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4.3 Online Set Cover

The algorithm takes a fractional perspective: for each set S it main-
tains a variable xS ∈ [0, 1] which denotes the fractional amount of S
picked by the solution. We enforce that xS starts at 0, and is monotone
and only increases over time.

Suppose e is the element arriving at time t, and gives rise to the
the covering constraint

∑
S:e∈S

xS ≥ 1.

Our algorithm uses the multiplicative update rule: simultaneously
for each set S containing e, we raise its variable according to the rule

x′S =
xS + η

cS
(4.1)

until the covering ∑S∋e xS ≥ 1 is satisfied. The shifting constant η needs to be
strictly positive, else the update rule
x′S ∝ (xS + 0) could never increase xS
from 0 to a non-zero value.

Theorem 4.1. If r is the maximum number of sets containing any element,
then the fracional algorithm has competitive ratio

α := (1 + rη) ln(1 + 1/η)

against any optimal integer solution. Hence, setting η = O(1/r) gives a
competitive ratio of 2 ln(r + 1).

For simplicity we assume that r is known. If r is unknown in ad-
vance, the algorithm can simply use the current value of r: as an
exercise show that the competitive ratio only gets better.

Proof. Fix a benchmark integer solution B, and consider the potential

Φ := (1 + rη) ∑
S∈B

cS ln
(

1 + η

xS + η

)
.

As each xS ∈ [0, 1], each logarithmic term lies in [0, ln(1 + 1/η)]. The
term is large if the set S lies in the offline solution and xS is small;
this makes sense as the online algorithm may pay for this mistake
later, and the potential provides the money in the bank for these
future mistakes.

As always, we need to show

∆ON + ∆Φ ≤ α∆OFF. (4.2)

First, the offline benchmark solution picks some set S containing e
(unless e was already covered by its previous choices.) In that case,
the potential increases by

(1 + rη)cS ln
(

1 + η

xS + η

)
≤ (1 + rη)cS ln

(
1 + η

η

)
= αcS,
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irrespective of xS. Since the offline cost is cS, (4.2) holds.
Next, the online algorithm moves. We use a continuous analysis:

as the algorithm increase xS for each S containing e according to the
rule (4.1) as long as ∑S:e∈S xS < 1, the rate of increase of the online
cost is

∑
S:e∈S

cSx′S = ∑
S:e∈S

cS
xS + η

cS
= ∑

S:e∈S
xS︸ ︷︷ ︸

<1

+ ∑
S:e∈S

η︸ ︷︷ ︸
≤rη

≤ 1 + rη.

The rate of change of the potential satisfies We use the chain rule:

Φ′ =
dΦ
dz

= ∑
i

∂Φ
∂xS

dxS

dz
.

Φ′ = (1 + rη) ∑
S∈OPT

cS

(
− ∂

∂xS
log(xS + η)

)
x′S

= (1 + rη) ∑
S∈OPT:e∈S

cS

(
− 1

xS + η

)
· xS + η

cS

= −(1 + rη) ∑
S∈OPT:e∈S

−1 ≤ −(1 + rη),

where the inequality follows as OPT must contain at least one set S
that contains e. Thus (4.2) holds and the result follows.

4.3.1 Competitiveness Against a Fractional Optimum

Theorem 4.1 compared the cost of the online algorithm to an in-
teger benchmark. We now show that same result with respect to
a fractional benchmark. Fix any fractional solution y that satisfies
∑S:e∈S yS ≥ 1 for each element e. The potential is now

Φ := (1 + rη) ∑
S

cSyS ln
(

yS + η

xS + η

)
.

If each yS ∈ {0, 1}, this is the same expression as (4.5) and the poten-
tial is always positive. But when yS is fractional, the logarithmic term
can now be positive or negative depending on whether yS > xS or
not. However, it is always in the range [− ln(1 + 1/η), ln(1 + 1/η)].

When the benchmark solution increases yS at rate 1, the potential
Φ changes at rate

∂Φ
∂yS

= (1 + rη) cS ·
∂

∂yS
yS ln

(
yS + η

xS + η

)
= (1 + rη) cS

[
ln
(

yS + η

xS + η

)
+

yS
(yS + η)

]
≤ α′ cS,

where α′ = (1 + rη)(1 + ln(1 + 1/η)).
Next, the online algorithm increases variables xS for sets S that

contain the element e at rate (4.1): this causes the online cost to in-
crease at rate 1 + rη as in the integer case, and the potential changes
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at rate

Φ′ = (1 + rη) ∑
S∋e

cSyS ·
∂

∂xS
ln
(

yS + η

xS + η

)
· x′S

= (1 + rη) ∑
S∋e

cSyS ·
−1

xS + η
· xS + η

cS

= (1 + rη) ∑
S∋e

(−yS) ≤ −(1 + rη).

Above, we used that the solution y is feasible and hence ∑S∋e yS ≥ 1.
As always, this ensures that

ON + ΦT −Φ0 ≤ α′OFF.

The starting potential Φ0 = 0, but the final potential can be negative.
Nevertheless, one can verify that

−ΦT ≤ α′OFF

So we have ON ≤ 2α′OFF, which proves the following result:

Theorem 4.2. If r is the maximum number of sets containing any element,
then the fracional algorithm has competitive ratio

α′ := 2(1 + rη) · (1 + ln(1 + 1/η))

against any optimal fractional solution. Hence, setting η = O(1/r) gives a
competitive ratio of O(ln(r + 1)).

4.4 The Shifted KL Divergence

Let us abstract out the argument in the previous sections. For values
p, q ∈ [0, 1]m, we define the shifted KL divergence function:

KLη(p∥q) := ∑
i

[
pi ln

(
pi + η

qi + η

)]
.

Given weights ci ≥ 0 along with the shift η, a weighted version is the
following:

KLc,η(p∥q) := ∑
i

ci

[
pi ln

(
pi + η

qi + η

)]
.

The potential function Φ we chose in the previous section was pre-
cisely C := (1 + rη) times the weighted KL divergence between the
optimal solution and the algorithm’s solution.

Here are some facts for the unweighted case (the weighted version
has analogous facts):

1. KLc,η ≥ 0 if pi ≥ qi for all i where pi > 0.
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2. The partial derivative with respect to the first argument is:

∂KLη

∂pi
= ln

(
pi + η

qi + η

)
+

pi
pi + η

≤ ln
(

pi + η

qi + η

)
+ 1. (4.3)

Hence, when OPT increases pi at rate p′i then Φ increases at rate
Φ′ ≤ C p′i(1 + log 1+η

η ), meaning that

Φ′ ≤ OPT′ · C ·
(

1 + log
(

1 + η

η

))
.

In other words, the potential is Lipschitz with respect to its first ar-
gument (which in this case is the optimal solution): the parameter
η affects the Lipschitz-ness, and larger values make the Lipschitz
constant better.

3. The partial derivative of the potential with respect to the second
argument is

∂KLη

∂qi
= − pi

qi + η
. (4.4)

In set cover, ALG picks some subset A indices corresponding
to the sets that cover the yet-uncovered element, and changes qi

for each i ∈ A at some rate q′i. The rate of potential change is
Φ′ = −C ∑i∈A

pi
qi+η · q′i. So setting the rate of change of qi for i ∈ A

to be
q′i = qi + η

ensures that Φ′ = −C ∑i∈A pi. We want to show that ALG′ + Φ′ ≤
0. Observe that ALG = ∑i qi, and hence

ALG′ + Φ′ = ∑
i∈A

[q′i − Cpi] = ∑
i∈A

[qi + η − Cpi].

Since the optimal solution must cover the element, ∑i∈A pi ≥ 1.
Since the online solution was not yet feasible, ∑i∈A qi < 1. So we
want that 1 + η|A| − C ≤ 0, or C ≥ 1 + η|A|. Finally, defining r to
be the maximum possible size of A completes the argument.


