
Advanced Algorithms April 24, 2023

Lecture Solving LPs using Multiplicative Weights
Notes by Ola Svensson1

In this lecture we do the following:

• We describe the Multiplicative Weight Update (actually Hedge) method.

• We then use this method to solve covering (Set Cover) LPs.

• This is a very fast and simple (i.e., very attractive) method for solving these LPs approximately.

These lecture notes are partly based on an updated version of “Lecture 11 of Topics in TCS, 2015” that
were written by Vincent Eggerling and Simon Rodriguez and on the lecture notes by Shiva Kaul that
we used in the last lecture.

1 Deterministic Strategies

This section is basically taken verbatim from the excellent lecture notes2 by Anupam Gupta available here
(together with a lot of other interesting information): https://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15859-
f11/www/

Multiplicative weights is a retronym for the simple iterative rule that underlies modular, iterative
algorithms for solving LPs and SDPs (semidefinite programs)3. The Multiplicative Weights Algorithm
is known by diferent names in the various fields where it was (re)discovered. Check out the survey by
Arora, Hazan and Kale [1]; our discussion will be based on their treatment. Due to its broad appeal, we
will consider multiplicative weights in more generality than is needed for solving LPs and SDPs. In this
lecture, we’ll introduce some strategies for playing a prediction game.

1.1 Warmup: Prediction with Expert Advice

The following sequential game is played between an omniscient Adversary and an Aggregator who is
advised by N experts. Special cases of this game include predicting if it will rain tomorrow, or if the
stock market will go up or down.

Strategy 1 Prediction with Expert Advice
1: for t = 1 . . . T do
2: Each expert i ∈ [N ] advises either YES or NO
3: Aggregator predicts either YES or NO
4: Adversary, with knowledge of the expert advice and Aggregator’s prediction, decides the YES/NO

outcome.
5: Aggregator observes the outcome and suffers if his prediction was incorrect.
6: end for

Naturally, Aggregator wants to make as few mistakes as possible. Since the experts may be unhelpful
and the outcomes may be capricious, Aggregator can hope only for a relative performance guarantee.
In particular, Aggregator hopes to do as well as the best single expert in hindsight4. In order to do so,
Aggregator must track which experts are helpful. We will consider a few tracking strategies. Almost

1Disclaimer: These notes were written as notes for the lecturer. They have not been peer-reviewed and may contain
inconsistent notation, typos, and omit citations of relevant works.
2This section corresponds to Lecture 16 in the course, which was scribed by Shiva Kaul
3See Lecture 17 in the course linked earlier
4The excess number of mistakes is called (external) regret
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every other aspect of the game - that advise is aggregated into a single value, that this value is binary,
and even that the game is sequential - is not relevant; we will generalize or eliminate these aspects.

If there is a perfect expert, then an obvious strategy is to dismiss experts who are not perfect. With
the remaining experts, take a majority vote. Whenever the Aggregator makes a mistake, at least half of
the remaining experts are dismissed, so Aggregator makes at most logN mistakes5. We can use the same
strategy even when there isn’t a perfect expert, if we restart after every expert has been eliminated. If
the best expert has made M mistakes by time T , then Aggregator has restarted at most M + 1 times, so
it has made at most (M+1) · logN mistakes. This bound is rather poor since it depends multiplicatively
on M .

1.2 Fewer Mistakes with Weighted Majority

We may obtain an additive mistake bound by softening our strategy: instead of dismissing experts
who erred, discount their advice. This leads to the Weighted Majority Algorithm of Littlestone and
Warmuth [2]. Assign each expert i a weight w(1)

i initialized to 1. Then for every t, predict YES/NO
based on the weighted majority vote and halve the mistaken experts’ weights after observing the outcome.
The game strategy then becomes:

Strategy 2 Prediction with Weighted Majority

1: Initialize w(1) = (w
(1)
1 , . . . , w

(1)
N ) to be a vector of 1’s

2: for t = 1 . . . T do
3: Each expert i ∈ [N ] advises either YES or NO
4: Aggregator predicts either YES or NO based on a weighted majority vote using w(t)

5: Adversary, with knowledge of the expert advice and Aggregator’s prediction, decides the YES/NO
outcome.

6: Aggregator observes the outcome and for every mistaken expert i, set w(t+1)
i ← w

(t)
i /2

7: end for

Claim 1 For any sequence of outcomes, duration T , let MWM be the number of mistakes that the
Weighted Majority strategy makes, and Mi be the number of mistakes that expert i makes. Then

MWM ≤ 2.41 · (Mi + logN)

Proof Let

Φ(t) =
∑
i∈[N ]

w
(t)
i

be a ‘potential’ function. Observe that:

• By definition, we have Φ(1) = N

• Also by definition,
(
1
2

)Mi ≤ Φ(T+1)

• At any time τ when WM errs, at least half of the weight gets halved:

Φ(τ+1) ≤ 3

4
Φ(τ)

This implies

Φ(T+1) ≤
(

3

4

)MWM

Φ(1)

5We will use log to denote the binary logarithm
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Combining these facts yields (
1

2

)Mi

≤
(

3

4

)MWM

N

Taking the base-2 logarithm of both sides,

−Mi ≤ logN + log

(
3

4

)
MWM

so

MWM ≤
1

log(4/3)︸ ︷︷ ︸
≈2.41

(Mi + logN)

The leading constant is a consequence of our arbitrary choice to halve the weights. We can optimize
ε in the update rule

w
(t+1)
i ← w

(t)
i /(1 + ε)

then using the WM strategy we may achieve

MWM ≤ 2(1 + ε)(Mi +O(logN/ε))

We analyzed the case when ε = 1/2. The same proof gives the following

Theorem 2 For any sequence of outcomes, duration T , and expert i ∈ [N ],

# of WM mistakes ≤ 2(1 + ε) · (# of i’s mistakes) +O(log(N)/ε) .

Proof [Sketch] The proof was done by defining a potential function: for each t = 1, . . . , T + 1, let

Φ(t) =
∑
i∈[N ]

w
(t)
i .

We now lower bound the “final” potential Φ(T+1) using the number of mistakes of i. We then upper
bound it in terms of our number of mistakes.

Lower bound: The weight of expert i goes down by a factor (1 − ε) for each mistake i does. As the
initial weight of i is 1,

Φ(T+1) =
∑
j∈[N ]

w
(T+1)
j ≥ w(T+1)

i = (1− ε)# of i’s mistakes .

Upper bound: Every time WM errs, at least half the weight of the experts was wrong (since weighted
majority was wrong). These weights are then decreased by (1 − ε). It follows that the potential
goes down by at least a factor (1− ε/2) every time WM errs. And so

Φ(T+1) ≤ Φ(1) · (1− ε/2)# of WM mistakes = N · (1− ε/2)# of WM mistakes ,

where for the equality we used that Φ(1) = N since each expert was initialized with a weight of 1.

The above bounds give us

(1− ε)# of i’s mistakes ≤ Φ(T+1) ≤ N · (1− ε/2)# of WM mistakes .

Taking logs on both sides, simplifying and rearranging then gives us the statement.
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2 Changing the game: allowing for randomized strategies

One can prove that there are instances for which weighted majority does twice as many mistakes as the
best expert! This is undesirable. To overcome this limitation, we will allow the aggregator to play a
random strategy instead of always making a deterministic prediction (that the adversary then uses to
create bad instances). A side note is that this is often a general strategy: randomization is often very
good to limit the effect of adversaries.

Allowing for randomized strategies leads to the following game with T days and N experts:

For t = 1, . . . , T :
1. Each expert i ∈ [N ] gives some advice.

2. Allocator picks some distribution ~p(t) =
(
p
(t)
1 , . . . , p

(t)
N

)
over the experts.

3. Adversary, with knowledge of the expert advice and ~p(t), determines a cost vector ~m(t) =

(m
(t)
1 , . . . ,m

(t)
N ) ∈ [−1, 1]N .

4. Allocator observes the cost vector and suffers ~p(t) · ~m(t) =
∑
i∈[N ] p

(t)
i m

(t)
i .

Note that in the above game, we have abstracted away the given advice and in fact Step 1 is not
important. At each day t, the goal is to find a distribution ~p(t) over the experts so as to minimize the
suffering (the cost). For each day t, the adversary decides that the cost of following the i’th expert’s
advice is m(t)

i . Here, we have generalized the cost to be anything in [−1, 1] instead of only counting the
number of mistakes. (A negative number means that it was profitable to follow that expert’s advice.)
As we play a randomized strategy, the expected cost incurred at day t is thus∑

i∈[N ]

Pr[aggregator follows expert i at day t] ·m(t)
i =

∑
i∈[N ]

p
(t)
i m

(t)
i =: ~p(t) · ~m(t) .

The ultimate goal is to design a strategy that does as well as the best expert. That is, we wish to to
find a strategy such that for every i ∈ [N ]

T∑
t=1

~p(t) · ~m(t)

︸ ︷︷ ︸
our loss

≤
T∑
t=1

~m
(t)
i︸ ︷︷ ︸

loss of best expert

+ (small error terms) .

The Hedge strategy that we explain in the next section accomplishes this.

Example 1 A natural example of the above situation is when you investment money. You have the
option to choose between say 4 different funds provided by Postfinance, UBS, Credit Suisse, and Banque
cantonal. The probability ~p(t) vector that you choose at day t then corresponds to what fraction of your
investment goes to the different funds. The goal is to update these fractions so as to make as much
money as the best of the 4 options over the long run. Here the penalties (cost or profit) ~m(t) that you
observe reflects the performance of the different investments.

It is quite remarkable that you can do (almost) as good as the best possible option by doing rebalancing.
HOWEVER, the caveat “almost” assumes that you live a very long life. For a small T , the guarantees
get slightly worse.

3 The Hedge strategy

We now explain and analyze the Hedge strategy for the setting introduced in the last section. It is
parameterized by the “learning parameter” ε > 0:
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• Initially, assign each expert i a weight w(1)
i of 1. (All experts are equally trustworthy in the beginning.)

At each time t:

• Pick the distribution p
(t)
i = w

(t)
i /Φ(t) where Φ(t) =

∑
i∈[N ] w

(t)
i .

• After observing the cost vector, set w(t+1)
i = w

(t)
i · e−ε·m

(t)
i .

The difference between Hedge and the so-called Multiplicative Weight Update method is the weight-
update w

(t+1)
i = w

(t)
i · e−ε·m

(t)
i instead of w(t+1)

i = w
(t)
i · (1 − ε · m(t)

i ). Both methods have similar
guarantees:

Theorem 3 Suppose ε ≤ 1 and for t ∈ [T ], ~p(t) is picked by Hedge. Then for any expert i,

T∑
t=1

~p(t) · ~m(t) ≤
T∑
t=1

m
(t)
i +

lnN

ε
+ εT .

Note that in the above theorem, i can be chosen to be the best expert and thus Hedge does as well as
the best expert plus some small error terms.
Proof Similar to the analysis of the weighted majority strategy, the proof goes by analyzing the
potential Φt =

∑
i∈[N ] w

(t)
i .

Lower bound on Φ(T+1): We lower bound the final potential as a function of i’s performance:

Φ(T+1) =
∑
j∈[N ]

w
(T+1)
j ≥ w(T+1)

i = exp(−ε
T∑
t=1

m
(t)
i ) ,

where the last equality follows from that the initial weight of i was one and every day t his weight
was updated by e−εm

(t)
i .

Upper bound on Φ(T+1): We upper bound the final potential in terms of the total cost Hedge suffered.
By definition,

Φ(t+1) =
∑
j∈[N ]

w
(t+1)
j =

∑
j∈[N ]

w
(t)
j · exp(−εm(t)

j ) .

The exponentiated term is in [−1, 1]. Since ex ≤ 1+x+x2 for x ∈ [−1, 1] (do a Taylor expansion),∑
j∈[N ]

w
(t)
j · exp(−εm(t)

j ) ≤
∑
j∈[N ]

w
(t)
j

(
(1− εm(t)

j + ε2
(
m

(t)
j

)2)
≤
∑
j∈[N ]

w
(t)
j

(
(1− εm(t)

j + ε2
)

(since
(
m

(t)
j

)2

≤ 1)

=
∑
j∈[N ]

w
(t)
j (1 + ε2)−

∑
j∈[N ]

εw
(t)
j m

(t)
j

= Φ(t)(1 + ε2)− ε
∑
j∈[N ]

Φ(t)p
(t)
j m

(t)
j (since Φ(t)p

(t)
j = w

(t)
j )

= Φ(t)
(

1 + ε2 − ε~p(t) ~m(t)
)

≤ Φ(t) · exp
(
ε2 − ε~p(t) ~m(t)

)
(since 1 + x ≤ ex) .
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We therefore have

Φ(T+1) ≤ Φ(T ) · exp
(
ε2 − ε~p(T ) ~m(T )

)
≤ Φ(T−1) · exp

(
ε2 − ε~p(T−1) ~m(T−1)

)
· exp

(
ε2 − ε~p(T ) ~m(T )

)
...

≤ Φ(1) · exp

(
ε2T − ε

T∑
t=1

~p(t) ~m(t)

)

= N · exp

(
ε2T − ε

T∑
t=1

~p(t) ~m(t)

)
,

where for the equality we used that Φ(1) = N since each expert was initialized with a weight of 1.

The above bounds give us

exp(−ε
T∑
t=1

m
(t)
i ) ≤ Φ(T+1) ≤ N · exp

(
ε2T − ε

T∑
t=1

~p(t) ~m(t)

)
.

Taking (natural) logarithms,

−ε
T∑
t=1

m
(t)
i ≤ ln(N) + ε2T − ε

T∑
t=1

~p(t) ~m(t)

and the final result follows by dividing by ε and rearranging the terms.

Remark The above proof may seem messy with all the inequalities. However, it follows a standard
“framework”: upper and lower bound the potential function. These Multiplicative Weight Update type
of algorithms are most often analyzed using this potential argument. Once you know that cool argument,
the analysis is almost automatic modulo some rewriting.

For the application of solving covering LPs, it will be convenient to consider the average cost incurred
per day. We also generalize so that the cost vector can take values in [−ρ, ρ]N where ρ is called the
“width”. The proof is the same by scaling and we get the following corollary:

Corollary 4 Suppose ε ≤ 1 and for t ∈ [T ], ~p(t) is picked by Hedge and cost vectors satisfy ~m(t) ∈
[−ρ, ρ]N . If T ≥ (4ρ2 lnN)/ε2, then for any expert i:

1

T

T∑
t=1

~p(t) · ~m(t) ≤ 1

T

T∑
t=1

m
(t)
i + 2ε .

4 Hedging for LPs

We now turn to a nice application of the Hedge method to that of solving covering LPs. We start by
defining these LPs.
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4.1 Covering LPs

Definition 5 A linear program of the form :

minimize
n∑
j=1

cjxj

subject to Ax ≥ b
1 ≥ xj ≥ 0 ∀j

is a covering linear program if

A ∈ Rm×n+ , b ∈ Rm+ and c ∈ Rn+

This definition simply ensures that all the coefficients of the constraints and of the objective function
are non-negative. Notice that both the set cover relaxation and the vertex cover relaxation that we saw
in class were covering LPs.

Let us now introduce an example of a covering LP that we will reuse later:

minimize x1 + 2x2 (1)

subject to x1 + 3x2 ≥ 2

2x1 + x2 ≥ 1

1 ≥ x1, x2 ≥ 0

4.2 General idea

The idea of using the Hedge method for linear programming is to associate an expert with each con-
straint of the LP. In other words, the Hedge method will maintain a weight distribution over the set
of constraints of a linear problem to solve, and to iteratively update those weights in a multiplicative
manner based on the cost function at each step/day. Of course we need to define the cost function in
a smart way later but let us first define the notion of an oracle and then give a small instructive example.

Initially, the Hedge method will give a weight w(1)
i = 1 for every constraint/expert i = 1, . . . ,m

(the number m of constraints now equals the number of experts). And at each day t, it will maintain a
convex combination ~p(t) of the constraints (that is defined in terms of the weights). Using such a convex
combination ~p, a natural easier LP with a single constraint is obtained by summing up all the constraints
according to ~p. Any optimal solution of the original LP is also a solution of this reduced problem, so
the new problem will have at most the same cost as the previous one. We define an oracle for solving
this reduced problem:

Definition 6 An oracle that, given ~p = (p1, . . . , pm) ≥ 0 such that
∑m
i=1 pi = 1, outputs an optimal

solution x∗ to the following reduced linear problem:

minimize
n∑
j=1

cjxj

subject to

(
m∑
i=1

piAi

)
· x ≥

m∑
i=1

pibi

1 ≥ x ≥ 0
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This linear problem is in practice much easier to solve than the original one and we can design a simple
greedy algorithm for the oracle.

For concreteness, let us consider a small example. If we apply the method we described to our
example (1), we have two initials weights w1 = w2 = 1 and thus p1 = p2 = 1

2 , and we sum all the
constraints:

p1(x1 + 3x2) + p2(2x1 + x2) ≥ p1 · 2 + p2 · 1⇔

1.5x1 + 2x2 ≥ 1.5

1 ≥ x1, x2 ≥ 0

By using the oracle, an optimal solution to this reduced problem is x1 = 1, x2 = 0 of cost 1. But is this
a feasible solution to our original problem? By checking the constraints of the original LP:

2x1 + x2 = 2 ≥ 1 OK

x1 + 3x2 = 1 < 2 not OK

We will need to go back to the original problem and increase the weights of the unsatisfied constraints to
give them more importance and decrease the weights of the satisfied constraint. We will perform these
updates (as done by Hedge) multiplicatively that we describe in detail in Section 4.4. We first describe
how to implement the oracle in general.

4.3 Implementation of the oracle

The oracle is given an objective function minimize
∑n
i=1 cixi and only one constraint that we can

rewrite as
∑n
i=1 dixi ≥ b (which is the weighted sum of all constraints). We also have 1 ≥ xi ≥ 0 ∀i and

ci, di ≥ 0 ∀i since it is a covering problem.
The idea is to assign the maximum value (namely 1) to the variables that have the highest ratio

constraint coefficient/objective coefficient. That way we will satisfy the constraint as fast as possible
while maintaining a small objective function. Then assign zero to the other variables and possibly an
intermediate value for the variable that is at the limit to make the constraint satisfied. This is very
similar to the most “bang-for-the-buck” greedy and it is the solution to fractional knapsack. Formally:

• Sort and relabel all variables xi so that d1/c1 ≥ d2/c2 ≥ . . . dn/cn.

• Let k = min{j :
∑j
i=1 di ≥ b} and ` = b−

∑k−1
i=1 di.

• Set xi := 1 for i = 1, ..., k − 1.

• Set xk := `/dk.

• Set xi := 0 for i = k + 1, ..., n.

We have,
n∑
i=1

dixi =

n∑
i=1

dixi =

k−1∑
i=1

dixi + dkxσ(k) +

n∑
i=k+1

dixi =

k−1∑
i=1

di + ` = b

Therefore the constraint is exactly satisfied. By the ordering of the variables, this ensures that we
minimize the objective function as required. Having implemented the oracle, we proceed to formally
define the Hedge algorithm for linear programming.
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4.4 Hedge algorithm for covering LPs

As already explained, we associate an expert to each constraint of the covering LP. In addition, as
hinted above, we wish to increase the weight of unsatisfied constraints and decrease the weight of
satisfied constraints (in a smooth manner depending on the size of the violation or the slack). The
Hedge algorithm for covering LPs thus becomes:

• Assign each constraint i a weight w(1)
i initialized to 1.

At each time t:

• Pick the distribution p
(t)
i = w

(t)
i /Φ(t) where Φ(t) =

∑
i∈[N ] w

(t)
i .

• Now we define the cost vector instead of the adversary as follows:

– Let x(t) be the solution returned by the oracle on the LP obtained by using the convex
combination ~p(t) of constraints. Notice that cost of x(t), i.e., c>x(t), is at most the cost of an
optimal solution to the original LP.

– Define the cost of constraint i as

m
(t)
i =

n∑
j=1

Aijxj − bi = Aix− bi.

Notice that we have a positive cost if the constraint is satisfied (so the weight will be decreased
by Hedge) and a negative cost if it is violated (so the weight will be increased by Hedge).

• After observing the cost vector, set w(t+1)
i = w

(t)
i · e−ε·m

(t)
i .

Output: the average x̄ = 1
T

∑T
t=1 x

(t) of the constructed solutions.

Analysis. Since the analysis for the Hedge algorithm works with an adversarial construction of the
cost vectors, it definitely holds for the cost vectors we constructed. Let

ρ = max
1≤i≤m

{max(bi, Ai1− bi)} ,

be (an upper bound on) the width of our constructed cost vectors. By Corollary 4, we thus have for
ε ∈ [0, 1], T ≥ (4ρ2 lnm)/ε2 and any constraint i that

1

T

T∑
t=1

~p(t) · ~m(t) ≤ 1

T

T∑
t=1

m
(t)
i + 2ε . (2)

Let us first consider the left-hand-side of the above expression. We have that

T∑
t=1

~p(t) · ~m(t) =

T∑
t=1

(∑
i

p
(t)
i ·m

(t)
i

)

=

T∑
t=1


∑
i

p
(t)
i · (Aix

(t) − bi)︸ ︷︷ ︸
(∗)
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which is non-negative because (∗) is non-negative for every t since the oracle outputs a feasible solution.
Using that the left-hand-side of (2) is non-negative, we get

−2ε ≤ 1

T

T∑
t=1

m
(t)
i =

1

T

T∑
t=1

(
Aix

(t) − bi
)

= Aix̄− bi

which implies that

Aix̄ ≥ bi − 2ε ,

for every constraint i. So our solution x̄ is almost feasible. Moreover the cost c>x̄ = c>( 1
T

∑
t∈[T ] x

(t))

is at most the cost of an optimal solution to the original LP since each x(t) has no higher cost than
an optimal solution (by the properties of the oracle).

Setting the parameters for solving the set cover relaxation. For set cover we have that ρ ≤ n
and therefore, it is sufficient to set T = (4n2 lnm)/ε2 (this can in fact be improved by a better analysis
to ≈ n lnm/ε2). This gives a solution x̄ that satisfies

∑
e∈S xe ≥ 1− 2ε for every set S and the cost of

x̄ is at most that of an optimal LP solution. We can obtain a feasible (approximately optimal) solution
by simply defining x∗ = 1

1−2ε x̄.
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