Lecture 8: Approximation Algorithms using LPs

Notes by Ola Svensson¹

In this lecture we do the following:

- We give a randomized approximation algorithm for the Set Cover problem
- We show that the integrality gap of the set cover LP is $\Omega(\log n)$

These notes are based on [1] and [2].

1 Set Cover via Randomized Rounding

Let us now apply the framework to the *Set Cover* problem. It can be seen as a generalization of the vertex cover problem and its definition is as follows:

Definition 1 (Set Cover Problem) Given a universe $\mathcal{U} = \{e_1, e_2, \dots, e_n\}$, and a family of subsets $\mathcal{T} = \{S_1, S_2, \dots, S_m\}$ and a cost function $c : \mathcal{T} \to \mathbb{R}_+$, find a collection C of subsets of minimum cost that cover all elements.

As for vertex cover, we start by giving an exact Integer LP formulation. For each $i \in \{1, \ldots m\}$, define x_i , which is 1 if $S_i \in C$, and 0 otherwise. The objective function is

$$\min\sum_{i=1}^{m} x_i \cdot c(S_i)$$

and for each element $e \in \mathcal{U}$, we add the constraint $\sum_{S_i : e \in S_i} x_i \ge 1$. This ensures that each element is covered by at least one set in C. And for each x_i , we require that $x_i \in \{0, 1\}$ in the ILP. The LP relaxation is then obtained by replacing the boolean constraints $x_i \in \{0, 1\}$ by $x_i \in [0, 1]$.

Now suppose that each element belongs to at most f sets. Then, as in your exercise on vertex cover on k-uniform hypergraphs, we can do the following rounding: $C = \{S_i : x_i^* \ge \frac{1}{f}\}$. In each constraint, there's at least one x_i^* which is at least $\frac{1}{f}$, so each constraint is satisfied. Using the same reasoning as in the analysis of the vertex cover rounding, we can show that this approximation is within a factor of f.

1.1 A better approximation for Set Cover

If we introduce randomness and allow our algorithm to output non-feasible solutions with some small probability, we can get much better results (in expectation).

We use the same LP as in the previous section, and will run the following algorithm:

- 1. Solve the LP to get an optimal solution x^* .
- 2. Choose some positive integer constant d (we will see later how d affects the guarantees we get). Start with an empty result set C, and repeat step $3 d \cdot \ln(n)$ times.
- 3. For i = 1, ..., m, add set S_i to the solution C with probability x_i^* , choosing independently for each set.

Now let us analyze what guarantees we can get:

¹**Disclaimer:** These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain inconsistent notation, typos, and omit citations of relevant works.

Claim 2 The expected cost of all sets added in one execution of Step 3 is

$$\sum_{i=1}^m x_i^* c(S_i) = LP_{OPT}$$

Proof

$$\mathbb{E}[\text{rounded cost}] = \sum_{i=1}^{m} c(S_i) \Pr[S_i \text{ is added}] = \sum_{i=1}^{m} c(S_i) x_i^* = LP_{OPT}$$

From this, we can immediately derive

Corollary 3 The expected cost of C after $d \cdot \ln(n)$ executions of Step 3 is at most

$$d \cdot \ln(n) \cdot \sum_{i=1}^{m} c(S_i) x^* \le d \cdot \ln(n) \cdot LP_{OPT} \le d \cdot \ln(n) \cdot OPT$$

Note that we have $LP_{OPT} \leq OPT$ because LP is a relaxation of the original problem, so its optimum can only be better.

That sounds good, but we should also worry about feasibility:

Claim 4 The probability that a constraint remains unsatisfied after a single execution of Step 3 is at most $\frac{1}{e}$.

Proof Suppose our constraint contains k variables, and let us write it as $x_1 + x_2 + \cdots + x_k \ge 1$. Then,

$$Pr[constraint unsat.] = Pr[S_1 \text{ not taken}] \dots Pr[S_k \text{ not taken}]$$
$$= (1 - x_1^*) \dots (1 - x_k^*)$$
$$\leq e^{-x_1^*} \dots \cdot e^{-x_k^*}$$
$$= e^{-\sum_{i=1}^k x_i^*}$$
(1)

$$\leq e^{-1} \tag{2}$$

where (1) follows from the inequality $1 - x \le e^{-x}$ and (2) from the fact that $\sum_i x_i^* \ge 1$.

Claim 5 The output C is a feasible solution with probability at least $1 - \frac{1}{n^{d-1}}$.

Proof Using claim 4, we find that the probability that a given constraint is unsatisfied after $d \cdot \ln(n)$ executions of step 3 is at most

$$\left(\frac{1}{e}\right)^{d \cdot \ln(n)} = \frac{1}{n^d}$$

and by union-bound, the probability that there exists any unsatisfied constraint is at most

$$n \cdot \frac{1}{n^d} = \frac{1}{n^{d-1}}$$

Now we have an expected value for the cost, and also a bound on the probability that an infeasible solution is output, but we still might have a bad correlation between the two: It could be that all feasible outputs have a very high cost, and all infeasible outputs have a very low cost.

The following claim deals with that worry.

Claim 6 The algorithm outputs a feasible solution of cost at most $4d \ln(n)OPT$ with probability greater than $\frac{1}{2}$.

Proof Let μ be the expected cost, which is $d\ln(n) \cdot OPT$ by corollary 3. We can upper-bound the bad event that the actual cost is very high: By Markov's inequality, we have $\Pr[cost > 4\mu] \le \frac{1}{4}$. The other bad event that we have to upper bound is that the output is infeasible, and by claim 5, we know that this happens with probability at most $\frac{1}{n^{(d-1)}} \le \frac{1}{n}$. Now in the worst case, these two bad events are completely disjoint, so the probability that no bad event happens is at least $1 - \frac{1}{4} - \frac{1}{n}$, and if we suppose that n is greater than 4, this probability is indeed greater than $\frac{1}{2}$.

We have thus designed a randomized $O(\log n)$ -approximation algorithm for the set cover problem.

We remark that the used framework has the following general advantage (compared to worst-case guarantees): we can often get better per-instance guarantee than the general approximation factor: Suppose we have an instance where $LP_{OPT} = 100$, and our algorithm found a solution of cost 110. Since we know that $LP_{OPT} \leq OPT$, we can say that our solution on this instance is at most 10% away from the optimal solution for this instance.

2 Integrality gap of the set cover LP

Consider the following instance of the Set Cover problem. For an even integer $d \ge 1$ let

$$U = \left\{ x \in \{0, 1\}^d : \sum_{i=1}^d x_i = d/2 \right\},\$$

i.e., the universe consists of all binary vectors of length d that have d/2 nonzeros. Let the collection \mathcal{F} contain m = d sets S_1, \ldots, S_m , defined by

$$S_i = \{x \in U : x_i = 1\}$$

for every $i = 1, \ldots, m$. All costs are 1.

We first give a feasible solution to the LP relaxation of Set Cover on the instance above with value bounded by 2. The LP relaxation of the set cover problem is the following:

$$\min_{z} \sum_{i=1}^{d} z_{i}, \text{ st.:}$$
$$\forall i \in [d] : z_{i} \in [0, 1]$$
$$\forall x \in U : \sum_{i:x \in S_{i}} z_{i} \ge 1$$

A solution to this with value 2 is to set every variable z_i to 2/d. That way $\sum_i z_i = 2$ and all constraints are satisfied:

$$\sum_{i:x \in S_i} z_i = \sum_{i:x_i=1} z_i = \sum_{i:x_i=1} 2/d = \sum_{i=1}^n 2/d \cdot x_i = 1$$

Suppose we have any collection of d/2 sets $\mathcal{F}' \subseteq \mathcal{F}$. We can characterise \mathcal{F}' as $\{S_i : i \in \mathcal{I}\}$ for some $\mathcal{I} \subseteq \{1, \ldots, d\}$ with $|\mathcal{I}| = d/2$. Let us then define the vector x^* such that $x_i^* = 0$ for $i \in \mathcal{I}$ and $x_i^* = 1$ for $i \notin \mathcal{I}$. Then $x^* \in U$ but $x^* \notin \cup \mathcal{F}$, thus proving that \mathcal{F} does not cover U. In this set cover problem the optimal integral solution is at least d/2 + 1, but the optimal fractional solution is at most 2. This is an $\Omega(d)$ integrality gap. Since the size of the universe, $|U| = \binom{d}{d/2} \leq 2^d$, this translates to an $\Omega(\log |U|)$ integrality gap.

References

- [1] David Leydier and Samuel Grütter: Scribes of Lecture 8 in Topics in TCS 2014. http://theory.epfl.ch/courses/topicstcs/Lecture8.pdf
- [2] Romain Edelmann & Florian Tramèr: Scribes of Lecture 10 in Topics in TCS 2014. http://theory.epfl.ch/courses/topicstcs/Lecture10.pdf