
Computational Complexity October 3, 2018

Lecture 4 (Notes)
Lecturer: Ola Svensson Scribes: Ola Svensson

Disclaimer: These notes were written for the lecturer only and may contain inconsistent notation,
typos, and they do not cite relevant works. They also contain extracts from the two main inspirations
of this course:

1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

2. The course http://theory.stanford.edu/ trevisan/cs254-14/index.html by Luca Trevisan.

1 Introduction

• Today: circuits, non-uniform computation.

• Proof of the Cook-Levin Theorem.

2 Recall basic circuit definitions

A circuit C has n inputs and m outputs, and is constructed with AND, OR, and NOT gates. Each gate
has fan-in 2 except the NOT gate which has fan-in 1. The out-degree can be any number. A circuit is
not allowed to have any cycles.

Example 1 A circuit C computing the XOR function, i.e., C(x1, x2) = 1 iff x1 6= x2:

x1 x2

¬ ¬

∧ ∧

∨

Definition 1 (Size) The size of a circuit C, denoted by |C|, is the number of its gates.

• The size of the XOR circuit C above is 5.

Definition 2 (Circuit families and language recognition) Let T : N→ N be a function . A T (n)-
size circuit family is a sequence of {Cn}n∈N of Boolean circuits, where Cn has n inputs and a single
output, and its size |Cn| ≤ T (n) for every n.

We say that language L is in SIZE(T (n)) if there exists a T (n)-size circuit family {Cn}n∈N such
that for every x ∈ {0, 1}n, x ∈ L⇔ Cn(x) = 1.

Example 2 For any B ⊆ {0, 1}∗, the unary language UB = {1n : exists a string of length n in B} has
a linear-sized circuit family. If 1n ∈ UB the circuit is simply a tree of AND gates and otherwise if
1n 6∈ UB then the circuit Cn is the trivial circuit that always outputs 0.

Example 3 The language {〈m,n,m + n〉 : m,n ∈ Z} also has linear-sized circuits that implement the
grade-school algorithm for addition.

1

3 Basic Circuit Upper and Lower Bounds

• Notice that, unlike the complexity classes we defined with Turing machines, circuits is a non-
uniform computational model: we can have different circuits for each size of the problem/language.
For Turing machines we had the same machine for infinite (all) inputs of a problem (an uniform
computational model).

• Indeed, unlike other complexity measures such as time and space, for which there are languages of
arbitrarily high complexity, the size complexity of a problem is always at most exponential.

Theorem 3 For every language L, L ∈ SIZE(2n).

Proof

• We need to show that for every Boolean function f : {0, 1}n → {0, 1}, f has a circuit of size O(2n).

• Use the identity f(x1, x2, . . . , xn) = (x1 ∧ f(1, x2, . . . , xn)) ∨ (x̄1 ∧ f(0, x2, . . . xn)) to recursively
construct a circuit for f as follows:

x1 x2, . . . xn

f(1, x2, . . . , xn) f(0, x2, . . . , xn)

∧ ∧

¬

∨

• The recurrence relation for the size of the circuit is s(n) = 4 + 2 · s(n − 1) with say base case
s(1) = 0 which solves to s(n) = 2n − 4.

On the other hand, most languages do require exponential size circuits:

Theorem 4 There are languages L such that L 6∈ SIZE(o(2n/n)). In particular, for every n ≥ 11,
there exists f : {0, 1}n → {0, 1} that cannot be computed by a circuit of size 2n/4n.

Proof This is a counting argument:

• There are 22
n

functions f : {0, 1}n → {0, 1}.

• We claim that the number of circuits of size s is at most 2O(s log s), assuming s ≥ n.

• To bound the number of circuits of size s, we create a compact binary encoding of such circuits.

• Identify gates with numbers 1, 2, . . . , s. For each gate, specify where the two/one inputs are coming
from, and the type of the gate. The total number of bits required to represent the circuits is

s · (2 log(n + s) + 2) ≤ s · (2 log 2s + 3) = s · (2 log s + 5).

2

• So the number of circuits of size s is at most 22s log s+5s and this is not sufficient to compute all
possible functions if

22s log s+5s < 22
n

.

• This is satisfied if s ≤ 2n/(4n) and n ≥ 11.

3.1 Some comments

Although almost all functions f : {0, 1}n → {0, 1} require large circuits, we are unable to show that
“natural ones” require large circuits. The best lower bound on an NP language is something like 5n.
We do not even know if every language in NEXP does have a polysize circuit family.

4 Simulation of Efficient Computation by Small Circuits

Definition 5 An Oblivious Turing machine (OTM) is a machine for which, at every time t, the j:th
head is at cell sj(t) for some function sj that only depends on the length of the input.

We show that any T (n)-time OTM can be simulated by a circuit of size at most O(T (n)). As any
TM can be simulated by an OTM by incurring a logarithmic multiplicative loss in the running time (see
book and exercise session) it follows that

P ⊆ P/poly := ∪cSIZE(nc).

Theorem 6 Let M be a T (n)-time OTM. There exists an O(T (n))-sized circuit family {Cn}n∈N such
that

Cn(x) = M(x) for every x ∈ {0, 1}n.

Proof

• Let x ∈ {0, 1}∗ be some input for M and define the transcript of M ’s execution on x to be the
sequence z1, . . . , zT (n) of snapshots (the machine’s state and symbols read by all heads) of the
execution at each step in time.

• Each snapshot zi can be encoded by a constant-sized binary string (say by ` bits).

• Moreover, we can compute the ` bits encoding zi based on the following information:

1. What is the state of the machine at time i?

2. What is written on the heads of the tapes at time i?

The answer to the first question depends on the snapshot zi−1. The answer to the second question
depends on (potentially) an input bit and the snapshots zi1 , . . . , zik where zij denotes the last step
the M ’s j:th head was in the same position as it is in the i:th step. (Notice that i1, . . . , ik depend
only on i and not on the actual input x as M is oblivious).

• Because there are only a constant number of strings of constant length, we can compute the ` bits
encoding zi from these previous snapshots using a constant-sized circuit.

3

• The composition of all these constant sized circuits gives rise to a circuit that on input x computes
the encoding of the snapshot zT (n). An overview of the circuit is as follows:

x1 x2 . . . xp . . . xn

Circuit z1

. . .

` bits encoding
snapshot z1

Circuit zi

. . .

` bits encoding
snapshot zi

. . .

O(k`) bits on
which snapshot
zi depends on

Circuit zT (n)

. . .

. . .

Final answer

• If the snapshot zT (n) is accepting, the circuit outputs 1 and otherwise it outputs 0.

• Thus, there is a O(T (n))-sized circuit Cn such that Cn(x) = M(x) for every x ∈ {0, 1}n.

Remark The proof of the above theorem actually gives a stronger result than in the statement: the
circuit is not only of size O(T (n)) but it is also computable in time O(T (n)).

Remark The proof of the above theorem relied crucially on that computation is local.

5 Circuit Satisfiability and a proof of the Cook-Levin Theorem

Boolean circuits give an alternative proof of the central Cook-Levin Theorem that shows that 3-SAT is
NP-complete.

Definition 7 (Circuit satisfiability or CKT-SAT) The language CKT-SAT consists of all (strings
representing) circuits that produce a single bit of output and that have a satisfying assignment.

4

CKT-SAT is clearly in NP because the satisfying assignment can serve as the certificate. The
Cook-Levin Theorem follows immediately from the next two lemmas.

Lemma 8 CKT-SAT is NP-hard.

Proof

• If L ∈ NP then there is a polynomial-time TM M and a polynomial p such that x ∈ L iff
M(x, u) = 1 for some u ∈ {0, 1}p(|x|).

• The proof of Theorem 6 yields a polynomial-time transformation from M,x to a circuit C such
that M(x, u) = C(u) for every u ∈ {0, 1}p(|x|). Thus x ∈ L iff C ∈ CKT-SAT.

Lemma 9 CKT-SAT ≤p 3-SAT.

Proof Map a circuit C into a 3-SAT formula ϕ as follows:

• For every node/gate vi of C, we will have a corresponding variable zi in ϕ.

• If the node vi is an AND of the nodes vj and vk then we add to ϕ the clauses that are equivalent
to the condition zi = (zj ∧ zk).

• Similarly, if vi is an OR of vj and vk we add the clauses that are equivalent to zi = (zj ∨ zk).

• And, if vi is the NOT of vj then we add the clauses that are equivalent to zi = ¬zj .

• Finally, if vi is the output node of C then we add the clause (zi) to ϕ.

• It is not hard to see that the formula ϕ is satisfiable iff the circuit C is. Moreover, the reduction
runs in polynomial time.

5

