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Traveling Salesman Problem

@ (Circuit) Traveling Salesman Problem
e Given a weighted graph G = (V,E) (c: E — R,), find a
minimum Hamiltonian circuit

Fic. 16. The optimal tour of 49 cities.

Figure from [Dantzig, Fulkerson, Johnson 1954].
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Traveling Salesman Problem

@ Metric (circuit) TSP
e Given a weighted graph G = (V,E) (c: E — R,), find a
minimum Hamiltonian circuit

e Triangle inequality holds
or
Multiple visits to the same vertex allowed

e NP-hard
e Christofides (1976) gave a 3/2-approximation algorithm

Definition
A p-approximation algorithm is a poly-time algorithm that produces a
solution of cost within p times the optimum
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Traveling Salesman Problem

@ Metric s-t path TSP
e Given a weighted graph G = (V,E) (c : E — R,) with
endpoints s,t € V, find a minimum s-t Hamiltonian path

e Triangle inequality holds
or
Multiple visits to the same vertex allowed

e NP-hard
e Hoogeveen (1991) showed that Christofides’ algorithm is a
5/3-approximation algorithm and this bound is tight

Definition
A p-approximation algorithm is a poly-time algorithm that produces a
solution of cost within p times the optimum
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Our Main Result

Theorem
There exists a deterministic ¢-approximation algorithm for the

metric s-t path TSP, where ¢ = % is the golden ratio
(6 < 1.6181)
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Outline

@ Christofides’ algorithm

@ Linear programming relaxation

@ LP-based analysis of Christofides’ algorithm
@ Path-variant relaxation

@ Our algorithm
@ Analysis

e First analysis: proof of 5/3-approximation
e Second analysis: first improvement upon 5/3
e Last analysis: pushing towards the golden ratio

@ Application & open questions
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Christofides’ Algorithm

@ Christofides’ algorithm
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn

Theorem

Graph G has an Eulerian circuit if and
only if G is connected and every vertex
of G has even degree
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,

Theorem

Graph G has an Eulerian circuit if and
only if G is connected and every vertex
of G has even degree
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,
e Find a minimum 7 -join J

Theorem

Graph G has an Eulerian circuit if and
only if G is connected and every vertex
of G has even degree

Definition
ForT c V,dJ C E is a T-join if the set of
odd-degree vertices in G' = (V,J)is T
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,
e Find a minimum 7 -join J

Theorem
Graph G has an Eulerian circuit if and

o O only if G is connected and every vertex
0O of G has even degree
o o} Definition

ForT c V,dJ C E is a T-join if the set of
odd-degree vertices in G' = (V,J)is T
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,
e Find a minimum 7 -join J
e Find an Eulerian circuit of J, UJ

Theorem

Graph G has an Eulerian circuit if and
only if G is connected and every vertex
of G has even degree

Definition
ForT c V,dJ C E is a T-join if the set of
odd-degree vertices in G' = (V,J)is T
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Christofides’ Algorithm

@ Christofides’ algorithm
e Find a minimum spanning tree Jn
o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in i,
Find a minimum 7 -join J
Find an Eulerian circuit of Zmin UJ
Shortcut it into a Hamiltonian circuit H

Theorem

Graph G has an Eulerian circuit if and
only if G is connected and every vertex
of G has even degree

Definition
ForT c V,dJ C E is a T-join if the set of
odd-degree vertices in G' = (V,J)is T
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Christofides’ Algorithm, for s-t path TSP

@ Christofides’ algorithm

e Find a minimum spanning tree Jmin

o Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in Jin

e Find a minimum T-join J

e Find an s-t Eulerian path of Jmin UJ

@ Shortcut it into an s-t Hamiltonian path

Theorem

Graph G has an s-t Eulerian path if and
only if G is connected and the set of
odd-degree vertices is {s,t}
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Christofides’ Algorithm, for s-t path TSP

@ Christofides’ algorithm

e Find a minimum spanning tree Jin

o Let 7 be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in Jin

e Find a minimum 7 -join J

e Find an s-t Eulerian path of Jpin UJ

e Shortcut it into an s-t Hamiltonian path

Theorem
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only if G is connected and the set of
odd-degree vertices is {s,t}
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Path-variant Christofides’ algorithm

@ Path-variant Christofides’ algorithm

e 5/3-approximation algorithm [Hoogeveen 1991]
e This bound is tight

e Unit-weight graphical metric:
distance between two vertices defined as shortest distance
on this underlying unit-weight graph
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Path-variant Christofides’ algorithm

@ Path-variant Christofides’ algorithm

e 5/3-approximation algorithm [Hoogeveen 1991]
e This bound is tight

e Unit-weight graphical metric:
distance between two vertices defined as shortest distance
on this underlying unit-weight graph
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Recent Exciting Improvements

@ Recent improvements for unit-weight graphical metric TSP

o Cost defined by the shortest path metric in an underlying
unit-weight graph

e Better approximation than Christofides’
([Oveis Gharan, Saberi, Singh 2011],
[Mémke, Svensson 2011], [Mucha 2011])
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@ Recent improvements for unit-weight graphical metric TSP

o Cost defined by the shortest path metric in an underlying
unit-weight graph

e Better approximation than Christofides’
([Oveis Gharan, Saberi, Singh 2011],
[Mémke, Svensson 2011], [Mucha 2011])

@ Our algorithm for the s-t path TSP improves Christofides’
for an arbitrary metric
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Recent Exciting Improvements

@ Recent improvements for unit-weight graphical metric TSP

o Cost defined by the shortest path metric in an underlying
unit-weight graph

e Better approximation than Christofides’
([Oveis Gharan, Saberi, Singh 2011],
[Mémke, Svensson 2011], [Mucha 2011])

e Techniques can be successfully applied to both variants

@ Our algorithm for the s-t path TSP improves Christofides’
for an arbitrary metric

e Can our techniques be extended to the circuit variant?
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LP-based Approximation Algorithms

@ Unit-weight graphical metric TSP
[Oveis Gharan, Saberi, Singh 2011],
[Mémke, Svensson 2011], [Mucha 2011]
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LP-based Approximation Algorithms

@ Unit-weight graphical metric TSP
[Oveis Gharan, Saberi, Singh 2011],
[Mémke, Svensson 2011], [Mucha 2011]

@ Circuit-variant Christofides’ algorithm [Wolsey 1980]
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LP-based Approximation Algorithms

@ Unit-weight graphical metric TSP
[Oveis Gharan, Saberi, Singh 2011],
[Mémke, Svensson 2011], [Mucha 2011]

@ Circuit-variant Christofides’ algorithm [Wolsey 1980]
@ Our algorithm
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Notation
@ Notation
e §(S) for S C V denotes the set of edges in cut (S, S)

S
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Notation

@ Notation
e §(S) for S C V denotes the set of edges in cut (S, S)

S

Forx,y e RE and F C E,
X(Y) = ecE XeYe
X(F) =X rer X

Incidence vector of F is (xr)e := {

o

o

1 ifeecF
0 otherwise

[¢]
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Held-Karp Relaxation

@ Held-Karp relaxation (for circuit TSP)
([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])

For G = (V,E),
Y Xe>2, VSCV,S#(
ecdé(S)
Y xe=2, WeV
ecs({v})

Xe € {0,1} Vee E
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Held-Karp Relaxation

@ Held-Karp relaxation (for circuit TSP)
([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])

For G = (V,E),
Y Xe>2, VSCV,S#(
ecs(S)
Y xe=2, WeV
ecs({v})
0<xe <1 Vee E
x € RE
Let x* be LP optimum;
S c(x*) < c(OPT)
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Held-Karp Relaxation

@ Held-Karp relaxation (for circuit TSP)
([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])

e Any feasible solution to this LP, scaled by % is in the
spanning tree polytope

@ ST polytope of G := conv{x |7 is a ST of G}
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Held-Karp Relaxation

@ Held-Karp relaxation (for circuit TSP)
([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])

e Any feasible solution to this LP, scaled by % is in the
spanning tree polytope

@ ST polytope of G := conv{x |7 is a ST of G}
o ¢(Jin) < c(=1x*) < e(x¥)
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Polyhedral Characterization of T-joins
Definition
ForT c V,J C E is a T-join if the set of odd-degree vertices in
G =(VJ)isT

@ Polyhedral characterization of T-joins

S Ye=1, ¥ScV,|SNT|odd
/)/. \ e€s(S)

y €RE
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Polyhedral Characterization of T-joins
Definition
ForT c V,J C E is a T-join if the set of odd-degree vertices in
G =(VJ)isT

@ Polyhedral characterization of T-joins
S Ye=1, ¥ScV,|SNT|odd
/)/. \ e€s(S)
y €RE

@ Call a feasible solution a fractional T-join;
its cost upper-bounds c(J)
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LP-based Analysis of Christofides’ Algorithm

Theorem (Wolsey 1980)
Christofides’ algorithm is a 3/2-approximation algorithm

Proof.
¢(Tmin) < c(Z1x*) < e(x*)
y* = Ix* is a fractional T-join

Y Xe>2, VSCV,S#(
ecs(S)

(Held-Karp) Z Xe=2, YweV
ecs({v})
0<xe <1 Veec E
> Ye=1, ¥ScV,[SNT]|odd
(T-join) ecs(S)
y e RE

O
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LP-based Analysis of Christofides’ Algorithm

Theorem (Wolsey 1980)
Christofides’ algorithm is a 3/2-approximation algorithm

Proof.

¢(Tmin) < C(%X*) <c(x*)

y* = Ix* is a fractional T-join

c(J) <c(y?) < ze(x*)

c(H) < ¢(Tmin UJ) < c(x*) +c(y*) < 3c(x*) < 3¢(OPT) O
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Strength of Held-Karp Relaxation

@ Integrality gap

e Worst-case ratio of the integral optimum to the fractional
optimum
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Strength of Held-Karp Relaxation

@ Integrality gap

e Worst-case ratio of the integral optimum to the fractional
optimum

° ﬂ § ; conjectured ﬂ
372 N 3
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Strength of Held-Karp Relaxation

@ Integrality gap
e Worst-case ratio of the integral optimum to the fractional

optimum
° _— 3 ; conjectured 4
N 3
@ Path-case
31+V5] 3,
] - — !
27 2 12
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Path-variant Held-Karp Relaxation

@ Path-variant Held-Karp relaxation
ForG=(V,E)ands,teV,

erz1 VSCV,|{s,t}NS| =1

ecs(S

erzz VS C V. [{s.t) N8| £ 1.5 #0
ecs(S

Z Xe = Z Xe =1

ecd({s}) ecd({t})

Xe = 2, Vv e V\ {s,t}
ecs({v})
0<xe <1 Vec E
x € RE S S
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Path-variant Held-Karp Relaxation

@ Path-variant Held-Karp relaxation

e Polynomial-time solvable
e The feasible region of this LP is contained in the spanning
tree polytope
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Path-variant Held-Karp Relaxation

@ Path-variant Held-Karp relaxation

e Polynomial-time solvable
e The feasible region of this LP is contained in the spanning
tree polytope

@ A path-variant Held-Karp solution can be written as a convex
combination of (incidence vectors of) spanning trees
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Path-variant Held-Karp Relaxation

@ Path-variant Held-Karp relaxation

e Polynomial-time solvable
e The feasible region of this LP is contained in the spanning
tree polytope

@ A path-variant Held-Karp solution can be written as a convex
combination of (incidence vectors of) spanning trees

@ Can find such a decomposition in polynomial time
[Grétschel, Lovasz, Schrijver 1981]

@ Try each of these polynomially many spanning trees
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Our Algorithm

@ Best-of-Many Christofides’ Algorithm

e Compute an optimal solution x* to the Held-Karp relaxation
e Rewrite x* as a convex comb. of spanning trees 7, . ..,
e Foreach 7
@ Let T; be the set of vertices with “wrong” parity of degree:
i.e., T; is the set of even-degree endpoints and other
odd-degree vertices in .7}
@ Find a minimum T;-join J;
@ Find an s-t Eulerian path of .7, U J;
@ Shortcut it into an s-t Hamiltonian path H;

o Output the best Hamiltonian path
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Randomized Algorithm

@ Randomized algorithm for notational convenience
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Randomized Algorithm

@ Randomized algorithm for notational convenience

@ Sampling Christofides’ Algorithm

e Compute an optimal solution x* to the Held-Karp relaxation

e Rewrite x* as a convex comb. of spanning trees 73, ..., J:
X" = Y Aixag, Mg A =1

e Sample .7 by choosing .7; with probability \;

o Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in .

e Find a minimum T-join J

Find an s-t Eulerian path of 7 U J

e Shortcut it into an s-t Hamiltonian path H
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Randomized Algorithm

@ Randomized algorithm for notational convenience

@ Sampling Christofides’ Algorithm

e Compute an optimal solution x* to the Held-Karp relaxation

e Rewrite x* as a convex comb. of spanning trees 73, ..., J:
X" = Y Aixag, Mg A =1

e Sample .7 by choosing .7; with probability \;

o Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in .

e Find a minimum T-join J

e Find an s-t Eulerian path of 7 UJ

e Shortcut it into an s-t Hamiltonian path H

@ E[c(H)] <p-OPT =
Best-of-Many Christofides’ Algorithm is p-approx. algorithm
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Randomized Algorithm

@ Randomized algorithm for notational convenience

@ Sampling Christofides’ Algorithm

e Compute an optimal solution x* to the Held-Karp relaxation

e Rewrite x* as a convex comb. of spanning trees 73, ..., J:
X" = Y Aixag, Mg A =1

e Sample .7 by choosing .7; with probability \;

o Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in .

e Find a minimum T-join J

Find an s-t Eulerian path of 7 U J

e Shortcut it into an s-t Hamiltonian path H

@ Prlec 7] =x;
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Randomized Algorithm

@ Randomized algorithm for notational convenience

@ Sampling Christofides’ Algorithm

e Compute an optimal solution x* to the Held-Karp relaxation

e Rewrite x* as a convex comb. of spanning trees 73, ..., J:
X" = Y Aixag, Mg A =1

e Sample .7 by choosing .7; with probability \;

o Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in .

e Find a minimum T-join J

e Find an s-t Eulerian path of 7 UJ

e Shortcut it into an s-t Hamiltonian path H

@ Prlec 7] =x;

° E[c(T)] = D eck CeXe = c(x7)
e The rest of the analysis focuses on bounding c¢(J)

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Randomized Algorithm

@ Randomized algorithm for notational convenience

@ Sampling Christofides’ Algorithm

e Compute an optimal solution x* to the Held-Karp relaxation

e Rewrite x* as a convex comb. of spanning trees 73, ..., J:
X" = Y Aixag, Mg A =1

e Sample .7 by choosing .7; with probability \;

o Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in .

e Find a minimum T-join J

e Find an s-t Eulerian path of 7 UJ

e Shortcut it into an s-t Hamiltonian path H

Lemma E[c(.7)] = Do CeXa = C(x¥)

Lemma E[c(J)] < % - c(x*)
Corollary E[c(H)] < E[c(Z UJ)] < (1 + %)c(x*)
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Proof of 5/3-approximation

@ Want: a fractional T-join y with E[c(y)] < %c(x*)
x* := optimal path-variant Held-Karp solution
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Proof of 5/3-approximation
@ Want: a fractional T-join y with E[c(y)] < %c(x*)
x* := optimal path-variant Held-Karp solution
@ Circuit case

e Well-known 2-approximation algorithm can be considered
as using MST as a fractional T-join
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Proof of 5/3-approximation

@ Want: a fractional T-join y with E[c(y)] < %c(x*)
x* := optimal path-variant Held-Karp solution
@ Circuit case

e Well-known 2-approximation algorithm can be considered
as using MST as a fractional T-join

e Christofides’ algorithm uses half the (circuit-variant)
Held-Karp solution [Wolsey 1980]
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Proof of 5/3-approximation

@ Want: a fractional T-join y with E[c(y)] < %c(x*)
x* := optimal path-variant Held-Karp solution
@ Is gx* a fractional T-join for some constant 57

erz1 vSC V,|{s,t}NS| =1
ecs(S
erzz VS CV,|[{s,t}NS| #1,S#0
ecé(S
(Held-Karp) Z Xe= Y Xe=1
ecs({s}) ecé({t})
> Xxe=2 Y e V\ {s,t}
ecs({v})
0<xe <1 Veec E

Z Ye>1, ¥VSc V,|SNT]|odd
(T-join) ecs(S
y € RE
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Proof of 5/3-approximation
@ Want: a fractional T-join y with E[c(y)] < %c(x*)
x* := optimal path-variant Held-Karp solution
@ Is Bx* a fractional T-join for some constant 3?

e Yes, for g =1.
The present algorithm is a 2-approximation algorithm:
Ele(J)] < E[e(Bx™)] = Be(x”)

X
LB on s-t cut capacities 1
LB on nonseparating cut capacities 2
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Proof of 5/3-approximation
@ Want: a fractional T-join y with E[c(y)] < %c(x*).
@ s 5x* a fractional T-join for some 3? Yes, for 5 = 1.
@ How about ay#?

| x7 x*
LB on s-t cut capacities 1
LB on nonseparating cut capacities 2
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Proof of 5/3-approximation
@ Want: a fractional T-join y with E[c(y)] < %c(x*).
@ s 5x* a fractional T-join for some 3? Yes, for 5 = 1.
@ How about ay#?

| x7 x*
LB on T-odd s-t cut capacities 1
LB on nonseparating cut capacities 2
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Proof of 5/3-approximation
@ Want: a fractional T-join y with E[c(y)] < %c(x*).
@ s 5x* a fractional T-join for some 3? Yes, for 5 = 1.
@ How about ay#?
e s-t cuts do have some slack in this case
Lemma

An s-t cut (U, U) that is odd w.r.t. T (i.e., |UN T| is odd) has at least
two edges in it.

*

\ X7 X
LB on T-odd s-t cut capacities 2
LB on nonseparating cut capacities | 1

1
2
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Proof of 5/3-approximation
@ Want: a fractional T-join y with E[c(y)] < %c(x*).
@ s 5x* a fractional T-join for some 3? Yes, for 5 = 1.

@ How about ay#?
@ s-t cuts do have some slack in this case

Lemma B
An s-t cut (U,U) thatis odd w.rt. T (i.e., |UN T|is odd) has at least

two edges in it.

Proof. U contains exactly one of sand t =
U has even number of odd-degree vertices

#edges in 6(U)
u =",y degree of v — 2 - (#edges within U)
O

*

\ X7 X
LB on T-odd s-t cut capacities 2
LB on nonseparating cut capacities | 1

1
2
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Proof of 5/3-approximation
@ Want: a fractional T-join y with E[c(y)] < %c(x*).
@ s 5x* a fractional T-join for some 3? Yes, for 5 = 1.
@ How about ay#?
e s-t cuts do have some slack in this case
Lemma

An s-t cut (U, U) that is odd w.r.t. T (i.e., |UN T| is odd) has at least
two edges in it.

e Yes, fora=1.
The present algorithm is a 2-approximation algorithm:
Elc(J)] < E[c(ax7)] = ac(x™)

*

\ X7 X
LB on T-odd s-t cut capacities 2
LB on nonseparating cut capacities | 1
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Proof of 5/3-approximation

*

\ Xz X
LB on T-odd s-tf cut capacities 2 1
LB on nonseparating cut capacities | 1 2
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Proof of 5/3-approximation

| x7 Xx* y
LB on T-odd s-tf cut capacities 2 1 2a+4p
LB on nonseparating cut capacities | 1 2 a+2p3

@ y:=axg + px*

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Proof of 5/3-approximation

| x7 Xx* y
LB on T-odd s-tf cut capacities 2 1 2a+p8=1
LB on nonseparating cut capacities | 1 2 a+28=1

@ y:=axg + px*
e Choose a =3 =}
e The present algorithm is a 5/3-approximation algorithm:
E[c(J)] < Ele(y)] = (a + B)e(x*) = §e(x7)
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Proof of 5/3-approximation

| x7 Xx* y
LB on T-odd s-tf cut capacities 2 1 2a+p8=1
LB on nonseparating cut capacities | 1 2 a+28=1

@ y:=axg + px*
e Choose a =3 =}
e The present algorithm is a 5/3-approximation algorithm:
E[c(J)] < Ele(y)] = (a + B)e(x*) = §e(x7)

@ Analysis also works for the original path-variant
Christofides’ algorithm
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First improvement upon 5/3

LB on T-odd s-f cut capacities 2 1 2a+p=1
LB on nonseparating cut capacities | 1 2 a+28=1

@ Perturb o and 8
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First improvement upon 5/3
Xz X* y
LB on T-odd s-t cut capacities 2 1 2a+p3=095
LB on nonseparating cut capacities | 1 2 a+28=1

@ Perturb o and 8

e In particular, decrease « by 2¢ and increase g by e:
will choose o = 0.30 and 3 = 0.35 later

@ E[c(y)] = (a + B)c(x*) decreases by ec(x*)
@ « + 2 unchanged; only s-t cuts may be violated by at
most 1 — (2a+ ) =:d. d =0.05

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



First improvement upon 5/3
| x7 x* y

LB on T-odd s-t cut capacities 2 1 2a+p3=095
LB on nonseparating cut capacities | 1 2 a+28=1

@ Perturb o and 8
e In particular, decrease « by 2¢ and increase g by e:
will choose o = 0.30 and 3 = 0.35 later
@ E[c(y)] = (a + B)c(x*) decreases by ec(x*)
@ « + 2 unchanged; only s-t cuts may be violated by at
most 1 — (2a+ ) =:d. d = 0.05
@ s-tcuts (U, U) with large capacity in HK solution are safe:
2o + pBx*(8(V)) still large g
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First improvement upon 5/3
| x7 x* y

LB on T-odd s-t cut capacities 2 1 2a+p3=095
LB on nonseparating cut capacities | 1 2 a+28=1

@ Perturb o and 8
e In particular, decrease « by 2¢ and increase g by e:
will choose o = 0.30 and 3 = 0.35 later
@ E[c(y)] = (a + B)c(x*) decreases by ec(x*)
@ « + 2 unchanged; only s-t cuts may be violated by at
most 1 — (2a+ ) =:d. d =0.05
@ s-tcuts (U, U) with large capacity in HK solution are safe:
2o + pBx*(8(V)) still large g
Definition B
For0 < T <1, ar-narrow cut (U, U) is an s-t cut
with x*(6(U)) <1+ 71

@ 2a+B(1+71)=1:7=1

7
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First improvement upon 5/3
@ s-tcuts (U, U) with x*(5(U)) = 1 are safe
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First improvement upon 5/3
@ s-tcuts (U, U) with x*(5(U)) = 1 are safe

Lemma _
An s-t cut (U,U) thatis odd w.r.t. T (i.e., |U N T| is odd) has at

least two edges in it
Corollary
Each s-t cut (U, U) with x*(5(U)) = 1 is never odd w.r.t. T

S ye=1, ¥SCV,SNT]odd
ecé(S)
y e RE
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First improvement upon 5/3
@ s-tcuts (U, U) with x*(5(U)) = 1 are safe

Lemma _
An s-t cut (U,U) thatis odd w.rt. T (i.e., |UN T| is odd) has at
least two edges in it

Corollary
Each s-t cut (U, U) with x*(5(U)) = 1 is never odd w.r.t. T

Proof.
Expected number of tree edges in the cut is equal to x*(5(U)):

Els(U)n 7= Y Prlee 7= > x;=1

eecs(U) ecs(U)

So [6(U) N 7| is identically 1. O
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First improvement upon 5/3

Lemma _
Ans-t cut (U,U) thatis odd w.r.t. T (i.e., |UN T| is odd) has at

least two edges in it

Corollary
Each s-t cut (U, U) with x*(6(U)) = 1 is never odd w.r.t. T

Corollary
For any r-narrow cut (U, U), Pr[|[UN T| odd] < t
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First improvement upon 5/3

Lemma _
Ans-t cut (U,U) thatis odd w.r.t. T (i.e., |UN T| is odd) has at
least two edges in it

Corollary
Each s-t cut (U, U) with x*(6(U)) = 1 is never odd w.r.t. T

Corollary
For any r-narrow cut (U, U), Pr[|[UN T| odd] < t
Proof.

@ (U, U) has at least one tree edge in it
e If (U,U)is odd w.rt. T, it must have another tree edge in it
@ Expected number of tree edges in the cutis < 1 47

PrllUN T| odd] < x*(8(U)) -1 <7 -

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



First improvement upon 5/3

@ Nonseparating cuts and s-t cuts with high capacities are
safe
@ For r-narrow cuts,
e deficiency is at mostd := 1 — (2« + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %
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First improvement upon 5/3

@ Nonseparating cuts and s-t cuts with high capacities are
safe
@ For r-narrow cuts,
e deficiency is at mostd := 1 — (2« + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %
@ Suppose edge sets of T-narrow cuts were disjoint
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First improvement upon 5/3

@ Nonseparating cuts and s-t cuts with high capacities are
safe
@ For r-narrow cuts,
e deficiency is at mostd := 1 — (2« + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %
@ Suppose edge sets of 7-narrow cuts were disjoint
@ For each r-narrow cut (U, U), define “correction vector” f,,
defined as the Held-Karp solution restricted to 6(U)

(F)e — x; ifeed(U)
Y%= 10 otherwise
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First improvement upon 5/3

@ Nonseparating cuts and s-t cuts with high capacities are
safe
@ For r-narrow cuts,
e deficiency is at mostd := 1 — (2« + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %

@ Suppose edge sets of r-narrow cuts were disjoint
@ For each r-narrow cut (U, U), define “correction vector” f,
defined as the Held-Karp solution restricted to 6(U)

@ y:=axs + X"+ ZU:(U,U) is T—narrow,|UNT| odd d-fy

E [C(ZU:(U,U) is 7—narrow,|UNT]| odd 9 - fU)]
¢ (ZU:(U,U) is r—narrow PT[[UN T| odd] - d - fU)

drc (ZU:(U,L_/) is T—narrow fU) < dre(x”)

IN

IN
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First improvement upon 5/3

@ Nonseparating cuts and s-t cuts with high capacities are
safe
@ For r-narrow cuts,
e deficiency is at mostd := 1 — (2« + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %

@ Suppose edge sets of r-narrow cuts were disjoint
@ For each r-narrow cut (U, U), define “correction vector” f,
defined as the Held-Karp solution restricted to 6(U)

® y:=axz + BX" + 3 0.w.0)is r—narrow,JUnT]| odd @ - U

E [C(ZU:(U,U) is —narrow,|UNT] odd @ ° fu)]

¢ (ZU:(U,U) is 7—narrow PY[[UN T| odd] - d - fu)
= dre (ZU:(U,U) is 7—narrow fu) < dre(x”)

@ The present algorithm is a 1.6572-approximation algorithm
if T-narrow cuts were disjoint: E[c(y)] < (a + 5+ d7)c(x*)

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP
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First improvement upon 5/3

@ 7-narrow cuts are not disjoint
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First improvement upon 5/3
@ 7-narrow cuts are not disjoint, but “almost” disjoint

Lemma _
T-narrow cuts do not cross: i.e., for T-narrow cuts (U, U) and
(W, W) withs e U,W, eitherU c WorW c U.
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First improvement upon 5/3
@ 7-narrow cuts are not disjoint, but “almost” disjoint

Lemma

T-narrow cuts do not cross: i.e., for T-narrow cuts (U, U) and
(W, W) withs € U, W, either U c W or W c U. Therefore,
T-narrow cuts constitute a layered structure.

®
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First improvement upon 5/3
@ 7-narrow cuts are not disjoint, but “almost” disjoint

Lemma

T-narrow cuts do not cross: i.e., for T-narrow cuts (U, U) and
(W, W) withs € U, W, either U c W or W c U. Therefore,
T-narrow cuts constitute a layered structure.

Proof.
Suppose not. Neither U\ W nor W \ U is empty.
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First improvement upon 5/3
@ 7-narrow cuts are not disjoint, but “almost” disjoint

Lemma

T-narrow cuts do not cross: i.e., for T-narrow cuts (U, U) and
(W, W) withs € U, W, either U c W or W c U. Therefore,
T-narrow cuts constitute a layered structure.

Proof.
Suppose not. Neither U\ W nor W \ U is empty.

xX*(6(U))+x*(6(W)) <21 +71)< 4
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First improvement upon 5/3
@ 7-narrow cuts are not disjoint, but “almost” disjoint

Lemma

T-narrow cuts do not cross: i.e., for T-narrow cuts (U, U) and
(W, W) withs € U, W, either U c W or W c U. Therefore,
T-narrow cuts constitute a layered structure.

Proof.
Suppose not. Neither U\ W nor W \ U is empty.
x*(0(U)) +x*(6(W)) <2(1+7)<4
x*(6(U)) + x*(6(W)) > x*(S(U\W))+x*(o(W\U))>2+2

O
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First improvement upon 5/3

Corollary
There exists a partition L4, ..., L, of V such that
@ Ly ={s}, L,={t}, and
o {U|(U,U)is t-narrow, s € U} = {U;|1 <i < (}, where
Ui = U, _ Lk

ooti T

)

05
Egg

05
Ly
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First improvement upon 5/3

Corollary
There exists a partition L4, ..., L, of V such that
@ Ly ={s}, L,={t}, and
o {U|(U,U)is t-narrow, s € U} = {U;|1 <i < (}, where
Ui = U, _ Lk

ooti T

,I
Ly L, La Ly
Thick edges show F3
@ We choose “representative edge set” F; := E(L;,L>j;1) for
each 6(U;). We claim:
e F;’s are disjoint
e F; has large capacity
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First improvement upon 5/3

Lemma
x*(F)>=1-%

Proof.
A :=x*(E(L<i-1,Li)), B:=Xx"(E(Li, L5 41)),
C:=x"(E(L<i-1,L5i41))-

A B
C
Ley L; Lsiys

O
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First improvement upon 5/3

Lemma
x*(F)>=1-%

Proof.
A :=x*(E(L<i-1,Li)), B:=Xx"(E(Li, L5 41)),
C:=x"(E(L<i-1,L5i41))-

A B B+A > 2
C
Ly L Loy

O
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First improvement upon 5/3

Lemma
x*(F)>=1-%

Proof.
A :=x*(E(L<i-1,Li)), B:=Xx"(E(Li, L5 41)),
C:=x"(E(L<i-1,L5i41))-

A B B+A > 2
>
c B+C > 1
Ly L Loy

O
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First improvement upon 5/3

Lemma
x*(F)>=1-%

Proof.
A :=x*(E(L<i-1,Li)), B:=Xx"(E(Li, L5 41)),
C:=x"(E(L<i-1,L5i41))-

A B B+A > 2
c B+C > 1
1+7 > A+C
L4 L Loy

O
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First improvement upon 5/3

Lemma
x*(F)>=1-%

Proof.
A :=x*(E(L<i-1,Li)), B:=Xx"(E(Li, L5 41)),
C:=x"(E(L<i-1,L5i41))-

A B B+A > 2
c B+C > 1
1+7 > A+C
L L Lut
2B > 2—-71
x*(F)) =B > 1 —%

O
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First improvement upon 5/3

@ 7-narrow cuts are the only cuts that may potentially be
violated
@ For m-narrow cuts,
e deficiency is at mostd :=1— (2a + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %
e can choose “representative” edge set that are mutually

disjoint and has capacity > 1 — 7 = %
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First improvement upon 5/3

@ 7-narrow cuts are the only cuts that may potentially be
violated
@ For m-narrow cuts,

e deficiency is at mostd :=1— (2a + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %
e can choose “representative” edge set that are mutually

disjoint and has capacity > 1 — 7 = 13

14
@ (Re)define fy; as Held-Karp solution restricted to F;

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



First improvement upon 5/3

@ 7-narrow cuts are the only cuts that may potentially be

violated

@ For r-narrow cuts,
e deficiency is at mostd :=1— (2a + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %

e can choose “representative” edge set that are mutually
13

disjoint and has capacity > 1 — 7 = 1%
@ (Re)define fy; as Held-Karp solution restricted to F;
°
]

Yy =axg +Bx* + ZU:(U,U) is 7—narrow,|UNT]| oddd 17 fu
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First improvement upon 5/3
@ 7-narrow cuts are the only cuts that may potentially be

14

violated
@ For m-narrow cuts,
e deficiency is at mostd :=1— (2a + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = 1

e can choose “representative” edge set that are mutually
. K

disjoint and has capacity > 1 — 7 =

@ (Re)define fy; as Held-Karp solution restricted to F;
1. fU

=

(]
yi=axgz +BXx"+ ZU:(U,U) is 7—narrow,|UNT| odd @ °

97_)e(x*) < 0.6577¢(x*)

=

°
Elc(y)] < (a+ 5+
@ The present algorithm is a 1.6577-approximation algorithm




Tighter anlysis

@ Deficiency and the probability that a 7-narrow cut is odd
w.r.t. T were separately bounded

@ Write them as a function of the cut capacity and
simultaneously optimize
° X*(F,) >1— % 4 X*(5(121i))*1

o = f -approximation algorithm (2=y33 \ﬁ < 1.6278)
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Pushing towards % (% <1.6181)
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Pushing towards 155 (1% < 1 6181)

@ Key properties of the correction vectors used in the
analysis

e fy,’s are nonnegative
° Zi fu, < x*
o fy(o(Up)>1-3
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First improvement upon 5/3

@ Nonseparating cuts and s-t cuts with high capacities are
safe
@ For r-narrow cuts,
e deficiency is at mostd := 1 — (2« + 3) = 0.05
e probability that the cut is odd w.r.t. T is at most 7 = %

@ Suppose edge sets of r-narrow cuts were disjoint
@ For each r-narrow cut (U, U), define “correction vector” f,
defined as the Held-Karp solution restricted to 6(U)

® y:=axz + BX" + 3 0.w.0)is r—narrow,JUnT]| odd @ - U

E [C(ZU:(U,U) is —narrow,|UNT] odd @ ° fu)]

¢ (ZU:(U,U) is 7—narrow PY[[UN T| odd] - d - fu)
= dre (ZU:(U,U) is 7—narrow fu) < dre(x”)

@ The present algorithm is a 1.6572-approximation algorithm
if T-narrow cuts were disjoint: E[c(y)] < (a + 5+ d7)c(x*)
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Pushing towards 155 (1% < 1 6181)

@ Key properties of the correction vectors used in the
analysis
e fy’s are nonnegative
° > ify <x*
o fu(6(U))>1-3%
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Pushing towards 1 (115 < 1 6181)

@ Key properties of the correction vectors used in the
analysis
e fy’s are nonnegative
° > ify <x*
o fu(3(U)) >1 -3
@ Disjointness used to derive the second property
e Disjointness also enforces a single edge to be used by at
most one correction vector
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Pushing towards 1 (115 < 1 6181)

@ Key properties of the correction vectors used in the
analysis
e fy’s are nonnegative
° > ify <x*
o fy(0(Up))>1-3
@ Disjointness used to derive the second property
e Disjointness also enforces a single edge to be used by at
most one correction vector
@ “Fractional disjointness” : ensure the second property
directly

Lemma R

There exists a set of vectors {1}, };~| satisfying:
o f;, € RE foralli
° Yy 'A(tj; =x
o 15, (8(Uy) > 1foralli
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Pushing towards 1 (115 < 1 6181)

@ Key properties of the correction vectors used in the
analysis
e fy’s are nonnegative
° > ify <x*
o fy(0(Up))>1-3
@ Disjointness used to derive the second property
e Disjointness also enforces a single edge to be used by at
most one correction vector
@ “Fractional disjointness” : ensure the second property
directly

Lemma R

There exists a set of vectors {1}, };~| satisfying:
o f;, € RE foralli
° Yy 'A(tj; =x
o 15, (8(Uy) > 1foralli

@ All constraints are linear
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Pushing towards % (% <1.6181)

Lemma .
There exists a set of vectors {f;; }/~ satisfying:

° IA‘* € RE foralli
° Zé 1f* < x*
° fi?,-( (Ui)) > 1foralli
Proof. Consider an auxiliary flow network
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Pushing towards 1 (115 < 1 6181)

Lemma .
There exists a set of vectors {f;, };~,' satistying:

° IA‘* € RE foralli
° ZZ 1f* < x*
° fi?,-( (Ui)) > 1foralli
Proof. Consider an auxiliary flow network

Ly
@ We claim the maximum flow value on this network is ¢ — 1

A maximum flow saturates all the edges from v=°Ure® to vt

o Define (7;)e as the flow from vEUt to vg%%®
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Pushing towards 1 (115 < 1 6181)

Proof. (cont’'d)

@ We claim the maximum flow on this flow network is ¢ — 1
Consider an arbitrary cut (S, S) on this flow network
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Proof. (cont’'d)

@ We claim the maximum flow on this flow network is ¢ — 1
Consider an arbitrary cut (S, S) on this flow network

@ We can assume w.l.o.g. that, if v € S, then vE9% ¢ S for
alle € 6(U)
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Pushing towards /2 (”f <1.6181)

Proof. (cont’'d)
@ We claim the maximum flow on this flow network is ¢ — 1
Consider an arbitrary cut (S, S) on this flow network

@ We can assume w.l.o.g. that, if v € S, then vE9% ¢ S for
alle € 6(U)

@ Want: if k of the 7-narrow cuts are in S, the edges in any of
these k T-narrow cuts have total Held-Karp value > k

Hyung-Chan An

Improving Christofides’ Algorithm for the s-t Path TSP



Pushing towards 1 (115 < 1 6181)

Want: if k of the 7-narrow cuts are in S, the edges in any of
these k T-narrow cuts have total Held-Karp value > k

u H wu f AL an
L Ly Ly Ly Ls Lg
(=6,k=3
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Pushing towards 155 (1% < 1 6181)

Want: if k of the 7-narrow cuts are in S, the edges in any of
these k T-narrow cuts have total Held-Karp value > k

u H wu f AL an
L Ly Ly Ly Ls Lg
(=6,k=3

D eaviies ecs(U) Xe
3 [ (6(UL) + e X (3(U; \ Uy ) + x5V Uy)]
> T[1+2k—-1)+1]=k

0J
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The Main Result

V= axgs + B+ > [1 — {20 + BX*(S(U))N T,
i|UNT| is odd, 1<i<t
fora=1-— % and § = % yields the following:

Theorem

Best-of-many Christofides’ algorithm is a deterministic
¢-approximation algorithm for the s-t path TSP for the general
metric, where ¢ = 1%@ < 1.6181 is the golden ratio
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Applications & open questions
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Applications & open questions

@ Unit-weight graphical metric case
@ [Oveis Gharan, Saberi, Singh 2011],
[M6émke, Svensson 2011], [Mucha 2011]
e Algorithmic use of r-narrow cuts
e A 1.5780-approximation algorithm
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Applications & open questions

@ Prize-collecting s-t path problem

e Given a metric cost and vertex prize defined on every
vertex, find an s-t path that minimizes the sum of the path
cost and the total prize “missed”
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Applications & open questions

@ Prize-collecting s-t path problem

e Given a metric cost and vertex prize defined on every
vertex, find an s-t path that minimizes the sum of the path
cost and the total prize “missed”

e [Archer, Bateni, Hajiaghayi, Karloff 2009, 2011],
[Goemans 2009], [Goemans, Williamson 1995],
[Bienstock, Goemans, Simchi-Levi, Williamson 1993]

e A 1.9535-approximation algorithm
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Applications & open questions

@ Open questions

e Improve the performance guarantee?

@ Do our techniques extend to the circuit TSP?
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Thank you.



