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Traveling Salesman Problem

(Circuit) Traveling Salesman Problem
Given a weighted graph G = (V ,E) (c : E → R+), find a
minimum Hamiltonian circuit

Figure from [Dantzig, Fulkerson, Johnson 1954].

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Traveling Salesman Problem

Metric (circuit) TSP
Given a weighted graph G = (V ,E) (c : E → R+), find a
minimum Hamiltonian circuit

Triangle inequality holds
or

Multiple visits to the same vertex allowed

NP-hard
Christofides (1976) gave a 3/2-approximation algorithm

Best known

Definition
A ρ-approximation algorithm is a poly-time algorithm that produces a
solution of cost within ρ times the optimum
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Traveling Salesman Problem

Metric s-t path TSP
Given a weighted graph G = (V ,E) (c : E → R+) with
endpoints s, t ∈ V , find a minimum s-t Hamiltonian path

Triangle inequality holds
or

Multiple visits to the same vertex allowed

NP-hard
Hoogeveen (1991) showed that Christofides’ algorithm is a
5/3-approximation algorithm and this bound is tight

Definition
A ρ-approximation algorithm is a poly-time algorithm that produces a
solution of cost within ρ times the optimum
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Our Main Result

Theorem
There exists a deterministic φ-approximation algorithm for the
metric s-t path TSP, where φ = 1+

√
5

2 is the golden ratio
(φ < 1.6181)
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Outline

Christofides’ algorithm
Linear programming relaxation
LP-based analysis of Christofides’ algorithm
Path-variant relaxation

Our algorithm
Analysis

First analysis: proof of 5/3-approximation
Second analysis: first improvement upon 5/3
Last analysis: pushing towards the golden ratio

Application & open questions
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Christofides’ Algorithm
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of odd-degree vertices in Tmin
Find a minimum T -join J
Find an Eulerian circuit of Tmin ∪ J
Shortcut it into a Hamiltonian circuit H

Theorem
Graph G has an Eulerian circuit if and
only if G is connected and every vertex
of G has even degree

Definition
For T ⊂ V, J ⊂ E is a T-join if the set of
odd-degree vertices in G′ = (V , J) is T
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Christofides’ Algorithm, for s-t path TSP
Christofides’ algorithm

Find a minimum spanning tree Tmin
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in Tmin
Find a minimum T -join J
Find an s-t Eulerian path of Tmin ∪ J
Shortcut it into an s-t Hamiltonian path

Theorem
Graph G has an s-t Eulerian path if and
only if G is connected and the set of
odd-degree vertices is {s, t}
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Path-variant Christofides’ algorithm

Path-variant Christofides’ algorithm
5/3-approximation algorithm [Hoogeveen 1991]
This bound is tight

s t

…

Unit-weight graphical metric:
distance between two vertices defined as shortest distance
on this underlying unit-weight graph
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Recent Exciting Improvements

Recent improvements for unit-weight graphical metric TSP
Cost defined by the shortest path metric in an underlying
unit-weight graph
Better approximation than Christofides’
([Oveis Gharan, Saberi, Singh 2011],
[Mömke, Svensson 2011], [Mucha 2011])

Techniques can be successfully applied to both variants

Our algorithm for the s-t path TSP improves Christofides’
for an arbitrary metric

Can our techniques be extended to the circuit variant?
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LP-based Approximation Algorithms

Unit-weight graphical metric TSP
[Oveis Gharan, Saberi, Singh 2011],
[Mömke, Svensson 2011], [Mucha 2011]

Circuit-variant Christofides’ algorithm [Wolsey 1980]
Our algorithm
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Notation

Notation
δ(S) for S ( V denotes the set of edges in cut (S, S̄)

s
t

S

For x, y ∈ RE
+ and F ⊂ E,

◦ x(y) :=
∑

e∈E xeye
◦ x(F) :=

∑
f∈F xf

◦ Incidence vector of F is (χF )e :=

{
1 if e ∈ F
0 otherwise
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Held-Karp Relaxation
Held-Karp relaxation (for circuit TSP)
([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
For G = (V ,E), 

∑
e∈δ(S)

xe ≥ 2, ∀S ( V ,S 6= ∅∑
e∈δ({v})

xe = 2, ∀v ∈ V

xe ∈ {0,1} ∀e ∈ E

x ∈ RE

S

Let x∗ be LP optimum;
c(x∗) ≤ c(OPT)
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Held-Karp Relaxation
Held-Karp relaxation (for circuit TSP)
([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])

Any feasible solution to this LP, scaled by n−1
n , is in the

spanning tree polytope
ST polytope of G := conv{χT |T is a ST of G}

c(Tmin) ≤ c( n−1
n x∗) ≤ c(x∗)
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Polyhedral Characterization of T -joins
Definition
For T ⊂ V, J ⊂ E is a T-join if the set of odd-degree vertices in
G′ = (V , J) is T

Polyhedral characterization of T -joins

S


∑

e∈δ(S)

ye ≥ 1, ∀S ⊂ V , |S ∩ T | odd

y ∈ RE
+

Call a feasible solution a fractional T-join;
its cost upper-bounds c(J)
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LP-based Analysis of Christofides’ Algorithm

Theorem (Wolsey 1980)
Christofides’ algorithm is a 3/2-approximation algorithm

Proof.
c(Tmin) ≤ c(n−1n x∗) ≤ c(x∗)
y∗ := 1

2x
∗ is a fractional T -join

(Held-Karp)



∑
e∈δ(S)

xe ≥ 2, ∀S ( V ,S 6= ∅∑
e∈δ({v})

xe = 2, ∀v ∈ V

0 ≤ xe ≤ 1 ∀e ∈ E

(T -join)


∑

e∈δ(S)

ye ≥ 1, ∀S ⊂ V , |S ∩ T | odd

y ∈ RE
+
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LP-based Analysis of Christofides’ Algorithm

Theorem (Wolsey 1980)
Christofides’ algorithm is a 3/2-approximation algorithm

Proof.
c(Tmin) ≤ c(n−1n x∗) ≤ c(x∗)
y∗ := 1

2x
∗ is a fractional T -join

c(J) ≤ c(y∗) ≤ 1
2c(x∗)

c(H) ≤ c(Tmin ∪ J) ≤ c(x∗) + c(y∗) ≤ 3
2c(x∗) ≤ 3

2c(OPT)
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Strength of Held-Karp Relaxation
Integrality gap

Worst-case ratio of the integral optimum to the fractional
optimum

[
4
3 ,

3
2

]
; conjectured 4

3

Path-case[
3
2 ,

1 +
√
5

2

]
; 32?
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Path-variant Held-Karp Relaxation
Path-variant Held-Karp relaxation
For G = (V ,E) and s, t ∈ V ,

s
t

S

s
t

S



∑
e∈δ(S)

xe ≥ 1, ∀S ( V , |{s, t} ∩ S| = 1∑
e∈δ(S)

xe ≥ 2, ∀S ( V , |{s, t} ∩ S| 6= 1,S 6= ∅∑
e∈δ({s})

xe =
∑

e∈δ({t})

xe = 1∑
e∈δ({v})

xe = 2, ∀v ∈ V \ {s, t}

0 ≤ xe ≤ 1 ∀e ∈ E

x ∈ RE
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Path-variant Held-Karp Relaxation

Path-variant Held-Karp relaxation
Polynomial-time solvable
The feasible region of this LP is contained in the spanning
tree polytope

A path-variant Held-Karp solution can be written as a convex
combination of (incidence vectors of) spanning trees

Can find such a decomposition in polynomial time
[Grötschel, Lovász, Schrijver 1981]
Try each of these polynomially many spanning trees
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Our Algorithm

Best-of-Many Christofides’ Algorithm
Compute an optimal solution x∗ to the Held-Karp relaxation
Rewrite x∗ as a convex comb. of spanning trees T1, . . . ,Tk
For each Ti :

Let Ti be the set of vertices with “wrong” parity of degree:
i.e., Ti is the set of even-degree endpoints and other
odd-degree vertices in Ti
Find a minimum Ti -join Ji
Find an s-t Eulerian path of Ti ∪ Ji
Shortcut it into an s-t Hamiltonian path Hi

Output the best Hamiltonian path
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Randomized Algorithm
Randomized algorithm for notational convenience

Sampling Christofides’ Algorithm
Compute an optimal solution x∗ to the Held-Karp relaxation
Rewrite x∗ as a convex comb. of spanning trees T1, . . . ,Tk :
x∗ =

∑k
i=1 λiχTi ,

∑k
i=1 λi = 1

Sample T by choosing Ti with probability λi
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in T
Find a minimum T -join J
Find an s-t Eulerian path of T ∪ J
Shortcut it into an s-t Hamiltonian path H
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odd-degree vertices in T
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E[c(H)] ≤ ρ ·OPT =⇒
Best-of-Many Christofides’ Algorithm is ρ-approx. algorithm
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Rewrite x∗ as a convex comb. of spanning trees T1, . . . ,Tk :
x∗ =

∑k
i=1 λiχTi ,

∑k
i=1 λi = 1

Sample T by choosing Ti with probability λi
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in T
Find a minimum T -join J
Find an s-t Eulerian path of T ∪ J
Shortcut it into an s-t Hamiltonian path H

Pr[e ∈ T ] = x∗e

E[c(T )] =
∑

e∈E cex∗e = c(x∗)
The rest of the analysis focuses on bounding c(J)
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Randomized Algorithm
Randomized algorithm for notational convenience
Sampling Christofides’ Algorithm

Compute an optimal solution x∗ to the Held-Karp relaxation
Rewrite x∗ as a convex comb. of spanning trees T1, . . . ,Tk :
x∗ =

∑k
i=1 λiχTi ,

∑k
i=1 λi = 1

Sample T by choosing Ti with probability λi
Let T be the set of vertices with “wrong” parity of degree:
i.e., T is the set of even-degree endpoints and other
odd-degree vertices in T
Find a minimum T -join J
Find an s-t Eulerian path of T ∪ J
Shortcut it into an s-t Hamiltonian path H

Lemma E[c(T )] =
∑

e∈E cex∗e = c(x∗)
Lemma E[c(J)] ≤F · c(x∗)
Corollary E[c(H)] ≤ E[c(T ∪ J)] ≤ (1 + F)c(x∗)

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Proof of 5/3-approximation
Want: a fractional T -join y with E[c(y)] ≤ 2

3c(x∗)
x∗ := optimal path-variant Held-Karp solution

Circuit case

Well-known 2-approximation algorithm can be considered
as using MST as a fractional T -join
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Proof of 5/3-approximation
Want: a fractional T -join y with E[c(y)] ≤ 2

3c(x∗)
x∗ := optimal path-variant Held-Karp solution
Circuit case

Well-known 2-approximation algorithm can be considered
as using MST as a fractional T -join
Christofides’ algorithm uses half the (circuit-variant)
Held-Karp solution [Wolsey 1980]
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Proof of 5/3-approximation
Want: a fractional T -join y with E[c(y)] ≤ 2

3c(x∗)
x∗ := optimal path-variant Held-Karp solution
Is βx∗ a fractional T -join for some constant β?

(Held-Karp)



∑
e∈δ(S)

xe ≥ 1, ∀S ( V , |{s, t} ∩ S| = 1∑
e∈δ(S)

xe ≥ 2, ∀S ( V , |{s, t} ∩ S| 6= 1,S 6= ∅∑
e∈δ({s})

xe =
∑

e∈δ({t})

xe = 1∑
e∈δ({v})

xe = 2, ∀v ∈ V \ {s, t}

0 ≤ xe ≤ 1 ∀e ∈ E

(T -join)


∑

e∈δ(S)

ye ≥ 1, ∀S ⊂ V , |S ∩ T | odd

y ∈ RE
+
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Proof of 5/3-approximation
Want: a fractional T -join y with E[c(y)] ≤ 2

3c(x∗)
x∗ := optimal path-variant Held-Karp solution
Is βx∗ a fractional T -join for some constant β?

Yes, for β = 1.
The present algorithm is a 2-approximation algorithm:
E[c(J)] ≤ E[c(βx∗)] = βc(x∗)

x∗
LB on s-t cut capacities 1

LB on nonseparating cut capacities 2
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Proof of 5/3-approximation
Want: a fractional T -join y with E[c(y)] ≤ 2

3c(x∗).

χT x∗
LB on s-t cut capacities

2

1
LB on nonseparating cut capacities

1

2

Is βx∗ a fractional T -join for some β? Yes, for β = 1.
How about αχT ?

s-t cuts do have some slack in this case

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at least
two edges in it.
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1

2
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Proof of 5/3-approximation
Want: a fractional T -join y with E[c(y)] ≤ 2

3c(x∗).

χT x∗
LB on T-odd s-t cut capacities 2 1

LB on nonseparating cut capacities 1 2

Is βx∗ a fractional T -join for some β? Yes, for β = 1.
How about αχT ?

s-t cuts do have some slack in this case

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at least
two edges in it.

s

t

U
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Proof of 5/3-approximation
Want: a fractional T -join y with E[c(y)] ≤ 2

3c(x∗).

χT x∗
LB on T-odd s-t cut capacities 2 1

LB on nonseparating cut capacities 1 2

Is βx∗ a fractional T -join for some β? Yes, for β = 1.
How about αχT ?

s-t cuts do have some slack in this case

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at least
two edges in it.

s

t

U

Proof. U contains exactly one of s and t ⇒
U has even number of odd-degree vertices
#edges in δ(U)
=
∑

v∈U degree of v − 2 · (#edges within U)
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Proof of 5/3-approximation
Want: a fractional T -join y with E[c(y)] ≤ 2

3c(x∗).

χT x∗
LB on T-odd s-t cut capacities 2 1

LB on nonseparating cut capacities 1 2

Is βx∗ a fractional T -join for some β? Yes, for β = 1.
How about αχT ?

s-t cuts do have some slack in this case

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at least
two edges in it.

Yes, for α = 1.
The present algorithm is a 2-approximation algorithm:
E[c(J)] ≤ E[c(αχT )] = αc(x∗)
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Proof of 5/3-approximation

χT x∗

y

LB on T -odd s-t cut capacities 2 1

2α + β= 1

LB on nonseparating cut capacities 1 2

α + 2β= 1
y := αχT + βx∗

Choose α = β = 1
3

The present algorithm is a 5/3-approximation algorithm:
E[c(J)] ≤ E[c(y)] = (α + β)c(x∗) = 2

3c(x∗)

Analysis also works for the original path-variant
Christofides’ algorithm
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Proof of 5/3-approximation

χT x∗ y
LB on T -odd s-t cut capacities 2 1 2α + β

= 1

LB on nonseparating cut capacities 1 2 α + 2β

= 1

y := αχT + βx∗

Choose α = β = 1
3

The present algorithm is a 5/3-approximation algorithm:
E[c(J)] ≤ E[c(y)] = (α + β)c(x∗) = 2

3c(x∗)

Analysis also works for the original path-variant
Christofides’ algorithm
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First improvement upon 5/3
χT x∗ y

LB on T -odd s-t cut capacities 2 1 2α + β =1
LB on nonseparating cut capacities 1 2 α + 2β = 1

Perturb α and β

In particular, decrease α by 2ε and increase β by ε:
will choose α = 0.30 and β = 0.35 later

E[c(y)] = (α + β)c(x∗) decreases by εc(x∗)
α + 2β unchanged; only s-t cuts may be violated by at
most 1− (2α + β) =: d. d = 0.05
s-t cuts (U, Ū) with large capacity in HK solution are safe:
2α + βx∗(δ(U)) still large

s
t

U

Definition
For 0 < τ ≤ 1, a τ -narrow cut (U, Ū) is an s-t cut
with x∗(δ(U)) < 1 + τ

2α + β(1 + τ) = 1: τ = 1
7
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First improvement upon 5/3
s-t cuts (U, Ū) with x∗(δ(U)) = 1 are safe

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at
least two edges in it

Corollary
Each s-t cut (U, Ū) with x∗(δ(U)) = 1 is never odd w.r.t. T
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s-t cuts (U, Ū) with x∗(δ(U)) = 1 are safe

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at
least two edges in it

Corollary
Each s-t cut (U, Ū) with x∗(δ(U)) = 1 is never odd w.r.t. T

∑
e∈δ(S)

ye ≥ 1, ∀S ⊂ V , |S ∩ T | odd

y ∈ RE
+
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First improvement upon 5/3
s-t cuts (U, Ū) with x∗(δ(U)) = 1 are safe

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at
least two edges in it

Corollary
Each s-t cut (U, Ū) with x∗(δ(U)) = 1 is never odd w.r.t. T

Proof.
Expected number of tree edges in the cut is equal to x∗(δ(U)):

E[|δ(U) ∩T |] =
∑

e∈δ(U)

Pr[e ∈ T ] =
∑

e∈δ(U)

x∗e = 1

So |δ(U) ∩T | is identically 1.
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First improvement upon 5/3

Lemma
An s-t cut (U, Ū) that is odd w.r.t. T (i.e., |U ∩ T | is odd) has at
least two edges in it

Corollary
Each s-t cut (U, Ū) with x∗(δ(U)) = 1 is never odd w.r.t. T

Corollary
For any τ -narrow cut (U, Ū), Pr[|U ∩ T | odd] < τ

Proof.
(U, Ū) has at least one tree edge in it
If (U, Ū) is odd w.r.t. T , it must have another tree edge in it
Expected number of tree edges in the cut is < 1 + τ

Pr[|U ∩ T | odd] ≤ x∗(δ(U))− 1 < τ
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If (U, Ū) is odd w.r.t. T , it must have another tree edge in it
Expected number of tree edges in the cut is < 1 + τ

Pr[|U ∩ T | odd] ≤ x∗(δ(U))− 1 < τ

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



First improvement upon 5/3
Nonseparating cuts and s-t cuts with high capacities are
safe
For τ -narrow cuts,

deficiency is at most d := 1− (2α + β) = 0.05
probability that the cut is odd w.r.t. T is at most τ = 1

7

Suppose edge sets of τ -narrow cuts were disjoint
For each τ -narrow cut (U, Ū), define “correction vector” fU
defined as the Held-Karp solution restricted to δ(U)

y := αχT + βx∗ +
∑

U:(U,Ū) is τ−narrow,|U∩T | odd d · fU

E
[
c(
∑

U:(U,Ū) is τ−narrow,|U∩T | odd d · fU)
]

≤ c
(∑

U:(U,Ū) is τ−narrow Pr[|U ∩ T | odd] · d · fU
)

≤ dτc
(∑

U:(U,Ū) is τ−narrow fU
)
≤ dτc(x∗)

The present algorithm is a 1.6572-approximation algorithm
if τ -narrow cuts were disjoint: E[c(y)] ≤ (α + β + dτ)c(x∗)

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



First improvement upon 5/3
Nonseparating cuts and s-t cuts with high capacities are
safe
For τ -narrow cuts,

deficiency is at most d := 1− (2α + β) = 0.05
probability that the cut is odd w.r.t. T is at most τ = 1

7
Suppose edge sets of τ -narrow cuts were disjoint
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7
Suppose edge sets of τ -narrow cuts were disjoint
For each τ -narrow cut (U, Ū), define “correction vector” fU
defined as the Held-Karp solution restricted to δ(U)

(fU)e =

{
x∗e if e ∈ δ(U)

0 otherwise
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First improvement upon 5/3
τ -narrow cuts are not disjoint

, but “almost” disjoint

Lemma
τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, Ū) and
(W , W̄ ) with s ∈ U,W, either U ⊂W or W ⊂ U.

Therefore,
τ -narrow cuts constitute a layered structure.
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First improvement upon 5/3
τ -narrow cuts are not disjoint, but “almost” disjoint

Lemma
τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, Ū) and
(W , W̄ ) with s ∈ U,W, either U ⊂W or W ⊂ U. Therefore,
τ -narrow cuts constitute a layered structure.

Proof.
Suppose not. Neither U \W nor W \ U is empty.

x∗(δ(U)) + x∗(δ(W )) < 2(1 + τ) ≤ 4

x∗(δ(U)) + x∗(δ(W )) ≥ x∗(δ(U \W )) + x∗(δ(W \ U)) ≥ 2 + 2
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x∗(δ(U)) + x∗(δ(W )) ≥ x∗(δ(U \W )) + x∗(δ(W \ U)) ≥ 2 + 2
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First improvement upon 5/3
Corollary
There exists a partition L1, . . . ,L` of V such that

L1 = {s}, L` = {t}, and
{U|(U, Ū) is τ -narrow, s ∈ U} = {Ui |1 ≤ i < `}, where
Ui := ∪ik=1Lk

s t

0.5

0.5

0.5

0.5 0.5

0.5 0.5

0.5

0.5 0.5 0.51 0.5

0.5 0.5 0.5

0.49 0.99 0.99 0.99

0.5

0.5

0.01

0.010.01

L1 L2 L3 L4 L5 L6

Thick edges show F3

We choose “representative edge set” Fi := E(Li ,L≥i+1) for
each δ(Ui). We claim:

Fi ’s are disjoint
Fi has large capacity
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First improvement upon 5/3

Lemma
x∗(Fi) ≥ 1− τ

2

Proof.
A := x∗(E(L≤i−1,Li)), B := x∗(E(Li ,L≥i+1)),
C := x∗(E(L≤i−1,L≥i+1)).

C

B

L≥i+1L≤i-1 Li

A

B + A ≥ 2
B + C ≥ 1
1 + τ > A + C

2B > 2− τ
x∗(Fi) = B > 1− τ

2
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First improvement upon 5/3

τ -narrow cuts are the only cuts that may potentially be
violated
For τ -narrow cuts,

deficiency is at most d := 1− (2α + β) = 0.05
probability that the cut is odd w.r.t. T is at most τ = 1

7
can choose “representative” edge set that are mutually
disjoint and has capacity ≥ 1− τ

2 = 13
14

(Re)define fU as Held-Karp solution restricted to Fi

y := αχT + βx∗ +
∑

U:(U,Ū) is τ−narrow,|U∩T | odd d · fU
y := αχT + βx∗ +

∑
U:(U,Ū) is τ−narrow,|U∩T | odd d ·

1
1− τ

2
· fU

E[c(y)] ≤ (α + β + dτ)c(x∗)
E[c(y)] ≤ (α + β + dτ

1− τ
2

)c(x∗) ≤ 0.6577c(x∗)
The present algorithm is a 1.6577-approximation algorithm
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U:(U,Ū) is τ−narrow,|U∩T | odd d · fU
y := αχT + βx∗ +

∑
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Tighter anlysis

Deficiency and the probability that a τ -narrow cut is odd
w.r.t. T were separately bounded
Write them as a function of the cut capacity and
simultaneously optimize
x∗(Fi) > 1− τ

2 + x∗(δ(Ui))−1
2

9−
√
33

2 -approximation algorithm (9−
√
33

2 < 1.6278)
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Pushing towards 1+
√
5

2 (1+
√
5

2 < 1.6181)

Key properties of the correction vectors used in the
analysis

fUi ’s are nonnegative∑
i fUi ≤ x∗

fUi (δ(Ui)) > 1− τ
2
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First improvement upon 5/3
Nonseparating cuts and s-t cuts with high capacities are
safe
For τ -narrow cuts,

deficiency is at most d := 1− (2α + β) = 0.05
probability that the cut is odd w.r.t. T is at most τ = 1

7
Suppose edge sets of τ -narrow cuts were disjoint
For each τ -narrow cut (U, Ū), define “correction vector” fU
defined as the Held-Karp solution restricted to δ(U)

y := αχT + βx∗ +
∑

U:(U,Ū) is τ−narrow,|U∩T | odd d · fU

E
[
c(
∑

U:(U,Ū) is τ−narrow,|U∩T | odd d · fU)
]

≤ c
(∑

U:(U,Ū) is τ−narrow Pr[|U ∩ T | odd] · d · fU
)

≤ dτc
(∑

U:(U,Ū) is τ−narrow fU
)
≤ dτc(x∗)

The present algorithm is a 1.6572-approximation algorithm
if τ -narrow cuts were disjoint: E[c(y)] ≤ (α + β + dτ)c(x∗)
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Pushing towards 1+
√
5

2 (1+
√
5

2 < 1.6181)
Key properties of the correction vectors used in the
analysis

fUi ’s are nonnegative∑
i fUi ≤ x∗

fUi (δ(Ui)) > 1− τ
2

Disjointness used to derive the second property
Disjointness also enforces a single edge to be used by at
most one correction vector

“Fractional disjointness” : ensure the second property
directly

Lemma
There exists a set of vectors {f̂∗Ui

}`−1i=1 satisfying:
f̂∗Ui
∈ RE

+ for all i∑`−1
i=1 f̂∗Ui

≤ x∗

f̂∗Ui
(δ(Ui)) ≥ 1 for all i

All constraints are linear
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Pushing towards 1+
√
5

2 (1+
√
5

2 < 1.6181)
Lemma
There exists a set of vectors {f̂∗Ui

}`−1i=1 satisfying:
f̂∗Ui
∈ RE

+ for all i∑`−1
i=1 f̂∗Ui

≤ x∗

f̂∗Ui
(δ(Ui)) ≥ 1 for all i

Proof. Consider an auxiliary flow network

s t

0.5 0.5

0.5 0.5

L3L1 L2

e1

vsource

vcut
U1

vcut
U2

vedge
e1

vedge
e2

vedge
e3

vedge
e4

Vsink

e3

e2 e4

0.51

1

1
0.5

0.5

0.5

∞

∞

∞

∞

We claim the maximum flow value on this network is `− 1
A maximum flow saturates all the edges from vsource to vcutU

Define (f̂∗U)e as the flow from vcutU to vedgee
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Pushing towards 1+
√
5

2 (1+
√
5

2 < 1.6181)

Proof. (cont’d)

vsource

vcut
U1

vcut
U2

vedge
e2

vedge
e3

vedge
e4

vedge
e5

Vsink∞∞
1

1

x*
e4

vedge
e1

vedge
e6

vcut
U3

vcut
U4

vcut
U5
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∞

1

1

1

x*
e5

x*
e6

x*
e1

x*
e2

x*
e3

S

We claim the maximum flow on this flow network is `− 1
Consider an arbitrary cut (S, S̄) on this flow network

We can assume w.l.o.g. that, if vcutU ∈ S, then vedgee ∈ S for
all e ∈ δ(U)

Want: if k of the τ -narrow cuts are in S, the edges in any of
these k τ -narrow cuts have total Held-Karp value ≥ k
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√
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√
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Want: if k of the τ -narrow cuts are in S, the edges in any of
these k τ -narrow cuts have total Held-Karp value ≥ k
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S

L1 L2

s

L3 L4 L6L5

t

Ui1 Ui2\ Ui1 Ui3\ Ui2 V \Ui3

` = 6, k = 3

∑
e:∃vcutU ∈S e∈δ(U) x∗e

= 1
2

[
x∗(δ(Ui1)) +

∑k
j=2 x∗(δ(Uij \ Uij−1)) + x∗(δ(V \ Uik ))

]
≥ 1

2 [1 + 2(k − 1) + 1] = k
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The Main Result

y := αχT + βx∗ +
∑

i:|Ui∩T | is odd, 1≤i<`
[1− {2α + βx∗(δ(Ui))}] f̂∗Ui

for α = 1− 2√
5 and β = 1√

5 yields the following:

Theorem
Best-of-many Christofides’ algorithm is a deterministic
φ-approximation algorithm for the s-t path TSP for the general
metric, where φ = 1+

√
5

2 < 1.6181 is the golden ratio
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Applications & open questions

Unit-weight graphical metric case
[Oveis Gharan, Saberi, Singh 2011],
[Mömke, Svensson 2011], [Mucha 2011]
Algorithmic use of τ -narrow cuts
A 1.5780-approximation algorithm
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Applications & open questions

Prize-collecting s-t path problem
Given a metric cost and vertex prize defined on every
vertex, find an s-t path that minimizes the sum of the path
cost and the total prize “missed”

[Archer, Bateni, Hajiaghayi, Karloff 2009, 2011],
[Goemans 2009], [Goemans, Williamson 1995],
[Bienstock, Goemans, Simchi-Levi, Williamson 1993]
A 1.9535-approximation algorithm

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Applications & open questions

Prize-collecting s-t path problem
Given a metric cost and vertex prize defined on every
vertex, find an s-t path that minimizes the sum of the path
cost and the total prize “missed”
[Archer, Bateni, Hajiaghayi, Karloff 2009, 2011],
[Goemans 2009], [Goemans, Williamson 1995],
[Bienstock, Goemans, Simchi-Levi, Williamson 1993]
A 1.9535-approximation algorithm

Hyung-Chan An Improving Christofides’ Algorithm for the s-t Path TSP



Applications & open questions

Open questions

Improve the performance guarantee?

Do our techniques extend to the circuit TSP?
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Thank you.


