Advanced Algorithms March 17, 2022

Lecture 8: Approximation Algorithms using LPs

Notes by Ola Svensson?

In this lecture we do the following:
e We give a randomized approximation algorithm for the Set Cover problem
e We show that the integrality gap of the set cover LP is Q(logn)

These notes are based on [1] and [2].

1 Set Cover via Randomized Rounding

Let us now apply the framework to the Set Cover problem. It can be seen as a generalization of the
vertex cover problem and its definition is as follows:

Definition 1 (Set Cover Problem) Given a universe U = {e1,ea,...e,}, and a family of subsets
T = {51,52,...Sn} and a cost function ¢ : T — Ry, find a collection C of subsets of minimum cost
that cover all elements.

As for vertex cover, we start by giving an exact Integer LP formulation. For each ¢ € {1,...m},
define x;, which is 1 if .S; € C, and 0 otherwise. The objective function is

min Z x; - ¢(S;)
i=1

and for each element e € U, we add the constraint ) S: : ces, Ti > 1. This ensures that each element
is covered by at least one set in C. And for each xz;, we require that x; € {0,1} in the ILP. The LP
relaxation is then obtained by replacing the boolean constraints z; € {0,1} by x; € [0, 1].

Now suppose that each element belongs to at most f sets. Then, as in your exercise on vertex cover
on k-uniform hypergraphs, we can do the following rounding: C' = {S; : z} > %} In each constraint,
there’s at least one o which is at least L, so each constraint is satisfied. Using the same reasoning as in
the analysis of the vertex cover rounding, we can show that this approximation is within a factor of f.

1.1 A better approximation for Set Cover

If we introduce randomness and allow our algorithm to output non-feasible solutions with some small
probability, we can get much better results (in expectation).
We use the same LP as in the previous section, and will run the following algorithm:

1. Solve the LP to get an optimal solution x*.

2. Choose some positive integer constant d (we will see later how d affects the guarantees we get).
Start with an empty result set C, and repeat step 3 d - In(n) times.

3. For¢=1,...m, add set S; to the solution C' with probability z;, choosing independently for each
set.

Now let us analyze what guarantees we can get:
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Claim 2 The expected cost of all sets added in one execution of Step 3 is

foc(si) = LPopr
i=1
Proof . .
E[rounded cost] = Z ¢(S;) Pr[S; is added] = Z e(Si)x; = LPopr
i=1 i=1
|

From this, we can immediately derive

Corollary 3 The expected cost of C after d -In(n) executions of Step 3 is at most

d-In(n)- Y e(S)a* <d-In(n) - LPopr < d-In(n) - OPT

i=1

Note that we have LPppr < OPT because LP is a relaxation of the original problem, so its optimum
can only be better.
That sounds good, but we should also worry about feasibility:

Claim 4 The probability that a constraint remains unsatisfied after a single execution of Step 3 is at
most +.
e

Proof Suppose our constraint contains k variables, and let us write it as 1 +xo+---+x > 1. Then,

Pr[constraint unsat.] = Pr[S; not taken]...Pr[Sy not taken]
=1=-z7)...(1—xf)
<e ™ ce Tk (1)
— e Xin
<e? (2)

where (1) follows from the inequality 1 — 2z < e~ and (2) from the fact that >, 27 > 1. B

Claim 5 The output C is a feasible solution with probability at least 1 — ndl,l.

Proof Using claim 4, we find that the probability that a given constraint is unsatisfied after d - In(n)
executions of step 3 is at most
e nd

and by union-bound, the probability that there exists any unsatisfied constraint is at most

Now we have an expected value for the cost, and also a bound on the probability that an infeasible
solution is output, but we still might have a bad correlation between the two: It could be that all feasible
outputs have a very high cost, and all infeasible outputs have a very low cost.

The following claim deals with that worry.



Claim 6 The algorithm outputs a feasible solution of cost at most 4d1n(n)OPT with probability greater
than L.
2

Proof Let u be the expected cost, which is dln(n) - OPT by corollary 3. We can upper-bound the
bad event that the actual cost is very high: By Markov’s inequality, we have Pr[cost > 4u] < i. The
other bad event that we have to upper bound is that the output is infeasible, and by claim 5, we know

that this happens with probability at most ﬁ < % Now in the worst case, these two bad events are

completely disjoint, so the probability that no bad event happens is at least 1 — i — %7 and if we suppose
that n is greater than 4, this probability is indeed greater than % |

We have thus designed a randomized O(logn)-approximation algorithm for the set cover problem.

We remark that the used framework has the following general advantage (compared to worst-case
guarantees): we can often get better per-instance guarantee than the general approximation factor:
Suppose we have an instance where LPppr = 100, and our algorithm found a solution of cost 110. Since
we know that LPopr < OPT, we can say that our solution on this instance is at most 10% away from
the optimal solution for this instance.

2 Integrality gap of the set cover LP

Consider the following instance of the Set Cover problem. For an even integer d > 1 let

d
U= {:cE {O,l}d:indﬂ},

=1

i.e., the universe consists of all binary vectors of length d that have d/2 nonzeros. Let the collection F
contain m = d sets S1,..., Sy, defined by

Si:{.ﬁEUin:l}

for every i = 1,...,m. All costs are 1.
We first give a feasible solution to the LP relaxation of Set Cover on the instance above with value
bounded by 2. The LP relaxation of the set cover problem is the following:

d
min ZZ“ st.:
i=1
Vi€ [d] : z €[0,1]
VeeU: Z 2z > 1

€S,

A solution to this with value 2 is to set every variable z; to 2/d. That way ). z; = 2 and all constraints
are satisfied:
n

Z 2 = Z Zi = Z 2/d=Z2/d-xi:1

:xE€S; x;=1 iz =1 =1

Suppose we have any collection of d/2 sets F' C F. We can characterise ' as {S; : i € I} for some
T C{1,...,d} with |Z|] = d/2. Let us then define the vector z* such that ¥ =0 for i € Z and 2} =1
for i ¢ Z. Then a* € U but «* € UF, thus proving that F does not cover U. In this set cover problem
the optimal integral solution is at least d/2 + 1, but the optimal fractional solution is at most 2. This is
an §2(d) integrality gap. Since the size of the universe, |U| = (d‘/iQ) < 24 this translates to an Q(log |U])
integrality gap.
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