
Exercise Set VIII, Computational Complexity 2018
These exercises are for your own benefit. Feel free to collaborate and share your answers
with other students. Solve as many problems as you can and ask for help if you get stuck
for too long. Problems marked * are more difficult but also more fun :).

These problems are taken from various sources at EPFL and on the Internet, too numer-
ous to cite individually.

1 Consider random variables Z1, . . . , Zn ∈ {0, 1}. Let Z =
∑n

i=1 Zi. Show that Var[Z] =∑n
i=1Var[Zi] if Z1, . . . , Zn are pairwise independent. Also give an example of random variables

that are not pairwise independent and satisfy Var[Z] 6=
∑n

i=1Var[Zi].

2 Let m = 2k − 1 and recall the definition of the random vectors r1, . . . , rm ∈ {0, 1}n seen in
Lecture 15:

• Choose k strings s1 . . . , sk independently at random from {0, 1}n.

• For every j ∈ [m], we associate a unique nonempty set Tj ⊆ [k] with j in some canonical
fashion and define rj =

∑
t∈Tj

st mod 2. That is, rj is the bitwise XOR of all the strings
among s1, . . . , sk that belong to the jth set.

Show that the vectors r1, . . . , rm are pairwise independent, i.e., if you only consider two vectors
ri and rj with i 6= j then they look as two independent random vectors.

3 Show that no classic (deterministic or probabilistic) strategy used by Alice and Bob can cause
them to win the Parity Game (considered in Lecture 16) with probability strictly more than 3/4.

4 What state do you get if you start with the basic state |0m〉 and then apply the Hadamard gate
to very qubit?

5 Why can’t OR and AND simply be implemented as quantum operations?

6 Show that OR and AND can be implemented as quantum operations if we store the result in a
3rd qubit (that is initialized to |0〉).

The NOT gate is easy to implement and thus we can simulate any classic circuit (and hence
any TM) with elementary quantum operations. This gives that BPP ⊆ BQP.

7 How can you make a classic TM reversible? Why does an efficient reversible TM for computing
f(x) given x not imply that we can efficiently find x given f(x)? (In particular, why doesn’t it
imply that we can invert one-way functions?)

Page 1 (of 1)

Computational Complexity • Autumn 2018
Ola Svensson


