥𝑡−1 ∈ 𝑆𝑡 set 𝑥𝑡 ← 𝑥𝑡−1

 else
 𝑥𝑡 = random unmarked pt in 𝑆𝑡

If all points marked, unmark all

OPT ≥ 1 in an epoch

ALG ≤ 𝑂(log 𝑛)Epoch

Last marked
node in epoch Epoch: times between two unmarks

Thm 1: Random marking is 𝑂(log 𝑛) competitive

Uniform Metric Set Chasing

n points, unit distance from each other

see set 𝑆𝑡 ⊆ [𝑛] at each timestep, must move to 𝑥𝑡 ∈ 𝑆𝑡

minimize number of moves

Thm 1: Random marking is 𝑂(log 𝑛) competitive

Thm 2: Every (rand) algorithm is Ω(log 𝑛) competitive

𝑆𝑡 = n ∖ uniformly random node

Yao’s lemma

Epoch ends when all pages have been
 antiset in this epoch

“antiset”

Epoch length = 𝑛𝐻𝑛

OPT ≅ 1 per epoch (move to last antiset)

E[ALG] pays 1/𝑛 per step

Uniform Metric Function Chasing

n points, unit distance from each other

see set 𝑓𝑡: 𝑛 → 𝑅+ at each timestep, must play 𝑥𝑡

minimize 𝑓𝑡 𝑥𝑡 + 1(𝑥𝑡 ≠ 𝑥𝑡−1)

Thm 1: variant of Random marking is 𝑂(log 𝑛) competitive

Thm 2: Every (rand) algorithm is Ω(log 𝑛) competitive (follows from previous lower bound)

General Metric Function Chasing

General metric space 𝑉, 𝑑 on 𝑛 points

Each time function 𝑓𝑡: 𝑉 → ℝ+

Thm 3: 𝑂(log2 𝑛) competitive algo [Bubeck Cohen Lee Lee 17, Coester Lee 19]

Thm 4: Every (rand) algorithm is Ω(log2 𝑛) competitive [Bubeck Coester Rabani 22]

must play 𝑥𝑡, pay 𝑓𝑡 𝑥𝑡 + 𝑑(𝑥𝑡, 𝑥𝑡−1)

Further directions

Many of these ideas extend to paging and 𝑘-server:

 k servers moving in a metric space

 requests arrive at location, must choose which server to move to it

Convex Function Chasing

Convex Body Chasing: definition

3

𝐴𝐿𝐺 = 3

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

algorithm controls point in ℝ𝑑

[Friedman Linial 94]

Convex Body Chasing: definition

3

3

𝐴𝐿𝐺 = 3 + 3𝐴𝐿𝐺 = 3

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

algorithm controls point in ℝ𝑑

[Friedman Linial 94]

Convex Body Chasing: definition

3

3

5

𝐴𝐿𝐺 = 3 + 3 + 5𝐴𝐿𝐺 = 3 + 3

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

algorithm controls point in ℝ𝑑

[Friedman Linial 94]

Convex Body Chasing: definition

3

3

5

3

𝐴𝐿𝐺 = 3 + 3 + 5 + 3𝐴𝐿𝐺 = 3 + 3 + 5

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

algorithm controls point in ℝ𝑑

[Friedman Linial 94]

Convex Body Chasing: definition

3

3

5

3

2
4

5

𝐴𝐿𝐺 = 3 + 3 + 5 + 3 = 14
𝑂𝑃𝑇 = 2 + 4 + 5 = 11

cr(𝐴𝐿𝐺) ≔ max
𝜎

𝐴𝐿𝐺 𝜎

𝑂𝑃𝑇 𝜎

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

algorithm controls point in ℝ𝑑

[Friedman Linial 94]

Nested Version

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]

Nested Version

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]

Nested Version

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]

Nested Version

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]

Nested Version

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]

Nested Version

𝐴𝐿𝐺

𝑂𝑃𝑇

algorithm controls point in ℝ𝑑

at time t:

convex body 𝐾𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 ||

nested: 𝐾𝑡 ⊆ 𝐾𝑡−1

[Bansal Bohm Elias Koumoutsos Umboh SODA 2018]

a closely related problem: convex function chasing

algorithm controls point in ℝ𝑑

at time t:

convex function 𝑓𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 || + 𝑓(𝑥𝑡)

[Friedman Linial 94]

Reductions: CBC𝑑 ≤ CFC𝑑 ≤ CBC𝑑+1

[Bubeck, Lee, Li, Sellke STOC 2019]

algorithm controls point in ℝ𝑑

at time t:

convex function 𝑓𝑡 arrives

algorithm moves to 𝑥𝑡

pays || 𝑥𝑡 − 𝑥𝑡−1 || + 𝑓(𝑥𝑡)

within 𝑂(1) of CBC in d + 1 dim

why do we care about convex body chasing?

Generalization of (fractional version) of many online problems
▪ paging and k-server
▪ set cover and other packing/covering problems

 get generic online convex program solvers?

 get a unified algorithm for these problems?

a brief history

contains, among many things: two algorithms

a lower bound

a lower bound

a lower bound

a lower bound

𝐴𝐿𝐺 ≥ 2 ⋅ 𝑂𝑃𝑇

𝐴𝐿𝐺 ≥ 𝑑 ⋅ 𝑂𝑃𝑇

𝐴𝐿𝐺
𝑂𝑃𝑇

a reduction to half-spaces

a reduction to half-spaces

and a conjecture

rest of the talk

1. Nested Convex Set Chasing (part I)
 - Some failed algos
 - 𝑂(𝑑 log 𝑑) algo via recursive centroid

2. Nested Convex Set Chasing (part II)
 - Steiner point
 - move to Steiner point

3. General Convex Set Chasing
 - reduction to nested Steiner point algo

simpler “bounded” version

Convex sets 𝐵 0, 𝑟 = 𝐾0, followed by 𝐾1, 𝐾2 … all subsets of 𝐵(0, 𝒓)

 Promise: 𝑂𝑃𝑇 ≈ 𝒓

 Want: 𝐴𝐿𝐺 ≤ 𝑓 𝑑 ⋅ 𝒓

Fact: implies 𝑂 𝑓 𝑑 -competitive for CBC.

Proof: guess-and-double.
𝒓

simpler “bounded” version

Convex sets 𝐵 0, 𝑟 = 𝐾0, followed by 𝐾1, 𝐾2 … all subsets of 𝐵(0, 𝟏)

 Promise: 𝑂𝑃𝑇 ≈ 𝟏

 Want: 𝐴𝐿𝐺 ≤ 𝑓 𝑑 ⋅ 𝟏

Fact: implies 𝑂 𝑓 𝑑 -competitive for CBC.

Proof: guess-and-double.
𝟏

strawman #1: greedy

move to the closest point in 𝐾𝑡

strawman #1: greedy

move to the closest point in 𝐾𝑡

strawman #1: greedy

move to the closest point in 𝐾𝑡

strawman #1: greedy

𝐴𝐿𝐺

𝑂𝑃𝑇

move to the closest point in 𝐾𝑡

unbounded competitive ratio!

Nested Case

Grunbaum’s Inequality [1960]

For any convex body,
 any half-space that cuts off the centroid

cuts volume by at least (1 − 1/𝑒)

Branko Grunbaum, https://opc.mfo.de/detail?photo_id=7667

%volume = 1 −
1

𝑛

𝑛

Algo for Nested Case:
Move to centroid of current body

Hope: each time volume decreases a lot

Maybe don’t need to move very often

strawman #2 (for nested case): centroid

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

strawman #2 (for nested case): centroid

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

strawman #2 (for nested case): centroid

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

strawman #2 (for nested case): centroid

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

strawman #2 (for nested case): centroid

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

strawman #2 (for nested case): centroid

Volume ↓↓↓

☺

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

but alas…

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

but alas…

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

but alas…

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

but alas…

▪ 𝐴𝐿𝐺 unbounded

▪ 𝑂𝑃𝑇 = 𝑂(1)

▪ Not competitive

move to centroid of 𝐾𝑡

Grunbaum’s Theorem
 half-space cuts off centroid ⇒

volume decreases (1 − 1/𝑒)

[Argue Bubeck Cohen Gupta Lee 19]

fix using recursive centroid: a sketch

suppose recursive cuts don’t reduce diameter ⇒ make body into “pancake”

 fat directions: width more than 1/poly 𝑑

project out thin directions, run centroid algo on fat directions

thin directions are “thin enough” ⇒ “movement in them controlled”

𝑂(log 𝑑) steps to get another thin direction.
𝑑 directions. ⇒ 𝑂(𝑑 log 𝑑)

[Argue Bubeck Cohen Gupta Lee 19]

}

Theorem: [Argue Bubeck Cohen Gupta Lee 2019]

 Recursive centroid algorithm is 𝑂(𝑑 log 𝑑) competitive.

Proof idea: use volume (projected onto “fat” directions) as potential function.
 projections increase it, but Grunbaum cuts decrease it.

Theorem: [Bubeck Klartag Lee Li Sellke 2020]

 Gaussian version of recursive centroid is 𝑂(𝑑 log 𝑑) competitive.

 Almost tight for Euclidean norm

Algorithm idea: centroid with respect to Gaussian measure, dampens movement, retains volume drop.

results for nested case

how to generalize to the non-nested case?

Theorem: [Bubeck Lee Li Sellke 2020]

 (substantial extension of) recursive centroid algorithm is 2𝑂 𝑑 competitive.

Proof:

 It’s complicated.

 Contains several clever ideas, we’ll discuss another day.

a breakthrough for the general case…

instead let’s approach the problem via a different angle…

Theorem: [Argue Gupta Guruganesh Tang 2020] [Sellke 2020]

 the work function Steiner point algorithm is 𝑂 𝑑 -competitive.

rest of the talk: a simpler, better result

Towards the General Case

Another Algo for Nested Case

another algo for nested case

support function of convex body

Steiner point of convex body

⇒ new O(d)-competitive algo for nested convex bodies

support function ℎ𝐾 𝜃 of convex body

𝜃

ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

⟨𝜃, 𝑥⟩

∇ℎ𝐾 𝜃 ≔ arg max
𝑥∈𝐾

⟨𝜃, 𝑥⟩

inner product with farthest point in K
 in direction of 𝜃

farthest point in K in direction of 𝜃

support function ℎ𝐾 𝜃 of convex body

𝜃

ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

⟨𝜃, 𝑥⟩

∇ℎ𝐾 𝜃 ≔ arg max
𝑥∈𝐾

⟨𝜃, 𝑥⟩

inner product with farthest point in K
 in direction of 𝜃

farthest point in K in direction of 𝜃

support function ℎ𝐾 𝜃 of convex body

𝜃

ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

⟨𝜃, 𝑥⟩

∇ℎ𝐾 𝜃 ≔ arg max
𝑥∈𝐾

⟨𝜃, 𝑥⟩

inner product with farthest point in K
 in direction of 𝜃

farthest point in K in direction of 𝜃

support function ℎ𝐾 𝜃 of convex body

𝜃

ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

⟨𝜃, 𝑥⟩

∇ℎ𝐾 𝜃 ≔ arg max
𝑥∈𝐾

⟨𝜃, 𝑥⟩

inner product with farthest point in K
 in direction of 𝜃

farthest point in K in direction of 𝜃

another algo for nested case

support function of convex body

Steiner point of convex body

⇒ new O(d)-competitive algo for nested convex bodies

the Steiner point

Alternate “center” of convex body

Introduced by Jakob Steiner in 1840

𝑠𝑡(𝐾)

the Steiner point

Average of extreme points
 in all directions

𝑠𝑡(𝐾)

⇒ Average of extreme points
 weighted by size of normal cone

𝑠𝑡(𝐾)

𝑠𝑡(𝐾)

 𝛻ℎ𝐾 𝜃 ≔ argmax
𝑥∈𝐾

𝜃, 𝑥

= න

𝜃 =1

∇ℎ𝐾 𝜃 𝑑𝜃

ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

 ⟨𝜃, 𝑥⟩

the Steiner point

= 𝔼𝐺 ~ 𝑁 0,1 𝑑[∇ℎ𝐾 𝐺]

𝑠𝑡(𝐾)

𝜇 = density function for
 d-dimensional standard Gaussian

= න

𝑔

∇ℎ𝐾 𝑔 𝑑𝜇(𝑔)

𝑠𝑡(𝐾) = 𝔼𝐺[∇ℎ𝐾 𝐺]

an equivalent definition

Algebraically useful

= 𝔼𝐺[𝐺 ℎ𝐾 𝐺]

Visually intuitive

 𝛻ℎ𝐾 𝜃 ≔ argmax
𝑥∈𝐾

𝜃, 𝑥ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

 ⟨𝜃, 𝑥⟩

𝑠𝑡(𝐾)

𝐺 ~ (𝑁 0,1 , 𝑁 0,1 , … , 𝑁 0,1)

𝔼𝐺[∇𝑓 𝐺]

proving the equivalence

= 𝔼𝐺[𝐺 𝑓 𝐺]

𝔼𝐺[𝑓′ 𝐺] = ∫ 𝑓′ 𝑥 𝜇 𝑥 𝑑𝑥

In 1-dimension:

𝔼𝐺[∇𝑓 𝐺]

proving the equivalence

= 𝔼𝐺[𝐺 𝑓 𝐺]

𝔼𝐺[𝑓′ 𝐺] = ∫ 𝑓′ 𝑥 𝜇 𝑥 𝑑𝑥

In 1-dimension:

= 𝑓 ∞ 𝜇 ∞ − 𝑓 −∞ 𝜇 −∞ − ∫ 𝑓 𝑥 𝜇′ 𝑥 𝑑𝑥

𝜇 𝑥 ∝ 𝑒−𝑥2/2

⇒ 𝜇′ 𝑥 ∝ 𝑒−𝑥2/2 ⋅ (−2𝑥/2)

= − ∫ 𝑓 𝑥 (−𝑥 𝜇 𝑥) 𝑑𝑥

= ∫ 𝑥 𝑓 𝑥 𝜇 𝑥 𝑑𝑥

simple case of
 Gaussian integration-by-parts

= 𝔼𝐺[𝐺 𝑓 𝐺]

𝑠𝑡(𝐾) = 𝔼𝐺[∇ℎ𝐾 𝐺]

Steiner point

Algebraically useful

= 𝔼𝐺[𝐺 ℎ𝐾 𝐺]

Visually intuitive

 𝛻ℎ𝐾 𝜃 ≔ argmax
𝑥∈𝐾

𝜃, 𝑥ℎ𝐾 𝜃 ≔ max
𝑥∈𝐾

 ⟨𝜃, 𝑥⟩

another algo for nested case

support function of convex body

Steiner point of convex body

⇒ new O(d)-competitive algo for nested convex bodies

remember: suffices to solve bounded case (nested)

Given: nested convex sets 𝐵 0, 𝑟 = 𝐾0 ⊃ 𝐾1 ⊃ … ⊃ 𝐾𝑡

Want: xt ∈ 𝐾𝑡 and 𝐴𝐿𝐺 ≤ 𝑓 𝑑 ⋅ 𝑟

𝑟

algorithm for nested case

Move to the Steiner point of 𝐾𝑡

[Bubeck Klartag Lee Li Sellke 2020]

𝑥𝑡 = 𝑠𝑡 𝐾𝑡

bad example (revisited)

bad example (revisited)

𝑥𝑡 = 𝑠𝑡 𝐾𝑡

bad example (revisited)

𝑥𝑡 = 𝑠𝑡 𝐾𝑡

bad example (revisited)

𝑥𝑡 = 𝑠𝑡 𝐾𝑡

Steiner point algo: smoother version of recursive centroid
▪ 𝑂(𝑑) competitive!

▪ memoryless!

d-competitive for nested case

Move to the Steiner point of 𝐾𝑡

[Bubeck Klartag Lee Li Sellke 2020]

Finally: General Case

suffices to solve bounded case (non-nested)

Given: convex sets 𝐵 0, 𝒓 = 𝐾0, 𝐾1, 𝐾2, … , 𝐾𝑡

Want: xt ∈ 𝐾𝑡 and 𝐴𝐿𝐺 ≤ 𝑓 𝑑 ⋅ 𝒓

𝒓

𝐾1

0

𝑎

Ω1

Define Ω𝑡 ≔ {where OPT might be at time 𝑡, having paid ≤ 𝑟}

Ω𝑡 form convex, nested sets

0

Ω1

𝐾1

𝑟
𝐵(0, 𝑟)

𝑥

𝑦𝑦1

𝑥1
(𝑥 + 𝑦)/2

(𝑥1 + 𝑦1)/2

𝐾1

⇒ 𝑓(𝑑)-competitive algo for nested case on Ω1, … , Ω𝑇 pays 𝑓 𝑑 ⋅ 𝑟

Black-box algorithm to chase Ω𝑡 may be infeasible

𝐾1

Ω1 xt ∈ Ω𝑡 but is xt ∈ 𝐾𝑡?

Key lemma: 𝑠𝑡 𝛺𝑡 ∈ 𝐾𝑡

𝐾𝑡

Ω𝑡

Theorem: [Argue Gupta Guruganesh Tang 2020] [Sellke 2020]

 the work function Steiner point algorithm is 𝑂(𝑑) competitive.

that proves

functional Steiner point

Given a convex function 𝑓

𝑠𝑡 𝑓 ≔ න

𝜃∈𝐵∗

𝛻𝑓∗ 𝜃 𝑑𝜃

where 𝑓∗ 𝜃 = Fenchel dual, and 𝐵∗ ≔ dual space unit ball

Can define work function for function chasing
Algo: move to functional Steiner point of work function

▪ doesn’t need guess-and-double
▪ works for all norms
▪ gives general unified view, potentially useful in other contexts

[Sellke SODA 20]

other directions

Chasing lines and subspaces

 can reduce chasing k-dim affine subspaces in ℝ𝑑 to O(k)-dim chasing. [Argue Guruganesh Gupta]

 see also [Antoniadis Barcelo Nugent Pruhs Schewior Scquizzato] [Bienkowski Byrka Coester Jez Koutsoupias]

Multi-server chasing

 2-servers 2-d not chaseable, but special cases (k-median/means) doable [Bubeck Rabani Sellke]

Chasing well-conditioned functions

 can chase fns having condition number 𝜅 with comp.ratio 𝑂 𝜅

 lower bd of 𝜅1/3. Close gap? [Argue Guruganesh Gupta]

 can chase locally-polyhedral fns, other classes [Chen Goel Wierman, Goel Lin Sun Wierman]

wrap-up, and open questions

▪ 𝑂(𝑑) competitive algo for general convex body chasing algorithm

▪ 𝑂(𝑑 log 𝑑) competitive algo for nested bodies

▪ Ω(𝑑1/2) lower bound

▪ better algorithms for special classes of convex body chasing?
▪ e.g., faces of a given polytope (arises in k-server, paging)?

▪ broader classes of multiserver chasing?

▪ tight bounds for well-conditioned function-chasing?

▪ deeper understanding of connections to online learning?

lecture plan

Lecture #1: Set Cover (worst case)

Lecture #2: Set Cover (beyond worst case), Network design (both)

Lecture #3: Resource Allocation (aka packing)

Lecture #4: Search Problems (aka chasing)

	Slide 1: Online Algos: Old and New Lecture 4: Search Problems
	Slide 2: lecture plan
	Slide 3: Metrical Task System = Function Chasing
	Slide 4: Metrical Service System = Set Chasing
	Slide 5
	Slide 6: Uniform Metric Set Chasing
	Slide 7: Uniform Metric Set Chasing
	Slide 8: Uniform Metric Set Chasing
	Slide 9: Uniform Metric Set Chasing
	Slide 10: Uniform Metric Function Chasing
	Slide 11: General Metric Function Chasing
	Slide 12: Further directions
	Slide 13
	Slide 14: Convex Body Chasing: definition
	Slide 15: Convex Body Chasing: definition
	Slide 16: Convex Body Chasing: definition
	Slide 17: Convex Body Chasing: definition
	Slide 18: Convex Body Chasing: definition
	Slide 19: Nested Version
	Slide 20: Nested Version
	Slide 21: Nested Version
	Slide 22: Nested Version
	Slide 23: Nested Version
	Slide 24: Nested Version
	Slide 25: a closely related problem: convex function chasing
	Slide 26: Reductions: CBC d CFC d CBC d 1
	Slide 27: why do we care about convex body chasing?
	Slide 28: a brief history
	Slide 29: contains, among many things: two algorithms
	Slide 30: a lower bound
	Slide 31: a lower bound
	Slide 32: a lower bound
	Slide 33: a lower bound
	Slide 34: a reduction to half-spaces
	Slide 35: a reduction to half-spaces
	Slide 36: and a conjecture
	Slide 38: rest of the talk
	Slide 39: simpler “bounded” version
	Slide 40: simpler “bounded” version
	Slide 41: strawman #1: greedy
	Slide 42: strawman #1: greedy
	Slide 43: strawman #1: greedy
	Slide 44: strawman #1: greedy
	Slide 45
	Slide 46
	Slide 47
	Slide 48: strawman #2 (for nested case): centroid
	Slide 49: strawman #2 (for nested case): centroid
	Slide 50: strawman #2 (for nested case): centroid
	Slide 51: strawman #2 (for nested case): centroid
	Slide 52: strawman #2 (for nested case): centroid
	Slide 53: strawman #2 (for nested case): centroid
	Slide 54: but alas…
	Slide 55: but alas…
	Slide 56: but alas…
	Slide 57: but alas…
	Slide 58: fix using recursive centroid: a sketch
	Slide 59: results for nested case
	Slide 60: a breakthrough for the general case…
	Slide 61: rest of the talk: a simpler, better result
	Slide 62
	Slide 63: another algo for nested case
	Slide 64: support function h K of convex body
	Slide 65: support function h K of convex body
	Slide 66: support function h K of convex body
	Slide 67: support function h K of convex body
	Slide 68: another algo for nested case
	Slide 69: the Steiner point
	Slide 70: the Steiner point
	Slide 71: the Steiner point
	Slide 72: an equivalent definition
	Slide 73: proving the equivalence
	Slide 74: proving the equivalence
	Slide 75: Steiner point
	Slide 76: another algo for nested case
	Slide 77: remember: suffices to solve bounded case (nested)
	Slide 78: algorithm for nested case
	Slide 79: bad example (revisited)
	Slide 80: bad example (revisited)
	Slide 81: bad example (revisited)
	Slide 82: bad example (revisited)
	Slide 84: d-competitive for nested case
	Slide 85
	Slide 86: suffices to solve bounded case (non-nested)
	Slide 87: Define t {where OPT might be at time t, having paid r }
	Slide 88: t form convex, nested sets
	Slide 89: Black-box algorithm to chase t may be infeasible
	Slide 90: Key lemma: s t t , K t
	Slide 93: that proves
	Slide 94: functional Steiner point
	Slide 95: other directions
	Slide 96: wrap-up, and open questions
	Slide 97: lecture plan

