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Exponential Clocks




Exponential Distribution

« A random variable X distributed according to the exponential distribution with rate A, denoted by X ~ exp(4) has
+  pdf fy(x) = e~
.« Cdf PrIX<x]=Fyx)=1—e™*

NICE PROPERTIES:

« The exponential distribution is memoryless: Pr[X > s+ ¢ | X > s] = Pr[X > 1]

» Let X, ..., X, be independent random variables with X; ~ exp(4,)

e min{X;,..., X, } ~exp(4;+ ... + 1)

1
. Pr[X; < min X] = ’
JFI ﬁ‘l + ...+ ﬂ’k




The algorithm

e Solve Set Cover LP:

minimize 2 c(S;) - x;

l

x; = 1/3 xg‘; = 2/3 xg‘; = 1/3 xgz = 2/3

Subject to Z x; > 1 foreverye € U
1:eE€S;

x; > Oforevery S, €T

« Let x™ be an optimal solution

» For each set §; sample Zg ~ exp(x;)

_ Output U arg min{ZSi | e € §;}

eclU
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The algorithm

e Solve Set Cover LP:
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l

xf =2/3 xgk =1/3

Subject to Z x; > 1 foreverye € U
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OUtpUt {Sl’ S2, S4}




Analysis (1/2)

The probability that we output ; is at most (1 + In| ;| )x*

» Forelement e € §;, let A, be the event that e chooses S, i.e., that Zg = min{Zg e € S;]

« With this notation, Pr[S; output] = Pr[VeeSlAe]

e Now PI‘[VeesiAe] —

Pr{V,es A, | Zs < al Pr{Zs < a]

HPIV,esA, | Zg > al Pr[Zg > al

Pr{V,csA, | Zg < al Pr[Zg < al

<PrlZ; <a] <1 - e <L xl.*a

So the probability that we output 5, is at most ax* + Z PrlA, | Zg 2 a] - e

Pr{V,esA, | Zs > al Pr{Zs > a]

< 2 PrA, | Zs > a] - 7@

eEs;

eEs;

X o




Analysis (2/2)
The probability that we output ; is at most (1 + In| ;| )x*

The probability that we output S, is at most ax* + 2 Pr[A, | Zg > a] - e N

eEs;

To analyze Pr[A, | Zg > a], let 5y, ..., S;, §; be the sets that cover e and let Y = min{Zg, ..., Zg }
Note that ¥ ~ exp(x{I< + ...+ x]f), and that A, does not happenif ¥ < «

Hence, e % @ Pr[A, | ZS,- > al = e 5 2Pr[Y > a] Pr[A, | ZS,- >a,Y > al

xXF
—a(xf 4. xF+x) | L R

Xk S S l
Xi + ... +xk +xl-

— €

It follows that the probability that we output S; is at most ax* Z e “x"

I
eEs;

Selecting @ = In | S;| now gives the result



Vapnik-Chervonenkis (VC) dimension



Definition of VC dimension

» Consider a ground set U and a family of subsets 7' = {5, S, ..., $,,}

» We say that T shatters asubset U' C U if {U'NS | S € T} contains all subsets of U’

e The VC dimension of (U, T') is the maximum d so that T shatters a subset U’ C U of cardinality d

+ singleton sets have VC dimension 2
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Definition of VC dimension

» Consider a ground set U and a family of subsets 7' = {5, S, ..., $,,}

» We say that T shatters asubset U' C U if {U'NS | S € T} contains all subsets of U’
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N\

‘ \ + singleton sets have VC dimension 3
\ . /



VC Dimension of disks Iin plane < 3

Consider 4 points

P1 ") ") P>
 Case 1: one point is in the interior of the convex hull of the others: o/
®
| | P3
No disk can realize the set {p;, Py, P3}
» Case 2: All four points are at the boundary of the convex hull P1 o o 2
Can’t exist two disks where one contains {p;, p3} and the other {p,, p,} p, @ ®

Because any two such disks would intersect at 4 points. But any disks intersect at most 2 points



c=-Net Theorem
Fixe,6 > 0

« Suppose (U, T) has VC-dimension d.
4 2 8d 8d

. If we select m > max{— log r log — } many samples from U independently at random
€ € €

* Then, with probability > 1 — 6, we sample at least one element from every set .S € T of cardinality at least ¢ | U |

What is cool here is that the number of samples is independent of | U|



Sauer’s Lemma

d
If (U, T) with |U| = n has VC-dimension d then | T| < g(n,d) where g(n,d) = Z <n)
l
i=0

* We will prove the following stronger claim by Pajor 1985:

 the number of different subsets that are shattered by 7' is at least | T’

* This implies Sauer’s lemma since the if | T'| > g(n, d) there must be a subset shattered of size at least d + 1 by
counting

* The proof is credited to Noga Alon or to Ron Aharoni and Ron Holzman.



The number of different subsets that are shattered by 7'is at least | 7|

 Base: Every family of only one set shatters the empty set.

 Inductive step: Let T be a family of two or more sets and let x be an element that appear in some but not all sets.

« Split 7 into two subfamilies, those that contain x and those that don’t.

» By IH, these two subfamilies shatter two collections of sets whose sizes add to at least | T'|

 None of these shattered sets contain x.

+ |If a shattered set appears in one subfamily then it contributes one unit to the subfamilies and one unit to #shattered sets of T
» If a shattered set appears twice then it counts twice for the subfamilies and then also S and S+x are shattered by | T'|

 Therefore the number of shattered sets by subfamilies and T is the same and so 7 shatters iat least | 7| sets.



Proof of ¢e-Net Theorem

» Let E| be the event that our sampled points N fail to be an e-net,i.e., E, ={35€ T | |S| =2 €|U|,SNN =@}

« We wish to prove Pr[E;] < 4. This turns out to be hard as there can be g(n, d) sets in total and our sample size
doesn’t depend on n.

» Instead, consider what happens if we first sample N = {x{, ...,x,} and then Y = {y,, ...,y } from the same
distribution.

e LetE, ={3ASeT||S|Z2€e|lU|l,.SNN=g,|SNnY| > em/2}

 Note that Pr[£,] < Pr[£,] but we have also Pr[E,] < 2 Pr[E,] since each large set has in expectation
|.S N Y| = em and our samples are independent, so we can apply standard concentration bounds.

« It is thus sufficient to upper bound Pr| £, ].
 To do this, we willupperbound 5 = {AS €T | SNN=3,|SNnY| > em/2}.

« Clearly Pr[E,] < Pr[E;] and note crucially that U doesn’t appear in the definition of the event anymore.



Upperbounding £, = {3AS €T | SNN=@,|SNnY| > em/2}
Pr[E,] < Pr[E;] < g(d,2m) - 27¢™/°

« We imagine that we sample Z = N U Y together and then randomly decide which elements belong to N and which
belong to Y.

We have Pr[E,] = Z Pr[E; | Z] Pr[Z]. We now fix a set Z and bound Pr[E, | Z].
Z

» To do this, it is enough to consider the set system 7, = {SNZ | S € T}, i.e., the projection onto Z.
By Sauer’s lemma, T, contains at most g(d,2m) sets.

* Let us now fix any set S € T, and consider theevent Ec = {SNN=3,5NY > em/2}.

<2m—k>
Fork=|SNZ|,wehave PrINNS =3 | NNZ > em/2] = (2m> < ... < pmemi2

e Thus by union bound Pr[E; | Z] < g(d,2m) - Q—emi2




c=-Net Theorem
Fixe,6 > 0

« Suppose (U, T) has VC-dimension d.
4 2 8d 8d

. If we select m > max{— log r log — } many samples from U independently at random
€ € €

* Then, with probability > 1 — 6, we sample at least one element from every set .S € T of cardinality at least ¢ | U |

By the previous argument, we have that the success probability is at least g(d,2m) - 2"/

The statement follows by the selection of m



What does this have to do with
Set Cover???



Hitting Set

* |Input: A universe U, and a family of sets 7.

* Output: The smallest subset U’ C U that hits every setin 7T, i.e., U NS # @ foreveryS € T

e | P relaxation

Minimize ) x,

S Same as set cover we just swapped the
| meaning of sets and elements
Subject to Z x,> lforeverysetS €T

eesS

x, > 0 for every element e € U



Suppose 7 has VC-dimension d

Then we have an O(dlog(d - OPT))-approximation algorithm

 Solve LP to obtain optimal solution x*, let x’ = x*/| x* | and so

_ Zxé: | and erz 1/|x*| foreveryS € T

eclU eesS

1
. Now find an e-net U’ C U of size O(—d log(d/€)) where € = 1/| x*]|
€

e This is a hitting set of size O(|x™ |d log(|x*|d)) and since |x™*| < OPT this gives the guarantee.



Totally unimodularity



Hitting set with consecutive ones

e Suppose elements of U can be ordered so that all sets in 1 are consecutive subsets in this order.

 Example:

9.0

S
S, i

In this case the linear program is integral, i.e., solves the problem exactly! WHY?7??



Totally unimodularity

« A matrix A is totally unimodular if every square submatrix has determinant O, + 1, or — 1. In particular, this implies that
all entries are 0 or 1.

» Theorem: If A is totally unimodular and b is an integer vector, then P = {x | Ax > b} has integer vertices.

* Proof: Let v be a vertex of P. There exists a non-singular square sub-matrix A’ of A such that A'v = b. We have

det(A! ] b)
det(A")

det(A’) = £ 1 by totally unimodularity. By Cramer’s rule, we have v; = where A; | b is A’ with the i:th

column replaced by b. Therefore, v; is an integer.

A

N\

Maximize x+ vy

Subject to z+y <2
y <1
x,y >0

Feasible Solution




Linear programming relaxation

.00 0

S

S, :

110 0
1 1 1 0| - 1
0o 0 1 1| [|™ 1
1 0 0 o] ™2 > o
0o 1 0 of [|*® 0
0 0 1 o] L™ 0
00 0 1 0

Every square submatrix of A satisfies the consecutive ones property!



A matrix with consecutive ones are totally unimodular

1 1 0 O 0 1 0 O
1 1 1 0 0O 0 1 O
b= 0 0 1 1 C= 0 —1 0 1
1 0 0 0 1 0 0 0
B,..— B, .., forc<#columns
Define matrix C by C,. . = ’ ’ _ We have that det C = det B
. ’ B, . otherwise

« Each row of C has at most two entries in =1
e |f some row has no non-zero entries, the determinant is O

* |f some row has one non-zero entry then do Laplace expansion and consider the only minor that has a non-zero
coefficient

« After all expansions, each row has exactly one + 1 and one — 1. Call this matrix C" and observe C'1 = () and hence

detC'=0

« HencedetB =detC € {—1,0,1}



Other prominent examples of TU matrices

* Incidence matrices of bipartite graphs
* |Incidence matrices of directed graphs
* Network flow matrices

 Seymour’80 gave a complete characterisation of TU matrices.



