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Exponential Clocks



Exponential Distribution

• A random variable  distributed according to the exponential distribution with rate , denoted by  has 


• pdf  


• Cdf  


NICE PROPERTIES:


• The exponential distribution is memoryless: 


• Let  be independent random variables with 


• 


•

X λ X ∼ exp(λ)

fX(x) = λe−λx

Pr[X ≤ x] = FX(x) = 1 − e−λx

Pr[X ≥ s + t ∣ X ≥ s] = Pr[X ≥ t]

X1, …, Xk Xi ∼ exp(λi)

min{X1, …, Xk} ∼ exp(λ1 + … + λk)

Pr[Xi ≤ min
j≠i

Xj] =
λi

λ1 + … + λk



The algorithm

• Solve Set Cover LP:


• Let  be an optimal solution


• For each set  sample 


• Output 

x*

Si ZSi
∼ exp(xi)

⋃
e∈U

arg min{ZSi
∣ e ∈ Si}

minimize  ∑
i

c(Si) ⋅ xi

Subject to   for every ∑
i:e∈Si

xi ≥ 1 e ∈ U

 for every xi ≥ 0 Si ∈ T

S1 S2 S3 S4

e1 e2 e3 e4 e5

x*S1
= 1/3 x*S2

= 2/3 x*S3
= 1/3 x*S4

= 2/3
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The algorithm

• Solve Set Cover LP:


• Let  be an optimal solution


• For each set  sample 
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The algorithm

• Solve Set Cover LP:


• Let  be an optimal solution


• For each set  sample 


• Output 
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The algorithm

• Solve Set Cover LP:


• Let  be an optimal solution


• For each set  sample 


• Output 

x*

Si ZSi
∼ exp(xi)

⋃
e∈U

arg min{ZSi
∣ e ∈ Si}

minimize  ∑
i

c(Si) ⋅ xi

Subject to   for every ∑
i:e∈Si

xi ≥ 1 e ∈ U

 for every xi ≥ 0 Si ∈ T

S1 S2 S3 S4

e1 e2 e3 e4 e5

x*1 = 1/3 x*2 = 2/3 x*3 = 1/3 x*4 = 2/3

ZS1
= 0.22 ZS4

= 0.3ZS2
= 0.6 ZS3

= 1

Output {S1, S2, S4}



Analysis (1/2)
The probability that we output  is at most Si (1 + ln |Si | )x*i
• For element , let  be the event that  chooses , i.e., that 


• With this notation, 


• Now 

e ∈ Si Ae e Si ZSi
= min{ZSj

∣ e ∈ Sj}

Pr[Si output] = Pr[∨e∈Si
Ae]

Pr[∨e∈Si
Ae] = Pr[∨e∈Si

Ae ∣ ZSi
≤ α] Pr[ZSi

≤ α] + Pr[∨e∈Si
Ae ∣ ZSi

≥ α] Pr[ZSi
≥ α]

Pr[∨e∈Si
Ae ∣ ZSi

≤ α] Pr[ZSi
≤ α]

  ≤ Pr[ZSi
≤ α] ≤ 1 − e−x*i α ≤ x*i α

 Pr[∨e∈Si
Ae ∣ ZSi

≥ α] Pr[ZSi
≥ α]

 ≤ ∑
e∈Si

Pr[Ae ∣ ZSi
≥ α] ⋅ e−x*i α

So the probability that we output  is at most  Si αx*i + ∑
e∈Si

Pr[Ae ∣ ZSi
≥ α] ⋅ e−x*i α



Analysis (2/2)
The probability that we output  is at most Si (1 + ln |Si | )x*i
The probability that we output  is at most  Si αx*i + ∑

e∈Si

Pr[Ae ∣ ZSi
≥ α] ⋅ e−x*i α

To analyze , let  be the sets that cover  and let 


Note that , and that  does not happen if  


Hence, 

Pr[Ae ∣ ZSi
≥ α] S1, …, Sk, Si e Y = min{ZS1

, …, ZSk
}

Y ∼ exp(x*1 + … + x*k ) Ae Y < α

e−x*i α Pr[Ae ∣ ZSi
≥ α] = e−x*i α Pr[Y ≥ α] Pr[Ae ∣ ZSi

≥ α, Y ≥ α]

= e−α(x*1 +…x*k +x*i ) ⋅
x*i

x*1 + … + x*k + x*i
≥ e−α ⋅ x*i

It follows that the probability that we output  is at most  Si αx*i + ∑
e∈Si

e−αx*i

Selecting  now gives the resultα = ln |Si |

e

S1 Sk Si
…



Vapnik-Chervonenkis (VC) dimension 



Definition of VC dimension

• Consider a ground set  and a family of subsets 


• We say that  shatters a subset   if  contains all subsets of 


• The VC dimension of  is the maximum  so that  shatters a subset  of cardinality 

U T = {S1, S2, …, Sm}

T U′ ⊆ U {U′ ∩ S ∣ S ∈ T} U′ 

(U, T) d T U′ ⊆ U d

+ singleton sets have VC dimension 2
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Definition of VC dimension

• Consider a ground set  and a family of subsets 


• We say that  shatters a subset   if  contains all subsets of 


• The VC dimension of  is the maximum  so that  shatters a subset  of cardinality 

U T = {S1, S2, …, Sm}

T U′ ⊆ U {U′ ∩ S ∣ S ∈ T} U′ 

(U, T) d T U′ ⊆ U d

+ singleton sets have VC dimension 3



VC Dimension of disks in plane ≤ 3
Consider 4 points

• Case 1: one point is in the interior of the convex hull of the others:
p1 p2

p3

p4

No disk can realize the set {p1, p2, p3}

• Case 2: All four points are at the boundary of the convex hull p1 p2

p3
p4Can’t exist two disks where one contains  and the other 


Because any two such disks would intersect at 4 points. But any disks intersect at most 2 points

{p1, p3} {p2, p4}



-Net Theoremϵ
Fix ϵ, δ > 0

• Suppose (U, T) has VC-dimension .


• If we select  many samples from U independently at random


• Then, with probability , we sample at least one element from every set  of cardinality at least 

d

m ≥ max{
4
ϵ

log
2
δ

,
8d
ϵ

log
8d
ϵ

}

≥ 1 − δ S ∈ T ϵ |U |

What is cool here is that the number of samples is independent of |U |



Sauer’s Lemma
If  with  has VC-dimension  then  where (U, T) |U | = n d |T | ≤ g(n, d) g(n, d) =

d

∑
i=0

(n
i )

• We will prove the following stronger claim by Pajor 1985:


•  the number of different subsets that are shattered by  is at least 


• This implies Sauer’s lemma since the if  there must be a subset shattered of size at least  by 
counting


• The proof is credited to Noga Alon or to Ron Aharoni and Ron Holzman.

T |T |

|T | > g(n, d) d + 1



The number of different subsets that are shattered by  is at least  T |T |

• Base: Every family of only one set shatters the empty set. 


• Inductive step: Let  be a family of two or more sets and let x be an element that appear in some but not all sets.


• Split  into two subfamilies, those that contain x and those that don’t.


• By IH, these two subfamilies shatter two collections of sets whose sizes add to at least 


• None of these shattered sets contain . 


• If a shattered set appears in one subfamily then it contributes one unit to the subfamilies and one unit to #shattered sets of 


• If a shattered set appears twice then it counts twice for the subfamilies and then also S and S+x are shattered  by 


• Therefore the number of shattered sets by subfamilies and    is the same and so  shatters iat least  sets.

T

T

|T |

x

T

|T |

T T |T |



Proof of -Net Theoremϵ
• Let  be the event that our sampled points  fail to be an -net, i.e., 


• We wish to prove . This turns out to be hard as there can be   sets in total and our sample size 
doesn’t depend on .


• Instead, consider what happens if we first sample  and then  from the same 
distribution.


• Let 


• Note that  but we have also  since each large set has in expectation 
 and our samples are independent, so we can apply standard concentration bounds.


• It is thus sufficient to upper bound .


• To do this, we will upper bound .


• Clearly  and note crucially that  doesn’t appear in the definition of the event anymore.

E1 N ϵ E1 = {∃S ∈ T ∣ |S | ≥ ϵ |U | , S ∩ N = ∅}

Pr[E1] ≤ δ g(n, d)
n

N = {x1, …, xm} Y = {y1, …, ym}

E2 = {∃S ∈ T ∣ |S | ≥ ϵ |U | , S ∩ N = ∅, |S ∩ Y | ≥ ϵm/2}

Pr[E2] ≤ Pr[E1] Pr[E1] ≤ 2 Pr[E2]
|S ∩ Y | = ϵm

Pr[E2]

E′ 2 = {∃S ∈ T ∣ S ∩ N = ∅, |S ∩ Y | ≥ ϵm/2}

Pr[E2] ≤ Pr[E′ 2] U



Upper bounding E′ 2 = {∃S ∈ T ∣ S ∩ N = ∅, |S ∩ Y | ≥ ϵm/2}
Pr[E2] ≤ Pr[E′ 2] ≤ g(d,2m) ⋅ 2−ϵm/2

• We imagine that we sample  together and then randomly decide which elements belong to  and which 
belong to .


• We have . We now fix a set  and bound . 


• To do this, it is enough to consider the set system , i.e., the projection onto .


• By Sauer’s lemma,  contains at most  sets. 


• Let us now fix any set  and consider the event .


•
For , we have 


• Thus by union bound 

Z = N ∪ Y N
Y

Pr[E′ 2] = ∑
Z

Pr[E′ 2 ∣ Z] Pr[Z] Z Pr[E′ 2 ∣ Z]

TZ = {S ∩ Z ∣ S ∈ T} Z

TZ g(d,2m)

S ∈ TZ ES = {S ∩ N = ∅, S ∩ Y ≥ ϵm/2}

k = |S ∩ Z | Pr[N ∩ S = ∅ ∣ N ∩ Z ≥ ϵm/2] =
(2m − k

m )
(2m

m )
≤ … ≤ 2−ϵm/2

Pr[E′ 2 ∣ Z] ≤ g(d,2m) ⋅ 2−ϵm/2



-Net Theoremϵ
Fix ϵ, δ > 0

• Suppose (U, T) has VC-dimension .


• If we select  many samples from U independently at random


• Then, with probability , we sample at least one element from every set  of cardinality at least 

d

m ≥ max{
4
ϵ

log
2
δ

,
8d
ϵ

log
8d
ϵ

}

≥ 1 − δ S ∈ T ϵ |U |

By the previous argument, we have that the success probability is at least  


The statement follows by the selection of 

g(d,2m) ⋅ 2ϵm/2

m



What does this have to do with 
Set Cover???



Hitting Set

• Input: A universe , and a family of sets .


• Output: The smallest subset  that hits every set in , i.e.,  for every 


• LP relaxation

U T

U′ ⊆ U T U′ ∩ S ≠ ∅ S ∈ T

Minimize ∑
e∈U

xe

Subject to   for every set ∑
e∈S

xe ≥ 1 S ∈ T

  for every element xe ≥ 0 e ∈ U

Same as set cover we just swapped the 
meaning of sets and elements



Suppose  has VC-dimension T d
Then we have an -approximation algorithmO(d log(d ⋅ OPT))

• Solve LP to obtain optimal solution , let  and so 


•  and  for every 


• Now find an -net  of size  where 


• This is a hitting set of size  and since  this gives the guarantee.

x* x′ = x*/ |x* |

∑
e∈U

x′ e = 1 ∑
e∈S

xe ≥ 1/ |x* | S ∈ T

ϵ U′ ⊆ U O(
1
ϵ

d log(d/ϵ)) ϵ = 1/ |x* |

O( |x* |d log( |x* |d)) |x* | ≤ OPT



Totally unimodularity



Hitting set with consecutive ones

• Suppose elements of  can be ordered so that all sets in  are consecutive subsets in this order.


• Example: 

U T

e1 e2 e3 e4S1

S2
S3

In this case the linear program is integral, i.e., solves the problem exactly! WHY???



Totally unimodularity

• A matrix  is totally unimodular if every square submatrix has determinant  or . In particular, this implies that 
all entries are  or .


• Theorem: If  is totally unimodular and  is an integer vector, then  has integer vertices.


• Proof: Let  be a vertex of . There exists a non-singular square sub-matrix  of  such that . We have 

 by totally unimodularity.  By Cramer’s rule, we have  where  is  with the :th 

column replaced by . Therefore,  is an integer.

A 0, + 1, −1
0 ±1

A b P = {x ∣ Ax ≥ b}

v P A′ A A′ v = b
det(A′ ) = ± 1 vi =

det(A′ i ∣ b)
det(A′ )

A′ i ∣ b A′ i

b vi



Linear programming relaxation 

e1 e2 e3 e4S1

S2
S3
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Every square submatrix of  satisfies the consecutive ones property!A



A matrix with consecutive ones are totally unimodular

• Define matrix  by   We have that 


• Each row of  has at most two entries in 


• If some row has no non-zero entries, the determinant is 0


• If some row has one non-zero entry then do Laplace expansion and consider the only minor that has a non-zero 
coefficient 


• After all expansions, each row has exactly one  and one . Call this matrix  and observe  and hence 



• Hence 

C Cr,c = {
Br,c − Br,c+1 for c< #columns

Br,c otherwise
det C = det B

C ±1

+1 −1 C′ C′ 1 = 0
det C′ = 0

det B = det C ∈ {−1,0,1}
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Other prominent examples of TU matrices

• Incidence matrices of bipartite graphs 


• Incidence matrices of directed graphs


• Network flow matrices


• Seymour’80 gave a complete characterisation of TU matrices.


