

Final Exam, Topics in TCS 2016

- You are only allowed to have a handwritten A4 page written on both sides.
- Communication, calculators, cell phones, computers, etc... are not allowed.
- Your explanations should be clear, well motivated, and proofs should be complete.
- The solutions to the questions of the exam are rather short. If you end up writing a solution requiring a lot of pages then there is probably an easier solution.
- Do not touch until the start of the exam.

Good luck!

Name:

N° Sciper:

Problem 1	Problem 2	Problem 3	Problem 4
/ 25 points	/ 25 points	/ 25 points	/ 25 points

Total	/	100

Page 1 (of 6)

1	$(25 \ pts)$ Basics.	In this problem,	you should	answer	whether	the	following	10	statements	are
	true or false.									

• We have a proof that $\mathbf{BPP} \subseteq \mathbf{NP}$. True or False?
• We have a proof that $\mathbf{BPP} \subseteq \mathbf{BQP}$. True or False?
• We have a proof that $\mathbf{BPP} \subseteq \mathbf{P}_{/\mathbf{poly}}$. True or False?
• We have a proof that $\mathbf{NP} \subseteq \mathbf{BQP}$. True or False?
• We have a proof that $\mathbf{P}_{/\mathbf{poly}} \subseteq \mathbf{NP}$. True or False?
• We have a proof that $\mathbf{IP} \subseteq \mathbf{EXP}$. True or False?
• We have a proof that $\mathbf{PH} \subseteq \mathbf{PSPACE}$. True or False?
• We have a proof that $\mathbf{PCP}(O(1), poly(n)) = \mathbf{P}$. True or False?
• We have a proof that $\mathbf{PCP}(\log n, O(1)) = \mathbf{NP}$. True or False?
• If $\mathbf{NP} \neq \mathbf{coNP}$, then $\mathbf{P^{NP}} \neq \mathbf{NP}$. True or False?

The correction is as follows: 10 correct answers give 25 points, 9 correct answers give 22 points, 8 correct answers give 17 points, 7 correct answers give 10 points, 6 correct answers give 5 points, 5 or less correct answers give 0 points.

2 (25 pts) The Polynomial Hierarchy. Show that if PH = PSPACE then the polynomial hierarchy collapses to some level.

In this problem you are allowed (if you wish) to use the following statement proved in class: for every $i \ge 1$, if $\Sigma_i^p = \prod_i^p$ then $\mathbf{PH} = \Sigma_i^p$. All other statements should be proved. (*Hint:* use the fact that **PSPACE** has complete languages.)

Solution:

3 (25 pts) Circuits. Prove the following statement:

Let $\epsilon > 0$ and $d(n) = (1 - \epsilon) \cdot n$. Then for n large enough there exists an n-ary function $f: \{0, 1\}^n \to \{0, 1\}$ not computable by circuits of depth at most d(n).

In this problem, we only allow gates of fan-in 2 (or 1 if it is a NOT gate).

(*Hint:* recall that most functions f require circuits of large size. In particular, you are allowed to use the statement proved in class about the circuit size of most functions.)

Solution:

4 (25 pts) Hardness and PCPs. Recall that in the Vertex Cover problem, you are given a graph G = (V, E), and the goal is to find the minimum subset $S \subseteq V$ of vertices such that each edge $e \in E$ has at least one endpoint in S. We saw in problem set IV that, using Håstad's 3-bit PCP verifier, we can prove that it is NP-hard to approximate the Vertex Cover problem within a factor of $7/6 - \varepsilon$ for any $\varepsilon > 0$. In particular, Håstad's PCP verifier queries 3 bits of the proof and checks whether a certain predicate is satisfied, while having a completeness of $1 - \varepsilon$ and soundness $1/2 + \epsilon$.

In this problem, you are asked to prove that it is NP-hard to approximate vertex cover within $2 - \varepsilon$ for any $\varepsilon > 0$, $assuming^1$ the following PCP verifier \tilde{V} exists for SAT:

For every $\varepsilon > 0$, there exists a large enough **constant** k such that \widetilde{V} uses $O(\log n)$ random bits to compute k positions in the proof π , say i_1, \ldots, i_k , and accepts iff $C(\pi(i_1), \ldots, \pi(i_k)) =$ 1, where C is a fixed predicate of the verifier \widetilde{V} that has exactly **two satisfying assignments**. Formally, C is a predicate $C : \{0, 1\}^k \mapsto \{0, 1\}$ such that there exist only **two** partial assignments $z_1, z_2 \in \{0, 1\}^k$ (out of the 2^k possible ones) such that $C(z_1) = C(z_2) = 1$ and C(z) = 0 for all $z \in \{0, 1\}^k \setminus \{z_1, z_2\}$. The verifier \widetilde{V} has completeness $1 - \varepsilon$ and soundness ϵ . In other words:

- if φ is a satisfiable SAT instance then there is a proof π that makes the verifier accept with probability at least 1ε .
- if φ is not a satisfiable SAT instance then for any proof π , the verifier accepts with probability at most ε .

Your task in this problem is to use the above described verifier \widetilde{V} to prove that it is NP-hard to approximate Vertex Cover within a factor of $2 - \varepsilon$, for any $\varepsilon > 0$.

Solution:

 $^{^{1}}$ This verifier is only known to exist under a stronger complexity theoretic assumption, known as the Unique Games Conjecture.

Page 6 (of 6)