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RANDOM K-CNFS

- )&
,
n

, k) : pick m=In clauses of width k

for 10 suff large frg(d ,
n

, k) UNSAT W. h.p .

1 = = = = - = Threshold
⑪

probability I Below almost certainly satisfiable

SATISFIABLE ① Above almost certainly unsatisfiable

#
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Resolution-Based Algorithms for random KINF
passing transition point

& goes absolutely

-↑
Noticed

*
Worst-case runtime

1 = = = = - = of standard Resolution

based SAT algonthms .

n 22(n/x)

↑

n~ "
*

0 - 111 -

- 4
.267 A - x



OTHER RANDOM CNE FAMILIES

↑

1 .
Random KXOR

,

random KCSP

2. Clique(h) , g-&(n , p) part

p= Clique of size logn

3
. Hard(s) - - all boolean functions ona variables

says - computed by a size s circuit



MOTIVATION

1 .
Structural properties relate to our

understanding

2. Natural distributions as benchmark

for sat algorithms

3. Lower bounds for particular proof systems
CRES

,
sos) give unconditional

inapproximability for large family of algorithms



WHY IS IT SO HARD TO CERTIFY UNSAT OF RANDOM F ?

counting argument doesn't seem to work :

Circuit complexity :

2
poly() circuits of poly size

&"Boolean functions

Proof complexity
# of proofs of size s # uNsaT formulas



FEIgE'S HYPOTHESIS

&

Nefn (Refutation algorithm)
Algorithm A is a refutation algorithm for
random KSAT

,
+vF(d

,
n

, 1) :
A outputs YES with probability >'
A outputsNo if & is satisfiable

Feige's Hypothesis For $20 sufficiently large, fr Ea,
n

,
1):

&

I
.
there isNo polytime refutation algorithm of f

# No proof system can efficiently refute f



The incredible usefulness of Feige's conjecture

Many problems are hard under Feige's Conjecture:

· Approximating vertex cover

· Arg case MCSP

· PAC learning DNF



UPPER BOUNDS FOR RANDOM SAT

~Resolution Posizesa
(Beame

, Kmp, P, Saks]

~o (nog,
Frege

[Feige, Kim ,Ofek]
[Muller , Tzameret]



LOWER BOUNDS FOR RANDOM SAT

Poly-size UB Expontial LB

manResolution msn/logn K= 3
" (Chratal

,
Szemerdi] Kool)

(DenSasson
, Wigderson]I (Beame

, Kmp,
P

, Saks] (Beame
, Kop, P

, Saks] ↑

Nullsatz m = O(n) k + 0()
Cgrigoriev]

Poculus
m = O(n) k = 04)
[Buss

, grigoriev, Jrpagliazzo, PJ

Sos m = 0(n) k :0(1)
Egregoriev

,
Schoenebeck]

↑

Cutting k = Ollogn)
Planes

m = poly (n)

[Fleming
,

Pankratov
,
P

,
Robere/Hrubes

,
Pudlak]

1 .4
m -nToge I

[Feige, Kim
,Ofek]

?

[Muller, Tzameret]



RelutingSemi-Random 3SAT

RandomKSAT : Pick Kuniform hypergraph I over (x--Xn] at random.
For each edge LEH

, randomly choose signs be bit ,
1) of

each Literal
.

nu
whether variables in c occurs

positively or Negatively

Semi
.
random KSAT :

Fix arbitrary 3-hypergraph H over Ex
, --Xn3 ,

with m edges.

For each edge CeH randomly choose b.
,
bu

,
b, 34 ,

13
"hypergraph-

&

Not random.

only signs
are

Theorem why there exists polysize Frege refutations for randsen

semirandom 35AT instance
,
for m no clauses



Theorem who
includingSumiRandomnations for Creige

,
Kim

,
Ofek]

-

semirandom 35AT instance
,

for m no clauses Egurus name

Kothari
, Manohar'z]

PotPlaneak refutation for semirandom3st to

(semil-strong refutation for 3XOR via Feige XOR trick
:

1
. 4Them> Strong refutations for semi-random sxor with men

(show val(f) < 1- whp) implies weak refutations&

of semi-randomSAT
,

men't

T
.
Theorem1 : 5 strong refutations of semirandom >XOR via Moore

-

Ipergraph bound.



Semi-strong Refutation for 3XOR

I
h over [n]

·. . .
· To refute Ksat via strong MOR refutations

.

We will

setl-n's



Hypergraph Moore Bound

K = 2 Cordinary graphs) : Any graph with edges

has a cycle of length valogan



Hypergraph Moore Bound

= 2 Cordinary graphs) : Any graph with no edgesZ

has a cycle of length -2logan (Alon-Hoory Linial 2002]

generalization to kuniform hypergraphs :

A "cycle" is an even cover : set of Koedges It' It such that

every vertex
is contained in

& an even number of edges in I'

3o ·

⑨

&

· %

⑨



Hypergraph Moore Bound

FeigeConjecture (2008) :

Every Kuniform hypergraph It with m
=n(t edges

contains an even cover of length = Mlog,

↑
Proven up to poylogn factors Guruswami - Kothari-Manohar'21

Asieh-Kothari-Mohanty '22

H-17-M-correla-Sudakov' 24

(we will scetic a simple prof timepermitting)



Semi-strongRefutation for semirandom 3XOR

Theorem Let H = 3 , ..., [m] be arbitrary 3-uniform hypergraph over <n

Let4t be semirandom 3XOR given by 3XOR constraints (H , 5)

Then for meco ,
who over b. ..6-90 ,

13 :

val (4) & max praction of satisfied constraints of P * 1- oletogn)

Proof : It satisfies conditions of even cover Theorem (Moore bound)
() Find blogn length even cover.

2) Remove all hyperedges in cover
,
Let H = H - even cover

I still has 100m.
- llogn = Mo edges

3) Repeatedly apply even cover theorem
,
partitioning . 99mo hyperedges

ofI into disjoint even covers
,
each of size = elogn

<) Since each even cover is linealy independent, wiz of the even

covers will be unsatisfiable (RIS of equations will sum to - mod 2)

: in total at leastm) constraints must be falsea

:whp val (4) = 1-0(eogn) *



Proof of Hypergraph Moore Bound (1 = 4)

Hypergraph Moore Bound ·

Every Kuniform hypergraph It with m
=n(t edges

contains an even cover of length = Mlogan

Warmup : 1-1
.

Let's show every 4-uiform # with > edges contains

a logh length even cover

2 Let o be a graph on E vertices
.

(v
,
j) - (k

,
e) iff Sij , e3eH and i

,
j = k

,
e

edges in g in 11 correspondence to hyperedges in H

cycles in g in 11 correspondence with an even cover in H

: follows by graph moore bound



Proof of Hypergraph Moore Bound (1 = 4)

LetH be a -unform hypergraph with > n()* logn = logh edges.

Let K(H) be the leval-e Kikuchi graph of H :

Vertices of Ke(H) : all (*) e- subsets of In
Edges of Ke(H) : (S

,T) is an edge if SOTH

S '
T

ig ↑
(S

,
T) < edge (ke(H)

if f 31 ,
2

,
4

,63-H
⑳



Proof of Hypergraph Moore Bound (1 = 4)

LetH be a -unform hypergraph with > n()* logn = logh edges.

Let K(H) be the leval-e Kikuchi graph of H :

S T +
Vertices of Ke(H) : all (*) &- subsets of In ⑳

Edges of Ke(H) : (S
,T) is an edge if SotH color edge (S

, T) in ReCH)
by c = ST

Raim
A closed walk in KeCH) -> even cover in I
where some color appears an Leven cover-set of C's that occur an odd # o times in walk)odd # of times

k= 4 S, Sz
l=4 Se 3

,
052 = 4 = 21

,
2

,
5

, 63
5 ↳ 1920

3 3
53

505
= 2 = 23

,
4

,
7

, 83

Sosy = 3 = 45
,

6
,

9
,
103

S · S 56
7 Sy0Sj = < = 27

,
8

,
4

,
12)

S
8

3 ·92 Sj0Sy = 4 = 79
,

10
,

1
,
2)

Sj4
·

Sy Ss Sy Spos
,

=

< = 911
,

12
,

1
,
23

closedWalk in KeCH)
&

encover in H



Proof of Hypergraph Moore Bound (1 = 4)

Thus it suffices to prove the following Lemma :

&N LEMMA : Let I be 4- uniform hypergraph with logn edges .

-brigraphThen ghasa
closea

rainbow walk

Lemma Let I have no edges .

Thena contains a subgraph geg
with minimum degree d % and at least nole edges.



Proof of Hypergraph Moore Bound (1 = 4)

~closea

# double count rainbow paths of length l in g)
& has N = (v) vertices

Edges : each CEH contributes [I]) edges to G.

: G has (e) logn zoNlogNedges ,

so an degree
~ 20logn -zoeluga

Assume foc that G contains no short closed rainbow walks
.

Let Get be subgraph guaranteed by Lemma
,
mindegree d'3 Slog

N

Let q-logN-llogn

(i) # of length rainbow paths inG >Ad . (d') · (d2) .... (d - (1)=(2
(ii) # lenyth- rainbow paths = N2 · g ! =48 .

g
*(4) --ifa closed rainbow walk

You V then setf colors on every
contradition since 49 = YlogN < (9)SlogN =. 9d

rainbow welk must use

same set of a colors



-theorem2 Semi-strong KXOR Refutations -> Weak KSAT Refutations

Semirandom KSAT :

Fix arbitrary 3-hypergraph H over Ex
, --Xn3 ,

with m edges.

For each edge CEH randomly choose ba
,
b2

,
bi 34

,
13

For each clause (C
,
b
, be

,
ba) its Fourier representation over # (XE 13) is :

P(b
,
ibnib) + (b

,x + butz + b
, Xy + b

,
b X

, Xz + bbx + baby tex + bbab ***)

Ephe : < = Ex
c Xe

,
ty3 biobibs so clause is (x

,
r*V4s)

Fourier representation = + ( - x
,

- xz - Xy + 4,xz + X
,
y = X2xy - XXnxy)

Dejn
Let 4: [ (C ,

b)
,
(

,
b2)

...
km

, bim)] be a semirandom 3SAT

· maxThen val(4) =
x651

,

13 P(4 ,
b") X val(P) is max

fraction of satisfied

clauses in 4



=

Dejn
Let 4: [ (C

,
b)

,
(

,
b2)

...
km

, bim)] be a semirandom 3SAT

max
Then val(y) =

xib")
val(i) is max

,

fraction of satisfied clauses i a

-

write
pas sum of 8 polynomials :

Po = all constant thms

P: all linear terms

P2 = all quadratic terms

Po = all degree b terms (xORs)

max Pval(4)

=maxPoteawe'll ↓ (1-OleTogn)
show



max Pval(4)

=maxPoteawe'll ↓ (1-OleTogn)

Assuming these upper bounds,

and m = Old Flogn)
val(4) = = + (2) + -(1 -0(on)) = 1 + 1) - 0) etogu)

y

Mog setting e achiea

choosing Ion"s gives mon'*

So it is left to proce the
claimed

upper
bounds.



eyee3termsBOR pa follows by Theorem 1 !

UPPER bounds for Linean port (p , ) and quadratic part (P2) is easier.

We sketch profs of these next.

earterms

say X
:

occurs in n
, many clauses

.

Because signs are random
,

the coficient in front of X
:
has expectation~

·: P ,

= in Xi

: Max P:===0
X = 3- 1

, 134 ↑

Cauchy-Swartz



-uadratic terms can write quadratic part as MX) aA
where An : uxn matrix with 1 in (ii) iff Xi <

X,

an
= coefficient of XiX;

in Former expansion of clause (C
,
bY

Note nonzero entres of 29,
A
,

are determined by H
,

but sign (1) is random.

·(,
As) = 11 Sally since Kalle = In

By Matrix Khintchine (Matrix cheenof bound) :
more complicated any"SanbellemingDrain

·: MaxPantelle



-Remarkek proof can be formalized in poysized prese pf-

the hand part (Therem1) actually formalized in much weaker

system-poly-size Poy Calculus (PC) refutation over Fr

(2) No improvements to m = *** given in original FRO paper.

(3) Strong LBs for Resolution refutations :

for mansclauses
,

Resolution refutations require exponential size



Locally Decodable Codes

0 1 0 1 1 0 I D 1 10100101/100

be 50
,
13. X 90

, 131



Locally Decodable Codes

0 1 0 1 1 0 I D 110100101100# ①

be 50
,
13. X 90

, 131

- q
= 3-query local decoder

ic(k] bi 50
, 13

- - Decoder -

(9
,

<
,
5) - LDC : given received word x with <S fraction of errors,

for any position i, Decoder (i, x)
= X:

with probability =13

Applications : PCP's
,
Private Information Retrieval

,
secret sharing

,

worst-to-avg case reductions
,

Distributed computation, ...
↑

&en : Does there exist q = 0 (1) LDC with n = poly (K) ?



Locally Decodable Codes

0 1 0 1 1 0 I D 1 10100101/100
# ① &

be 50
,
13. X 90

, 131

- q
= 3-query local decoder

ic(k] Decoder bi 50, 13
->

Best constructionK -> 2"Matching Vector codes" [yel08,
Efr09

, Dyyil)

*New Lower Bounds *

m = (k3) for 3-query LDC's (AgkM23
,
Yankovitz 24]

alk)
n = 2 for linear 3query JCC's [Kothari

,
Manohar'23)

(locally correctable) [Alrabiah
, guruswami24)



SEMI-RANDOM XORS LDC LOWER BOUNDS

0 1 0 1 1 0 I * 1101001011100
↳ &

be 50
,
13. X 90

, 131

* Breakthrough Lower Bounds : - q
= 3-query local decoder

formalized as system of semi-random ic(k]Decoder 10
, 3

XOR constraints : 7 = Sig + 90
, 13" : Fo3

H :

NomaFormMeliosh matchings-,, each h over- i
Decoding : on ic(K] pick random Deat

,, outputEx mod ↑

System of XORs : VBESO,
1" : Fo = GUIL,

Celti : 3 X-+ B : b
v = C Proof based on

-Lemma : To highly UNSAT => LB e(u)· for LDC's ideas in
for random -

semirandom CSP

refutations


