4.3 Online Set Cover

The algorithm takes a fractional perspective: for each set *S* it maintains a variable $x_S \in [0, 1]$ which denotes the fractional amount of *S* picked by the solution. We enforce that x_S starts at 0, and is *monotone* and only increases over time.

Suppose *e* is the element arriving at time *t*, and gives rise to the the covering constraint

$$\sum_{S:e\in S} x_S \ge 1$$

Our algorithm uses the multiplicative update rule: simultaneously for each set *S* containing *e*, we raise its variable according to the rule

$$x'_S = \frac{x_S + \eta}{c_S} \tag{4.1}$$

until the covering $\sum_{S \ni e} x_S \ge 1$ is satisfied.

Theorem 4.1. *If r is the maximum number of sets containing any element, then the fracional algorithm has competitive ratio*

$$\alpha := (1 + r\eta) \ln(1 + 1/\eta)$$

against any optimal integer solution. Hence, setting $\eta = O(1/r)$ gives a competitive ratio of $2\ln(r+1)$.

For simplicity we assume that r is known. If r is unknown in advance, the algorithm can simply use the current value of r: as an exercise show that the competitive ratio only gets better.

Proof. Fix a benchmark integer solution \mathcal{B} , and consider the potential

$$\Phi := (1+r\eta) \sum_{S \in \mathcal{B}} c_S \ln\left(\frac{1+\eta}{x_S+\eta}\right).$$

As each $x_S \in [0, 1]$, each logarithmic term lies in $[0, \ln(1 + 1/\eta)]$. The term is large if the set *S* lies in the offline solution and x_S is small; this makes sense as the online algorithm may pay for this *mistake* later, and the potential provides the money in the bank for these future mistakes.

As always, we need to show

$$\Delta ON + \Delta \Phi \le \alpha \Delta OFF. \tag{4.2}$$

First, the offline benchmark solution picks some set S containing e (unless e was already covered by its previous choices.) In that case, the potential increases by

$$(1+r\eta)c_{S}\ln\left(\frac{1+\eta}{x_{S}+\eta}\right) \leq (1+r\eta)c_{S}\ln\left(\frac{1+\eta}{\eta}\right) = \alpha c_{S},$$

The *shifting* constant η needs to be strictly positive, else the update rule $x'_S \propto (x_S + 0)$ could never increase x_S from 0 to a non-zero value.

irrespective of x_S . Since the offline cost is c_S , (4.2) holds.

Next, the online algorithm moves. We use a continuous analysis: as the algorithm increase x_S for each S containing e according to the rule (4.1) as long as $\sum_{S:e\in S} x_S < 1$, the rate of increase of the online cost is

$$\sum_{S:e\in S} c_S x'_S = \sum_{S:e\in S} c_S \frac{x_S + \eta}{c_S} = \underbrace{\sum_{S:e\in S} x_S}_{<1} + \underbrace{\sum_{S:e\in S} \eta}_{\leq r\eta} \leq 1 + r\eta.$$

The rate of change of the potential satisfies

$$\begin{aligned} \Phi' &= (1+r\eta) \sum_{S \in OPT} c_S \left(-\frac{\partial}{\partial x_S} \log(x_S + \eta) \right) x'_S \\ &= (1+r\eta) \sum_{S \in OPT: e \in S} c_S \left(-\frac{1}{x_S + \eta} \right) \cdot \frac{x_S + \eta}{c_S} \\ &= -(1+r\eta) \sum_{S \in OPT: e \in S} -1 \le -(1+r\eta), \end{aligned}$$

where the inequality follows as OPT must contain at least one set *S* that contains *e*. Thus (4.2) holds and the result follows. \Box

4.3.1 Competitiveness Against a Fractional Optimum

Theorem 4.1 compared the cost of the online algorithm to an integer benchmark. We now show that same result with respect to a fractional benchmark. Fix any fractional solution *y* that satisfies $\sum_{S:e\in S} y_S \ge 1$ for each element *e*. The potential is now

$$\Phi := (1+r\eta) \sum_{S} c_{S} y_{S} \ln\left(\frac{y_{S}+\eta}{x_{S}+\eta}\right).$$

If each $y_S \in \{0, 1\}$, this is the same expression as (4.5) and the potential is always positive. But when y_S is fractional, the logarithmic term can now be positive or negative depending on whether $y_S > x_S$ or not. However, it is always in the range $[-\ln(1 + 1/\eta), \ln(1 + 1/\eta)]$.

When the benchmark solution increases y_S at rate 1, the potential Φ changes at rate

$$\begin{split} \frac{\partial \Phi}{\partial y_S} &= (1+r\eta) \, c_S \cdot \frac{\partial}{\partial y_S} y_S \ln\left(\frac{y_S + \eta}{x_S + \eta}\right) \\ &= (1+r\eta) \, c_S \left[\ln\left(\frac{y_S + \eta}{x_S + \eta}\right) + \frac{y_S}{(y_S + \eta)} \right] \leq \alpha' \, c_S, \end{split}$$

where $\alpha' = (1 + r\eta)(1 + \ln(1 + 1/\eta)).$

Next, the online algorithm increases variables x_S for sets S that contain the element e at rate (4.1): this causes the online cost to increase at rate $1 + r\eta$ as in the integer case, and the potential changes

We use the chain rule:

$$\Phi' = \frac{d\Phi}{dz} = \sum_{i} \frac{\partial\Phi}{\partial x_S} \frac{dx_S}{dz}.$$

Dard)

at rate

$$\begin{aligned} \Phi' &= (1+r\eta) \sum_{S \ni e} c_S y_S \cdot \frac{\partial}{\partial x_S} \ln\left(\frac{y_S + \eta}{x_S + \eta}\right) \cdot x'_S \\ &= (1+r\eta) \sum_{S \ni e} c_S y_S \cdot \frac{-1}{x_S + \eta} \cdot \frac{x_S + \eta}{c_S} \\ &= (1+r\eta) \sum_{S \ni e} (-y_S) \le -(1+r\eta). \end{aligned}$$

Above, we used that the solution *y* is feasible and hence $\sum_{S \ni e} y_S \ge 1$. As always, this ensures that

$$ON + \Phi_T - \Phi_0 \le \alpha' OFF.$$

The starting potential $\Phi_0 = 0$, but the final potential can be negative. Nevertheless, one can verify that

$$-\Phi_T \leq \alpha' OFF$$

So we have $ON \leq 2\alpha' OFF$, which proves the following result:

Theorem 4.2. *If r is the maximum number of sets containing any element, then the fracional algorithm has competitive ratio*

$$\alpha' := 2(1 + r\eta) \cdot (1 + \ln(1 + 1/\eta))$$

against any optimal fractional solution. Hence, setting $\eta = O(1/r)$ *gives a competitive ratio of* $O(\ln(r+1))$.

4.4 The Shifted KL Divergence

Let us abstract out the argument in the previous sections. For values $p, q \in [0, 1]^m$, we define the *shifted KL divergence* function:

$$KL_{\eta}(p||q) := \sum_{i} \left[p_{i} \ln \left(\frac{p_{i} + \eta}{q_{i} + \eta} \right) \right].$$

Given weights $c_i \ge 0$ along with the shift η , a weighted version is the following:

$$KL_{c,\eta}(p\|q) := \sum_{i} c_i \bigg[p_i \ln \bigg(\frac{p_i + \eta}{q_i + \eta} \bigg) \bigg].$$

The potential function Φ we chose in the previous section was precisely $C := (1 + r\eta)$ times the weighted KL divergence between the optimal solution and the algorithm's solution.

Here are some facts for the unweighted case (the weighted version has analogous facts):

1. $KL_{c,\eta} \ge 0$ if $p_i \ge q_i$ for all i where $p_i > 0$.

2. The partial derivative with respect to the first argument is:

$$\frac{\partial KL_{\eta}}{\partial p_i} = \ln\left(\frac{p_i + \eta}{q_i + \eta}\right) + \frac{p_i}{p_i + \eta} \le \ln\left(\frac{p_i + \eta}{q_i + \eta}\right) + 1.$$
(4.3)

Hence, when OPT increases p_i at rate p'_i then Φ increases at rate $\Phi' \leq C p'_i (1 + \log \frac{1+\eta}{\eta})$, meaning that

$$\Phi' \leq OPT' \cdot C \cdot \left(1 + \log\left(\frac{1+\eta}{\eta}\right)\right)$$

In other words, the potential is Lipschitz with respect to its first argument (which in this case is the optimal solution): the parameter η affects the Lipschitz-ness, and larger values make the Lipschitz constant better.

3. The partial derivative of the potential with respect to the second argument is

$$\frac{\partial KL_{\eta}}{\partial q_i} = -\frac{p_i}{q_i + \eta}.$$
(4.4)

In set cover, ALG picks some subset *A* indices corresponding to the sets that cover the yet-uncovered element, and changes q_i for each $i \in A$ at some rate q'_i . The rate of potential change is $\Phi' = -C \sum_{i \in A} \frac{p_i}{q_i + \eta} \cdot q'_i$. So setting the rate of change of q_i for $i \in A$ to be

$$q_i' = q_i + \eta$$

ensures that $\Phi' = -C \sum_{i \in A} p_i$. We want to show that $ALG' + \Phi' \leq 0$. Observe that $ALG = \sum_i q_i$, and hence

$$ALG' + \Phi' = \sum_{i \in A} [q'_i - Cp_i] = \sum_{i \in A} [q_i + \eta - Cp_i].$$

Since the optimal solution must cover the element, $\sum_{i \in A} p_i \ge 1$. Since the online solution was not yet feasible, $\sum_{i \in A} q_i < 1$. So we want that $1 + \eta |A| - C \le 0$, or $C \ge 1 + \eta |A|$. Finally, defining *r* to be the maximum possible size of *A* completes the argument.