Improving Christofides' Algorithm for the *s*-*t* Path TSP

Hyung-Chan An

Cornell University

Joint work with Robert Kleinberg and David B. Shmoys

- (Circuit) Traveling Salesman Problem
 - Given a weighted graph G = (V, E) (c : E → ℝ₊), find a minimum Hamiltonian circuit

Figure from [Dantzig, Fulkerson, Johnson 1954].

- Metric (circuit) TSP
 - Given a weighted graph G = (V, E) (c : E → ℝ₊), find a minimum Hamiltonian circuit
 - Triangle inequality holds

 or
 Multiple visits to the same vertex allowed
 - NP-hard
 - Christofides (1976) gave a 3/2-approximation algorithm

Definition

A ρ -approximation algorithm is a poly-time algorithm that produces a solution of cost within ρ times the optimum

- Metric (circuit) TSP
 - Given a weighted graph G = (V, E) ($c : E \to \mathbb{R}_+$), find a minimum Hamiltonian circuit
 - Triangle inequality holds

 or
 Multiple visits to the same vertex allowed
 - NP-hard
 - Christofides (1976) gave a 3/2-approximation algorithm
 - Best known

Definition

A ρ -approximation algorithm is a poly-time algorithm that produces a solution of cost within ρ times the optimum

Metric s-t path TSP

- Given a weighted graph G = (V, E) (c : E → ℝ₊) with endpoints s, t ∈ V, find a minimum s-t Hamiltonian path
- Triangle inequality holds

 or
 Multiple visits to the same vertex allowed
- NP-hard
- Hoogeveen (1991) showed that Christofides' algorithm is a 5/3-approximation algorithm and this bound is tight

Definition

A ρ -approximation algorithm is a poly-time algorithm that produces a solution of cost within ρ times the optimum

Our Main Result

Theorem

There exists a deterministic ϕ -approximation algorithm for the metric s-t path TSP, where $\phi = \frac{1+\sqrt{5}}{2}$ is the golden ratio $(\phi < 1.6181)$

Outline

- Christofides' algorithm
- Linear programming relaxation
- LP-based analysis of Christofides' algorithm
- Path-variant relaxation
- Our algorithm
- Analysis
 - First analysis: proof of 5/3-approximation
 - Second analysis: first improvement upon 5/3
 - Last analysis: pushing towards the golden ratio
- Application & open questions

Christofides' algorithm

- Christofides' algorithm
 - Find a minimum spanning tree *T*_{min}

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{\min}

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{min}
 - Find a minimum *T*-join *J*

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{\min}
 - Find a minimum *T*-join *J*

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{min}
 - Find a minimum *T*-join *J*

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{min}
 - Find a minimum *T*-join *J*

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{min}
 - Find a minimum *T*-join *J*

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathscr{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{min}
 - Find a minimum *T*-join *J*
 - Find an Eulerian circuit of *S*_{min} ∪ *J*

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree:
 - i.e., T is the set of odd-degree vertices in \mathscr{T}_{\min}
 - Find a minimum *T*-join *J*
 - Find an Eulerian circuit of *𝒯*_{min} ∪ *J*
 - Shortcut it into a Hamiltonian circuit H

Theorem

Graph G has an Eulerian circuit if and only if G is connected and every vertex of G has even degree

Definition

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in *I*min
 - Find a minimum *T*-join *J*
 - Find an *s*-*t* Eulerian *path* of $\mathscr{T}_{\min} \cup J$
 - Shortcut it into an s-t Hamiltonian path

Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree: i.e., *T* is the set of even-degree endpoints and other odd-degree vertices in *S*_{min}
 - Find a minimum *T*-join *J*
 - Find an s-t Eulerian path of *S*_{min} ∪ J
 - Shortcut it into an s-t Hamiltonian path

Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree: i.e., *T* is the set of even-degree endpoints and other odd-degree vertices in *S*_{min}
 - Find a minimum *T*-join *J*
 - Find an s-t Eulerian path of *S*_{min} ∪ J
 - Shortcut it into an s-t Hamiltonian path

Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree: i.e., *T* is the set of even-degree endpoints and other odd-degree vertices in *S*_{min}
 - Find a minimum *T*-join *J*
 - Find an s-t Eulerian path of *S*_{min} ∪ J
 - Shortcut it into an s-t Hamiltonian path

Theorem

- Christofides' algorithm
 - Find a minimum spanning tree \mathcal{T}_{\min}
 - Let *T* be the set of vertices with "wrong" parity of degree: i.e., *T* is the set of even-degree endpoints and other odd-degree vertices in *S*_{min}
 - Find a minimum *T*-join *J*
 - Find an s-t Eulerian path of *S*_{min} ∪ J
 - Shortcut it into an s-t Hamiltonian path

Theorem

Path-variant Christofides' algorithm

• Path-variant Christofides' algorithm

- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides' algorithm

• Path-variant Christofides' algorithm

- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Path-variant Christofides' algorithm

• Path-variant Christofides' algorithm

- 5/3-approximation algorithm [Hoogeveen 1991]
- This bound is tight

 Unit-weight graphical metric: distance between two vertices defined as shortest distance on this underlying unit-weight graph

Recent Exciting Improvements

- Recent improvements for unit-weight graphical metric TSP
 - Cost defined by the shortest path metric in an underlying unit-weight graph
 - Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011])

Recent Exciting Improvements

Recent improvements for unit-weight graphical metric TSP

- Cost defined by the shortest path metric in an underlying unit-weight graph
- Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011])

 Our algorithm for the s-t path TSP improves Christofides' for an arbitrary metric

Recent Exciting Improvements

Recent improvements for unit-weight graphical metric TSP

- Cost defined by the shortest path metric in an underlying unit-weight graph
- Better approximation than Christofides' ([Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011])
- Techniques can be successfully applied to both variants
- Our algorithm for the s-t path TSP improves Christofides' for an arbitrary metric
 - Can our techniques be extended to the circuit variant?

LP-based Approximation Algorithms

 Unit-weight graphical metric TSP [Oveis Gharan, Saberi, Singh 2011],
 [Mömke, Svensson 2011], [Mucha 2011]

LP-based Approximation Algorithms

- Unit-weight graphical metric TSP [Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011]
- Circuit-variant Christofides' algorithm [Wolsey 1980]

LP-based Approximation Algorithms

- Unit-weight graphical metric TSP [Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011]
- Circuit-variant Christofides' algorithm [Wolsey 1980]
- Our algorithm

Notation

- Notation
 - $\delta(S)$ for $S \subsetneq V$ denotes the set of edges in cut (S, \overline{S})

Notation

- Notation
 - $\delta(S)$ for $S \subsetneq V$ denotes the set of edges in cut (S, \overline{S})

• For
$$x, y \in \mathbb{R}^{E}_{+}$$
 and $F \subset E$,
• $x(y) := \sum_{e \in E} x_e y_e$
• $x(F) := \sum_{f \in F} x_f$
• Incidence vector of F is $(\chi_F)_e := \begin{cases} 1 & \text{if } e \in F \\ 0 & \text{otherwise} \end{cases}$

Held-Karp Relaxation

 Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 For G = (V, E),

$$\begin{cases} \sum_{e \in \delta(S)} x_e \geq 2, \quad \forall S \subsetneq V, S \neq \emptyset \\ \sum_{e \in \delta(\{v\})} x_e = 2, \quad \forall v \in V \\ x_e \in \{0, 1\} \quad \forall e \in E \end{cases}$$

Held-Karp Relaxation

 Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 For G = (V, E),

$$\begin{cases} \sum_{e \in \delta(S)} x_e \ge 2, & \forall S \subsetneq V, S \neq \emptyset \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \\ 0 \le x_e \le 1 & \forall e \in E \\ x \in \mathbb{R}^E \end{cases}$$

Held-Karp Relaxation

- Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 - Any feasible solution to this LP, scaled by ⁿ⁻¹/_n, is in the spanning tree polytope
 - ST polytope of $G := conv\{\chi_{\mathscr{T}} | \mathscr{T} \text{ is a ST of } G\}$
Held-Karp Relaxation

- Held-Karp relaxation (for circuit TSP) ([Dantzig, Fulkerson, Johnson 1954], [Held, Karp 1970])
 - Any feasible solution to this LP, scaled by ⁿ⁻¹/_n, is in the spanning tree polytope
 - ST polytope of $G := conv\{\chi_{\mathscr{T}} | \mathscr{T} \text{ is a ST of } G\}$

•
$$C(\mathscr{T}_{\min}) \leq C(\frac{n-1}{n}X^*) \leq C(X^*)$$

Polyhedral Characterization of T-joins

Definition For $T \subset V$, $J \subset E$ is a T-join if the set of odd-degree vertices in G' = (V, J) is T

Polyhedral characterization of T-joins

Polyhedral Characterization of T-joins

Definition For $T \subset V$, $J \subset E$ is a T-join if the set of odd-degree vertices in G' = (V, J) is T

Polyhedral characterization of T-joins

$$\begin{array}{c} \textbf{S} \\ \textbf{O} \\ \textbf{O} \end{array} \quad \begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, \quad \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^E \end{cases}$$

 Call a feasible solution a *fractional T-join*; its cost upper-bounds c(J)

LP-based Analysis of Christofides' Algorithm

Theorem (Wolsey 1980)

Christofides' algorithm is a 3/2-approximation algorithm

Proof.
$$c(\mathscr{T}_{\min}) \leq c(\frac{n-1}{n}x^*) \leq c(x^*)$$
 $y^* := \frac{1}{2}x^*$ is a fractional T -join(Held-Karp) $\begin{cases} \sum_{e \in \delta(S)} x_e \geq 2, & \forall S \subsetneq V, S \neq \emptyset \\ \sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \\ 0 \leq x_e \leq 1 & \forall e \in E \end{cases}$ $(T$ -join) $\begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, & \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^E \end{cases}$

0

LP-based Analysis of Christofides' Algorithm

Theorem (Wolsey 1980)

Christofides' algorithm is a 3/2-approximation algorithm

Proof.

$$c(\mathscr{T}_{min}) \leq c(\frac{n-1}{n}x^*) \leq c(x^*)$$

 $y^* := \frac{1}{2}x^*$ is a fractional *T*-join
 $c(J) \leq c(y^*) \leq \frac{1}{2}c(x^*)$
 $c(H) \leq c(\mathscr{T}_{min} \cup J) \leq c(x^*) + c(y^*) \leq \frac{3}{2}c(x^*) \leq \frac{3}{2}c(OPT)$

0

Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum

Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum

•
$$\left[\frac{4}{3}, \frac{3}{2}\right]$$
; conjectured $\frac{4}{3}$

Strength of Held-Karp Relaxation

- Integrality gap
 - Worst-case ratio of the integral optimum to the fractional optimum

•
$$\left[\frac{4}{3}, \frac{3}{2}\right]$$
; conjectured $\frac{4}{3}$

• Path-case
•
$$\left[\frac{3}{2}, \frac{1+\sqrt{5}}{2}\right]; \frac{3}{2}?$$

Path-variant Held-Karp relaxation

For G = (V, E) and $s, t \in V$,

- Path-variant Held-Karp relaxation
 - Polynomial-time solvable
 - The feasible region of this LP is contained in the spanning tree polytope

- Path-variant Held-Karp relaxation
 - Polynomial-time solvable
 - The feasible region of this LP is contained in the spanning tree polytope
 - A path-variant Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees

- Path-variant Held-Karp relaxation
 - Polynomial-time solvable
 - The feasible region of this LP is contained in the spanning tree polytope
 - A path-variant Held-Karp solution can be written as a convex combination of (incidence vectors of) spanning trees
- Can find such a decomposition in polynomial time [Grötschel, Lovász, Schrijver 1981]
- Try each of these polynomially many spanning trees

Our Algorithm

- Best-of-Many Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$
 - For each *T_i*:
 - Let *T_i* be the set of vertices with "wrong" parity of degree:
 i.e., *T_i* is the set of even-degree endpoints and other odd-degree vertices in *S_i*
 - Find a minimum *T_i*-join *J_i*
 - Find an *s*-*t* Eulerian path of $\mathscr{T}_i \cup J_i$
 - Shortcut it into an s-t Hamiltonian path H_i
 - Output the best Hamiltonian path

Randomized algorithm for notational convenience

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$:

$$\mathbf{x}^* = \sum_{i=1}^{\kappa} \lambda_i \chi_{\mathscr{T}_i}, \sum_{i=1}^{\kappa} \lambda_i = 1$$

- Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i
- Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in S
- Find a minimum *T*-join *J*
- Find an *s*-*t* Eulerian path of $\mathscr{T} \cup J$
- Shortcut it into an s-t Hamiltonian path H

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite *x*^{*} as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$:

$$\mathbf{x}^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i}, \sum_{i=1}^k \lambda_i = 1$$

- Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i
- Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in S
- Find a minimum *T*-join *J*
- Find an *s*-*t* Eulerian path of $\mathscr{T} \cup J$
- Shortcut it into an s-t Hamiltonian path H
- $E[c(H)] \leq \rho \cdot OPT \implies$

Best-of-Many Christofides' Algorithm is *p*-approx. algorithm

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite *x*^{*} as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$:

$$\mathbf{x}^* = \sum_{i=1}^{\kappa} \lambda_i \chi_{\mathscr{T}_i}, \sum_{i=1}^{\kappa} \lambda_i = 1$$

- Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i
- Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in S
- Find a minimum *T*-join *J*
- Find an *s*-*t* Eulerian path of $\mathscr{T} \cup J$
- Shortcut it into an s-t Hamiltonian path H

•
$$\Pr[e \in \mathscr{T}] = x_e^*$$

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite x^* as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$:

$$\mathbf{x}^* = \sum_{i=1}^{\kappa} \lambda_i \chi_{\mathscr{T}_i}, \sum_{i=1}^{\kappa} \lambda_i = 1$$

- Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i
- Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in *T*
- Find a minimum *T*-join *J*
- Find an *s*-*t* Eulerian path of $\mathscr{T} \cup J$
- Shortcut it into an s-t Hamiltonian path H

•
$$\Pr[e \in \mathscr{T}] = x_e^*$$

•
$$\mathsf{E}[c(\mathscr{T})] = \sum_{e \in E} c_e x_e^* = c(x^*)$$

• The rest of the analysis focuses on bounding c(J)

- Randomized algorithm for notational convenience
- Sampling Christofides' Algorithm
 - Compute an optimal solution x* to the Held-Karp relaxation
 - Rewrite *x*^{*} as a convex comb. of spanning trees $\mathscr{T}_1, \ldots, \mathscr{T}_k$:

$$\mathbf{x}^* = \sum_{i=1}^k \lambda_i \chi_{\mathscr{T}_i}, \sum_{i=1}^k \lambda_i = 1$$

- Sample \mathscr{T} by choosing \mathscr{T}_i with probability λ_i
- Let T be the set of vertices with "wrong" parity of degree:
 i.e., T is the set of even-degree endpoints and other odd-degree vertices in S
- Find a minimum *T*-join *J*
- Find an *s*-*t* Eulerian path of $\mathscr{T} \cup J$
- Shortcut it into an s-t Hamiltonian path H

Lemma
$$\mathsf{E}[c(\mathscr{T})] = \sum_{e \in E} c_e x_e^* = c(x^*)$$

Lemma $\mathsf{E}[c(J)] \le \bigstar \cdot c(x^*)$
Corollary $\mathsf{E}[c(\mathcal{H})] \le \mathsf{E}[c(\mathscr{T} \cup J)] \le (1 + \bigstar)c(x^*)$

• Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution

- Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Circuit case

- Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Circuit case
 - Well-known 2-approximation algorithm can be considered as using MST as a fractional *T*-join
 - Christofides' algorithm uses half the (circuit-variant) Held-Karp solution [Wolsey 1980]

- Want: a fractional *T*-join *y* with $E[c(y)] \leq \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Is βx^* a fractional *T*-join for some constant β ?

• IS βX^* a matrix (Held-Karp) $\begin{cases}
\sum_{e \in \delta(S)} x_e \ge 1, & \forall S \subsetneq V, |\{s, t\} \cap S| \neq 1, S \neq \emptyset \\
\sum_{e \in \delta(S)} x_e \ge 2, & \forall S \subsetneq V, |\{s, t\} \cap S| \neq 1, S \neq \emptyset \\
\sum_{e \in \delta(\{s\})} x_e = \sum_{e \in \delta(\{t\})} x_e = 1 \\
\sum_{e \in \delta(\{v\})} x_e = 2, & \forall v \in V \setminus \{s, t\} \\
0 \le x_e \le 1 & \forall e \in E
\end{cases}$ $Y = V \mid S \cap T \mid \text{odd}$ $(T\text{-join}) \qquad \begin{cases} \sum_{e \in \delta(S)} y_e \ge 1, \quad \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}^{\frac{F}{2}}. \end{cases}$

- Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$ $x^* :=$ optimal path-variant Held-Karp solution
- Is βx^* a fractional *T*-join for some constant β ?
 - Yes, for $\beta = 1$. The present algorithm is a 2-approximation algorithm: $E[c(J)] \le E[c(\beta x^*)] = \beta c(x^*)$

	<i>X</i> *
LB on <i>s-t</i> cut capacities	1
LB on nonseparating cut capacities	2

- Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$.
- Is βx^* a fractional *T*-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?

Hyung-Chan An Improving Christofides' Algorithm for the *s*-*t* Path TSP

- Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$.
- Is βx^* a fractional *T*-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?

Hyung-Chan An Improving Christofides' Algorithm for the *s*-*t* Path TSP

- Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$.
- Is βx^* a fractional *T*-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it.

	$\chi_{\mathscr{T}}$	X *	
LB on <i>T-odd s-t</i> cut capacities	2	1	
LB on nonseparating cut capacities	1	2	

- Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$.
- Is βx^* a fractional *T*-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it.

Proof. *U* contains exactly one of *s* and $t \Rightarrow U$ has even number of odd-degree vertices

#edges in $\delta(U)$

 $=\sum_{v\in U}$ degree of $v-2 \cdot (\text{#edges within } U)$

$$\chi_{\mathscr{T}}$$
 x^* LB on *T-odd s-t* cut capacities2LB on nonseparating cut capacities12

- Want: a fractional *T*-join *y* with $E[c(y)] \le \frac{2}{3}c(x^*)$.
- Is βx^* a fractional *T*-join for some β ? Yes, for $\beta = 1$.
- How about $\alpha \chi_{\mathscr{T}}$?
 - s-t cuts do have some slack in this case

Lemma

An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it.

 Yes, for α = 1. The present algorithm is a 2-approximation algorithm: E[c(J)] ≤ E[c(αχ_𝔅)] = αc(x*)

	$\chi_{\mathscr{T}}$	X *	
LB on <i>T</i> -odd <i>s</i> - <i>t</i> cut capacities	2	1	
LB on nonseparating cut capacities	1	2	

	$\chi_{\mathscr{T}}$	X *	У
LB on <i>T</i> -odd <i>s</i> - <i>t</i> cut capacities	2	1	$2\alpha + \beta$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta$

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^*$$

	$\chi_{\mathscr{T}}$	X *	У
LB on <i>T</i> -odd <i>s</i> - <i>t</i> cut capacities	2	1	$2\alpha + \beta = 1$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^*$$

- Choose $\alpha = \beta = \frac{1}{3}$
- The present algorithm is a 5/3-approximation algorithm: $E[c(J)] \le E[c(y)] = (\alpha + \beta)c(x^*) = \frac{2}{3}c(x^*)$

	$\chi_{\mathscr{T}}$	X *	У
LB on <i>T</i> -odd <i>s</i> - <i>t</i> cut capacities	2	1	$2\alpha + \beta = 1$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^*$$

- Choose $\alpha = \beta = \frac{1}{3}$
- The present algorithm is a 5/3-approximation algorithm: $E[c(J)] \le E[c(y)] = (\alpha + \beta)c(x^*) = \frac{2}{3}c(x^*)$
- Analysis also works for the original path-variant Christofides' algorithm

First improvement upon 5/3

• • /	$\chi_{\mathscr{T}}$	X *	У
LB on <i>T</i> -odd <i>s</i> - <i>t</i> cut capacities	2	1	$2\alpha + \beta = 1$
LB on nonseparating cut capacities	1	2	$\alpha + 2\beta = 1$

• Perturb α and β

First improvement upon 5/3

 $\chi_{\mathscr{T}}$ X^* YLB on T-odd s-t cut capacities21 $2\alpha + \beta = 0.95$ LB on nonseparating cut capacities12 $\alpha + 2\beta = 1$

- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ : will choose $\alpha = 0.30$ and $\beta = 0.35$ later
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- α + 2β unchanged; only s-t cuts may be violated by at most 1 (2α + β) =: d. d = 0.05

First improvement upon 5/3

 $\chi_{\mathscr{T}}$ 1 $2\alpha + \beta = 0.95$ LB on *T*-odd *s*-*t* cut capacities 2 1 2 $\alpha + 2\beta = 1$ LB on nonseparating cut capacities

- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ : will choose $\alpha = 0.30$ and $\beta = 0.35$ later
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; only *s*-*t* cuts may be violated by at most $1 - (2\alpha + \beta) =: d. d = 0.05$
- s-t cuts (U, \overline{U}) with large capacity in HK solution are safe: $2\alpha + \beta x^*(\delta(U))$ still large

X*
$\chi_{\mathscr{T}}$ LB on *T*-odd *s*-*t* cut capacities 2 1 $2\alpha + \beta = 0.95$ 1 2 $\alpha + 2\beta = 1$ LB on nonseparating cut capacities

- Perturb α and β
 - In particular, decrease α by 2ϵ and increase β by ϵ : will choose $\alpha = 0.30$ and $\beta = 0.35$ later
- $E[c(y)] = (\alpha + \beta)c(x^*)$ decreases by $\epsilon c(x^*)$
- $\alpha + 2\beta$ unchanged; only *s*-*t* cuts may be violated by at most $1 - (2\alpha + \beta) =: d. d = 0.05$
- s-t cuts (U, \overline{U}) with large capacity in HK solution are safe: $2\alpha + \beta x^*(\delta(U))$ still large

Definition

For $0 < \tau \leq 1$, a τ -narrow cut (U, \overline{U}) is an s-t cut with $x^*(\delta(U)) < 1 + \tau$

•
$$2\alpha + \beta(1 + \tau) = 1$$
: $\tau = \frac{1}{7}$

X*

• *s*-*t* cuts (U, \overline{U}) with $x^*(\delta(U)) = 1$ are safe

• *s*-*t* cuts (U, \overline{U}) with $x^*(\delta(U)) = 1$ are safe

Lemma

An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it

Corollary

Each s-t cut (U, \overline{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

$$\begin{cases} \sum_{e \in \delta(S)} y_e \geq 1, \quad \forall S \subset V, |S \cap T| \text{ odd} \\ y \in \mathbb{R}_+^{\mathcal{E}} \end{cases}$$

• *s*-*t* cuts (U, \overline{U}) with $x^*(\delta(U)) = 1$ are safe

Lemma

An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it

Corollary

Each s-t cut (U, \overline{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Proof.

Expected number of tree edges in the cut is equal to $x^*(\delta(U))$:

$$\mathsf{E}[|\delta(U) \cap \mathscr{T}|] = \sum_{e \in \delta(U)} \mathsf{Pr}[e \in \mathscr{T}] = \sum_{e \in \delta(U)} x_e^* = 1$$

So $|\delta(U) \cap \mathscr{T}|$ is identically 1.

Lemma An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it

Corollary Each s-t cut (U, \overline{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Corollary For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

Lemma An s-t cut (U, \overline{U}) that is odd w.r.t. T (i.e., $|U \cap T|$ is odd) has at least two edges in it

Corollary

Each s-t cut (U, \overline{U}) with $x^*(\delta(U)) = 1$ is never odd w.r.t. T

Corollary

For any τ -narrow cut (U, \overline{U}) , $\Pr[|U \cap T| \text{ odd}] < \tau$

Proof.

- (U, \overline{U}) has at least one tree edge in it
- If (U, \overline{U}) is odd w.r.t. T, it must have another tree edge in it
- Expected number of tree edges in the cut is $< 1 + \tau$

 $\Pr[|U \cap T| \text{ odd}] \leq x^*(\delta(U)) - 1 < au$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of τ -narrow cuts were disjoint

- Nonseparating cuts and s-t cuts with high capacities are safe
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of τ-narrow cuts were disjoint
- For each *τ*-narrow cut (*U*, *Ū*), define "correction vector" *f*_U defined as the Held-Karp solution restricted to δ(*U*)

$$(f_U)_{m{e}} = egin{cases} x_{m{e}}^* & ext{if } m{e} \in \delta(U) \ 0 & ext{otherwise} \end{cases}$$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of τ-narrow cuts were disjoint
- For each *τ*-narrow cut (*U*, *Ū*), define "correction vector" *f*_U defined as the Held-Karp solution restricted to δ(*U*)

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \sum_{U:(U,\bar{U}) \text{ is } \tau - \text{narrow}, |U \cap T| \text{ odd } \mathbf{d} \cdot \mathbf{f}_U$$

$$\begin{split} \mathsf{E} & \left[c(\sum_{U:(U,\bar{U}) \text{ is } \tau-\operatorname{narrow}, |U\cap T| \text{ odd } d \cdot f_U) \right] \\ \leq & c \left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\operatorname{narrow}} \mathsf{Pr}[|U\cap T| \text{ odd}] \cdot d \cdot f_U \right) \\ \leq & d\tau c \left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\operatorname{narrow}} f_U \right) \leq d\tau c(x^*) \end{split}$$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of *τ*-narrow cuts were disjoint
- For each *τ*-narrow cut (*U*, *Ū*), define "correction vector" *f*_U defined as the Held-Karp solution restricted to δ(*U*)

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \sum_{U:(U,\bar{U}) \text{ is } \tau - \text{narrow}, |U \cap T| \text{ odd } \mathbf{d} \cdot \mathbf{f}_U$$

$$\begin{split} \mathsf{E} & \left[c(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}, |U\cap T| \text{ odd } d \cdot f_U) \right] \\ \leq & c \left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} \mathsf{Pr}[|U\cap T| \text{ odd}] \cdot d \cdot f_U \right) \\ \leq & d\tau c \left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} f_U \right) \leq d\tau c(x^*) \end{split}$$

 The present algorithm is a 1.6572-approximation algorithm if *τ*-narrow cuts were disjoint: E[c(y)] ≤ (α + β + dτ)c(x*)

τ-narrow cuts are not disjoint

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

 τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, \overline{U}) and (W, \overline{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$.

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

 τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, \overline{U}) and (W, \overline{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ -narrow cuts constitute a layered structure.

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

 τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, \overline{U}) and (W, \overline{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ -narrow cuts constitute a layered structure.

Proof.

Suppose not. Neither $U \setminus W$ nor $W \setminus U$ is empty.

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

 τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, \overline{U}) and (W, \overline{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ -narrow cuts constitute a layered structure.

Proof.

Suppose not. Neither $U \setminus W$ nor $W \setminus U$ is empty.

$$x^*(\delta(U)) + x^*(\delta(W)) < 2(1 + \tau) \le 4$$

• τ -narrow cuts are not disjoint, but "almost" disjoint

Lemma

 τ -narrow cuts do not cross: i.e., for τ -narrow cuts (U, \overline{U}) and (W, \overline{W}) with $s \in U, W$, either $U \subset W$ or $W \subset U$. Therefore, τ -narrow cuts constitute a layered structure.

Proof.

Suppose not. Neither $U \setminus W$ nor $W \setminus U$ is empty.

$$egin{aligned} &x^*(\delta(\mathcal{U}))+x^*(\delta(\mathcal{W}))<2(1+ au)\leq4\ &x^*(\delta(\mathcal{U}))+x^*(\delta(\mathcal{W}))\geq x^*(\delta(\mathcal{U}\setminus\mathcal{W}))+x^*(\delta(\mathcal{W}\setminus\mathcal{U}))\geq2+2 \end{aligned}$$

Corollary

There exists a partition L_1, \ldots, L_ℓ of V such that

•
$$L_1 = \{s\}, L_\ell = \{t\}, and$$

• $\{U|(U,\bar{U}) \text{ is } \tau\text{-narrow, } s \in U\} = \{U_i|1 \leq i < \ell\}, \text{ where } U_i := \cup_{k=1}^i L_k$

Corollary

There exists a partition L_1, \ldots, L_ℓ of V such that

•
$$L_1 = \{s\}, L_\ell = \{t\}, and$$

• $\{U|(U,\bar{U}) \text{ is } \tau\text{-narrow, } s \in U\} = \{U_i|1 \leq i < \ell\}, \text{ where } U_i := \cup_{k=1}^i L_k$

- We choose "representative edge set" F_i := E(L_i, L_{≥i+1}) for each δ(U_i). We claim:
 - F_i's are disjoint
 - F_i has large capacity

Lemma $x^*(F_i) \ge 1 - \frac{\tau}{2}$ Proof. $A := x^*(E(L_{\le i-1}, L_i)), B := x^*(E(L_i, L_{\ge i+1})),$ $C := x^*(E(L_{\le i-1}, L_{\ge i+1})).$

Lemma $x^*(F_i) \ge 1 - \frac{\tau}{2}$ Proof. $A := x^*(E(L_{\le i-1}, L_i)), B := x^*(E(L_i, L_{\ge i+1})),$ $C := x^*(E(L_{\le i-1}, L_{\ge i+1})).$

 $B+A \geq 2$

Lemma $x^*(F_i) \geq 1 - \frac{\tau}{2}$ Proof. $A := x^*(E(L_{\leq i-1}, L_i)), B := x^*(E(L_i, L_{\geq i+1})),$ $C := x^*(E(L_{\leq i-1}, L_{\geq i+1})).$

- $egin{array}{rcl} B+A &\geq & 2 \ B+C &\geq & 1 \end{array}$

Lemma $x^*(F_i) \ge 1 - \frac{\tau}{2}$ Proof. $A := x^*(E(L_{\le i-1}, L_i)), B := x^*(E(L_i, L_{\ge i+1})),$ $C := x^*(E(L_{\le i-1}, L_{\ge i+1})).$

 $B + A \ge 2$ $B + C \ge 1$ $1 + \tau > A + C$

Hyung-Chan An Improving Christofides' Algorithm for the s-t Path TSP

Lemma $x^*(F_i) \ge 1 - \frac{\tau}{2}$ Proof. $A := x^*(E(L_{\le i-1}, L_i)), B := x^*(E(L_i, L_{\ge i+1})),$ $C := x^*(E(L_{\le i-1}, L_{\ge i+1})).$

- *τ*-narrow cuts are the only cuts that may potentially be violated
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
 - can choose "representative" edge set that are mutually disjoint and has capacity $\geq 1 \frac{\tau}{2} = \frac{13}{14}$

- *τ*-narrow cuts are the only cuts that may potentially be violated
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
 - can choose "representative" edge set that are mutually disjoint and has capacity $\geq 1 \frac{\tau}{2} = \frac{13}{14}$
- (Re)define f_U as Held-Karp solution restricted to F_i

- *τ*-narrow cuts are the only cuts that may potentially be violated
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
 - can choose "representative" edge set that are mutually disjoint and has capacity $\geq 1 \frac{\tau}{2} = \frac{13}{14}$
- (Re)define f_U as Held-Karp solution restricted to F_i
- $y := \alpha \chi_{\mathscr{T}} + \beta X^* + \sum_{U:(U,\bar{U}) \text{ is } \tau \text{narrow}, |U \cap T| \text{ odd } d \cdot f_U} y := \alpha \chi_{\mathscr{T}} + \beta X^* + \sum_{U:(U,\bar{U}) \text{ is } \tau \text{narrow}, |U \cap T| \text{ odd } d \cdot \frac{1}{1 \frac{\tau}{2}} \cdot f_U}$

- *τ*-narrow cuts are the only cuts that may potentially be violated
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
 - can choose "representative" edge set that are mutually disjoint and has capacity $\geq 1 \frac{\tau}{2} = \frac{13}{14}$
- (Re)define f_U as Held-Karp solution restricted to F_i
- $y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau \text{narrow}, |U \cap T| \text{ odd } d \cdot f_U} y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{U:(U,\bar{U}) \text{ is } \tau \text{narrow}, |U \cap T| \text{ odd } d \cdot \frac{1}{1 \frac{\tau}{2}} \cdot f_U}$
- $\mathbb{E}[c(y)] \le (\alpha + \beta + d\tau)c(x^*)$ $\mathbb{E}[c(y)] \le (\alpha + \beta + \frac{d\tau}{1 - \frac{\tau}{2}})c(x^*) \le 0.6577c(x^*)$
- The present algorithm is a 1.6577-approximation algorithm

Tighter anlysis

- Deficiency and the probability that a *τ*-narrow cut is odd w.r.t. *T* were separately bounded
- Write them as a function of the cut capacity and simultaneously optimize

•
$$x^*(F_i) > 1 - \frac{\tau}{2} + \frac{x^*(\delta(U_i)) - 1}{2}$$

•
$$\frac{9-\sqrt{33}}{2}$$
-approximation algorithm ($\frac{9-\sqrt{33}}{2}$ < 1.6278)

- Key properties of the correction vectors used in the analysis
 - f_{U_i}'s are nonnegative

•
$$\sum_{i}^{1} f_{U_i} \leq x^*$$

• $f_{U_i}(\delta(U_i)) > 1 - \frac{\tau}{2}$

- Nonseparating cuts and s-t cuts with high capacities are safe
- For *τ*-narrow cuts,
 - deficiency is at most $d := 1 (2\alpha + \beta) = 0.05$
 - probability that the cut is odd w.r.t. T is at most $\tau = \frac{1}{7}$
- Suppose edge sets of *τ*-narrow cuts were disjoint
- For each *τ*-narrow cut (*U*, *Ū*), define "correction vector" *f*_U defined as the Held-Karp solution restricted to δ(*U*)

•
$$\mathbf{y} := \alpha \chi_{\mathscr{T}} + \beta \mathbf{x}^* + \sum_{U:(U,\bar{U}) \text{ is } \tau - \text{narrow}, |U \cap T| \text{ odd } \mathbf{d} \cdot \mathbf{f}_U$$

$$\begin{split} \mathsf{E} & \left[c(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}, |U\cap T| \text{ odd } d \cdot f_U) \right] \\ \leq & c \left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} \mathsf{Pr}[|U\cap T| \text{ odd}] \cdot d \cdot f_U \right) \\ \leq & d\tau c \left(\sum_{U:(U,\bar{U}) \text{ is } \tau-\text{narrow}} f_U \right) \leq d\tau c(x^*) \end{split}$$

 The present algorithm is a 1.6572-approximation algorithm if *τ*-narrow cuts were disjoint: E[c(y)] ≤ (α + β + dτ)c(x*)

 $\frac{\tau}{2}$

- Key properties of the correction vectors used in the analysis
 - *f*_{U_i}'s are nonnegative

•
$$\sum_{i}^{} f_{U_i} \leq x^*$$

• $f_{U_i}(\delta(U_i)) > 1 -$

- Key properties of the correction vectors used in the analysis
 - f_{U_i} 's are nonnegative

•
$$\sum_{i} f_{U_i} \leq x^*$$

- $\overline{f_{U_i}}(\delta(U_i)) > 1 \frac{\tau}{2}$
- Disjointness used to derive the second property
 - Disjointness also enforces a single edge to be used by at most one correction vector

- Key properties of the correction vectors used in the analysis
 - *f*_{U_i}'s are nonnegative
 - $\sum_i f_{U_i} \leq x^*$
 - $\overline{f_{U_i}}(\delta(U_i)) > 1 \frac{\tau}{2}$
- Disjointness used to derive the second property
 - Disjointness also enforces a single edge to be used by at most one correction vector
- "Fractional disjointness" : ensure the second property directly

Lemma

There exists a set of vectors $\{\hat{f}_{U_i}^*\}_{i=1}^{\ell-1}$ satisfying:

•
$$\hat{f}^*_{U_i} \in \mathbb{R}^E_+$$
 for all i

•
$$\sum_{i=1}^{\ell-1} \hat{f}_{U_i}^* \le x^*$$

•
$$\hat{f}^*_{U_i}(\delta(U_i)) \ge 1$$
 for all i

- Key properties of the correction vectors used in the analysis
 - *f*_{U_i}'s are nonnegative
 - $\sum_i f_{U_i} \leq x^*$
 - $f_{U_i}(\delta(U_i)) > 1 \frac{\tau}{2}$
- Disjointness used to derive the second property
 - Disjointness also enforces a single edge to be used by at most one correction vector
- "Fractional disjointness" : ensure the second property directly

Lemma

There exists a set of vectors $\{\hat{f}_{U_i}^*\}_{i=1}^{\ell-1}$ satisfying:

•
$$\hat{f}^*_{U_i} \in \mathbb{R}^E_+$$
 for all i

•
$$\sum_{i=1}^{\ell-1} \hat{f}_{U_i}^* \le x^*$$

- $\hat{f}^*_{U_i}(\delta(U_i)) \ge 1$ for all i
- All constraints are linear
Lemma

There exists a set of vectors $\{\hat{f}_{U_i}^*\}_{i=1}^{\ell-1}$ satisfying:

- $\hat{f}^*_{U_i} \in \mathbb{R}^E_+$ for all i
- $\sum_{i=1}^{\ell-1} \hat{f}_{U_i}^* \leq x^*$
- $\hat{f}^*_{U_i}(\delta(U_i)) \ge 1$ for all i

Proof. Consider an auxiliary flow network

Lemma

There exists a set of vectors $\{\hat{f}_{U_i}^*\}_{i=1}^{\ell-1}$ satisfying:

- $\hat{f}^*_{U_i} \in \mathbb{R}^E_+$ for all i
- $\sum_{i=1}^{\ell-1} \hat{f}_{U_i}^* \leq x^*$
- $\hat{f}^*_{U_i}(\delta(U_i)) \ge 1$ for all i

Proof. Consider an auxiliary flow network

- We claim the maximum flow value on this network is $\ell 1$ A maximum flow saturates all the edges from v^{source} to v_U^{cut}
- Define $(\hat{f}_U^*)_e$ as the flow from v_U^{cut} to v_e^{edge}

Proof. (cont'd)

• We claim the maximum flow on this flow network is $\ell - 1$ Consider an arbitrary cut (S, \overline{S}) on this flow network

Proof. (cont'd)

- We claim the maximum flow on this flow network is $\ell 1$ Consider an arbitrary cut (S, \overline{S}) on this flow network
- We can assume w.l.o.g. that, if v^{cut}_U ∈ S, then v^{edge}_e ∈ S for all e ∈ δ(U)

Proof. (cont'd)

- We claim the maximum flow on this flow network is $\ell 1$ Consider an arbitrary cut (S, \overline{S}) on this flow network
- We can assume w.l.o.g. that, if v^{cut}_U ∈ S, then v^{edge}_e ∈ S for all e ∈ δ(U)
- Want: if k of the *τ*-narrow cuts are in S, the edges in any of these k *τ*-narrow cuts have total Held-Karp value ≥ k

Want: if *k* of the τ -narrow cuts are in *S*, the edges in any of these *k* τ -narrow cuts have total Held-Karp value $\geq k$

Want: if *k* of the τ -narrow cuts are in *S*, the edges in any of these *k* τ -narrow cuts have total Held-Karp value $\geq k$

The Main Result

$$y := \alpha \chi_{\mathscr{T}} + \beta x^* + \sum_{i:|U_i \cap T| \text{ is odd, } 1 \le i < \ell} [1 - \{2\alpha + \beta x^*(\delta(U_i))\}] \hat{f}_{U_i}^*$$

for $\alpha = 1 - \frac{2}{\sqrt{5}}$ and $\beta = \frac{1}{\sqrt{5}}$ yields the following:

Theorem

Best-of-many Christofides' algorithm is a deterministic ϕ -approximation algorithm for the s-t path TSP for the general metric, where $\phi = \frac{1+\sqrt{5}}{2} < 1.6181$ is the golden ratio

Hyung-Chan An Improving Christofides' Algorithm for the *s*-*t* Path TSP

- Unit-weight graphical metric case
 - [Oveis Gharan, Saberi, Singh 2011], [Mömke, Svensson 2011], [Mucha 2011]
 - Algorithmic use of τ -narrow cuts
 - A 1.5780-approximation algorithm

• Prize-collecting *s*-*t* path problem

• Given a metric cost and vertex prize defined on every vertex, find an *s*-*t* path that minimizes the sum of the path cost and the total prize "missed"

• Prize-collecting *s*-*t* path problem

- Given a metric cost and vertex prize defined on every vertex, find an *s*-*t* path that minimizes the sum of the path cost and the total prize "missed"
- [Archer, Bateni, Hajiaghayi, Karloff 2009, 2011],
 [Goemans 2009], [Goemans, Williamson 1995],
 [Bienstock, Goemans, Simchi-Levi, Williamson 1993]
- A 1.9535-approximation algorithm

- Open questions
 - Improve the performance guarantee?
 - Do our techniques extend to the circuit TSP?

Thank you.