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Lecture 8: Approximation Algorithms using LPs
Notes by Ola Svensson1

In this lecture we do the following:

• We give a randomized approximation algorithm for the Set Cover problem

• We show that the integrality gap of the set cover LP is Ω(log n)

These notes are based on [1] and [2].

1 Set Cover via Randomized Rounding

Let us now apply the framework to the Set Cover problem. It can be seen as a generalization of the
vertex cover problem and its definition is as follows:

Definition 1 (Set Cover Problem) Given a universe U = {e1, e2, . . . en}, and a family of subsets
T = {S1, S2, . . . Sm} and a cost function c : T → R+, find a collection C of subsets of minimum cost
that cover all elements.

As for vertex cover, we start by giving an exact Integer LP formulation. For each i ∈ {1, . . .m},
define xi, which is 1 if Si ∈ C, and 0 otherwise. The objective function is

min

m∑
i=1

xi · c(Si)

and for each element e ∈ U , we add the constraint
∑

Si : e∈Si
xi ≥ 1. This ensures that each element

is covered by at least one set in C. And for each xi, we require that xi ∈ {0, 1} in the ILP. The LP
relaxation is then obtained by replacing the boolean constraints xi ∈ {0, 1} by xi ∈ [0, 1].

Now suppose that each element belongs to at most f sets. Then, as in your exercise on vertex cover
on k-uniform hypergraphs, we can do the following rounding: C = {Si : x∗i ≥ 1

f }. In each constraint,
there’s at least one x∗i which is at least 1

f , so each constraint is satisfied. Using the same reasoning as in
the analysis of the vertex cover rounding, we can show that this approximation is within a factor of f .

1.1 A better approximation for Set Cover

If we introduce randomness and allow our algorithm to output non-feasible solutions with some small
probability, we can get much better results (in expectation).

We use the same LP as in the previous section, and will run the following algorithm:

1. Solve the LP to get an optimal solution x∗.

2. Choose some positive integer constant d (we will see later how d affects the guarantees we get).
Start with an empty result set C, and repeat step 3 d · ln(n) times.

3. For i = 1, . . .m, add set Si to the solution C with probability x∗i , choosing independently for each
set.

Now let us analyze what guarantees we can get:

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.
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Claim 2 The expected cost of all sets added in one execution of Step 3 is

m∑
i=1

x∗i c(Si) = LPOPT

Proof

E[rounded cost] =

m∑
i=1

c(Si) Pr[Si is added] =

m∑
i=1

c(Si)x
∗
i = LPOPT

From this, we can immediately derive

Corollary 3 The expected cost of C after d · ln(n) executions of Step 3 is at most

d · ln(n) ·
m∑
i=1

c(Si)x
∗ ≤ d · ln(n) · LPOPT ≤ d · ln(n) ·OPT

Note that we have LPOPT ≤ OPT because LP is a relaxation of the original problem, so its optimum
can only be better.

That sounds good, but we should also worry about feasibility:

Claim 4 The probability that a constraint remains unsatisfied after a single execution of Step 3 is at
most 1

e .

Proof Suppose our constraint contains k variables, and let us write it as x1 +x2 + · · ·+xk ≥ 1. Then,

Pr[constraint unsat.] = Pr[S1 not taken] . . .Pr[Sk not taken]

= (1− x∗1) . . . (1− x∗k)

≤ e−x
∗
1 · ... · e−x

∗
k (1)

= e−
∑k

i=1 x∗
i

≤ e−1 (2)

where (1) follows from the inequality 1− x ≤ e−x and (2) from the fact that
∑

i x
∗
i ≥ 1.

Claim 5 The output C is a feasible solution with probability at least 1− 1
nd−1 .

Proof Using claim 4, we find that the probability that a given constraint is unsatisfied after d · ln(n)
executions of step 3 is at most (

1
e

)d·ln(n)
=

1

nd

and by union-bound, the probability that there exists any unsatisfied constraint is at most

n · 1

nd
=

1

nd−1

Now we have an expected value for the cost, and also a bound on the probability that an infeasible
solution is output, but we still might have a bad correlation between the two: It could be that all feasible
outputs have a very high cost, and all infeasible outputs have a very low cost.

The following claim deals with that worry.
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Claim 6 The algorithm outputs a feasible solution of cost at most 4d ln(n)OPT with probability greater
than 1

2 .

Proof Let µ be the expected cost, which is d ln(n) · OPT by corollary 3. We can upper-bound the
bad event that the actual cost is very high: By Markov’s inequality, we have Pr[cost > 4µ] ≤ 1

4 . The
other bad event that we have to upper bound is that the output is infeasible, and by claim 5, we know
that this happens with probability at most 1

n(d−1) ≤ 1
n . Now in the worst case, these two bad events are

completely disjoint, so the probability that no bad event happens is at least 1− 1
4 −

1
n , and if we suppose

that n is greater than 4, this probability is indeed greater than 1
2 .

We have thus designed a randomized O(log n)-approximation algorithm for the set cover problem.
We remark that the used framework has the following general advantage (compared to worst-case

guarantees): we can often get better per-instance guarantee than the general approximation factor:
Suppose we have an instance where LPOPT = 100, and our algorithm found a solution of cost 110. Since
we know that LPOPT ≤ OPT , we can say that our solution on this instance is at most 10% away from
the optimal solution for this instance.

2 Integrality gap of the set cover LP

Consider the following instance of the Set Cover problem. For an even integer d ≥ 1 let

U =

{
x ∈ {0, 1}d :

d∑
i=1

xi = d/2

}
,

i.e., the universe consists of all binary vectors of length d that have d/2 nonzeros. Let the collection F
contain m = d sets S1, . . . , Sm, defined by

Si = {x ∈ U : xi = 1}

for every i = 1, . . . ,m. All costs are 1.
We first give a feasible solution to the LP relaxation of Set Cover on the instance above with value

bounded by 2. The LP relaxation of the set cover problem is the following:

min
z

d∑
i=1

zi, st.:

∀i ∈ [d] : zi ∈ [0, 1]

∀x ∈ U :
∑

i:x∈Si

zi ≥ 1

A solution to this with value 2 is to set every variable zi to 2/d. That way
∑

i zi = 2 and all constraints
are satisfied: ∑

i:x∈Si

zi =
∑

i:xi=1

zi =
∑

i:xi=1

2/d =

n∑
i=1

2/d · xi = 1

Suppose we have any collection of d/2 sets F ′ ⊆ F . We can characterise F ′ as {Si : i ∈ I} for some
I ⊆ {1, . . . , d} with |I| = d/2. Let us then define the vector x∗ such that x∗i = 0 for i ∈ I and x∗i = 1
for i 6∈ I. Then x∗ ∈ U but x∗ 6∈ ∪F , thus proving that F does not cover U . In this set cover problem
the optimal integral solution is at least d/2 + 1, but the optimal fractional solution is at most 2. This is
an Ω(d) integrality gap. Since the size of the universe, |U | =

(
d

d/2

)
≤ 2d, this translates to an Ω(log |U |)

integrality gap.
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