
Computational Complexity October 22, 2018

Lecture 7 (Notes)
Lecturer: Ola Svensson Scribes: Ola Svensson

Disclaimer: These notes were written for the lecturer only and may contain inconsistent notation,
typos, and they do not cite relevant works. They also contain extracts from the two main inspirations
of this course:

1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

2. The course http://theory.stanford.edu/ trevisan/cs254-14/index.html by Luca Trevisan.

1 Introduction

Recall last lecture:

• Polynomial hierarchy (alternation of quantifiers)

– L ∈ Σp
i if exists polytime TM M and polynomial q such that

x ∈ L⇔ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1 ∀x ∈ {0, 1}∗,

– L ∈ Πp
i if exists polytime TM M and polynomial q such that

x ∈ L⇔ ∀u1 ∈ {0, 1}q(|x|)∃u2 ∈ {0, 1}q(|x|) · · ·Qiui ∈ {0, 1}q(|x|)M(x, u1, . . . , ui) = 1 ∀x ∈ {0, 1}∗,

• Karp-Lipton Theorem: If NP ⊆ P/poly then PH = Σp
2.

Today:

• Why does circuit lower bounds seem so difficult? One answer is that any proof showing NP (
P/poly cannot be a so called natural proof.

• Interactive proofs

– NP can be defined as the class of languages which can be recognized by a polytime verifier
given a proof/certificate (from a prover). This is an offline procedure.

– What if the verifier and the prover can interact like we do in class?

2 Natural Proofs: a barrier for proving circuit lower bounds

There has been a large success in proving lower bounds in restricted models:

• Polysize circuits of unbounded fan-in for PARITY requires depth at leastO(log n/ log log n) (H̊astad’86)

• CLIQUE does not have monotone circuits of polysize (Razborov’85)

• MATCHING does not have monotone circuits of polysize (Razborov’85)

(The latter result kind of destroyed the hope to use monotone circuits to separate NP from P/poly.)
In addition Karp-Lipton’s Theorem tells us that separating NP from P/poly seems like a good

approach for the P vs NP problem.
However, our understanding of circuit lower bounds is embarrassing in general:

1

• Although almost all functions/languages require large circuits, we have been able to explicitly find
any function that requires large circuits.

• In fact, it is open to find an explicit f : {0, 1}n → {0, 1} that does not admit a O(log n) depth
circuit of size O(n).

• Another frontier is “Does NEXP have languages that require super-polynomial size circuits?”. Or
even “Does NEXP have languages that require ω(log n) depth?”.

In 1994, Razborov and Rudich described what they view as the main technical limitation of current
approaches for proving circuit lower bounds:

• They defined the notion of “natural mathematical proofs” and pointed out that current lower
bounds are (mostly) based on such proofs.

• They showed that obtaining strong lower bounds with such a proof would violate a stronger form
of the P 6= NP conjecture: namely that strong one-way functions do exist that cannot be inverted
by algorithms running in subexponential time.

• Their result can be seen as a modern analog of the 1970s results on the limits of diagonalization
(that we saw in class).

2.1 Definition of Natural Proofs

Let f : {0, 1}n → {0, 1} be a Boolean function and let c ≥ 1 be some number. Any proof that f does not
have a nc-sized circuit can be viewed as exhibiting some property that f has, and which every function
with nc-sized circuits do not possess.

That is, such a proof can be seen as providing a predicate P on Boolean functions such that P(f) = 1,
but

P(g) = 0 for every g ∈ SIZE(nc).

We call this condition nc-usefulness as it rules out all the functions of circuits of size at most nc.
So what are natural conditions on P? Razborov and Rudich proposes two conditions:

Constructiveness: There is an 2O(n)-time algorithm that on input a function g : {0, 1}n → {0, 1} outputs P(g). In
other words, there is a polytime algorithm (in the size of the truth table of g) that evaluates P.

Largeness: The probability that a random function g : {0, 1}n → {0, 1} satisfies P(g) = 1 is at least 1/n.

Two examples of unnatural predicates:

1. P(g) = 1 iff g is a Boolean function on n bits that has circuit complexity more than nlogn. This
predicate is clearly c = o(nlogn) useful. Does P satisfy largeness? Yes almost all Boolean functions
require exponential-sized circuits. However, we do not know if it satisfies constructiveness, since
the trivial algorithm for computing it would be to enumerate all circuits of size nlogn which requires
time 2n

logn

.

2. P(g) = 1 iff g correctly solves the decision problem 3SAT on inputs of length n. This function is
constructive: to compute it just enumerate all size n instances of 3SAT and check that g is correct
on all instances. This takes 2O(n) time. However, P does not satisfy the largeness property as it
is 1 for exactly one function.

2

2.2 What’s “Natural” about Natural Proofs?

The intuition of the constructiveness criteria is that most proofs use constructive properties. History
tells us that it often is hard to exploit properties that do not have efficient algorithms. In fact many
unconstructive arguments such as Lovasz Local Lemma and discrepancy was later constructivized. That
said, there are of course unconstructive proof techniques (e.g. probabilistic method).

So what about largeness? Why should a lower bound for a specific function use a property that holds
with good probability for a random function as well? The intuition is as follows

• Actually any proof that a function f0{0, 1}n → {0, 1} does not have a size S circuit, implies that
at least half of the functions from {0, 1}n to {0, 1} do not have a circuit of size S/2− 10.

• To see this, choose a random g : {0, 1}n → {0, 1} and observe that

f0 = (f0 ⊕ g)⊕ g,

where g ⊕ h denotes the function that maps every input x to g(x)⊕ h(x).

• Then we can see that if both (f0 ⊕ g) and g have circuits of size < S/2− 10 then f0 has a circuit
of size < S.

• Since both g and (f0 ⊕ g) are uniformly distributed, it follows that at least half of the functions
must have circuits of size at least S/2− 10.

2.3 Statement and explanation of result

Theorem 1 Suppose that subexponentially strong one-way functions exist. Then there exists a constant
c ∈ N such that the is no nc-useful natural predicate.

The assumption of the theorem is basically as follows: There are polytime computable functions
f : {0, 1}∗ → {0, 1} such that any algorithm, that given y (with good probability) finds an x such that
f(x) = y needs time 2n

ε

for some ε > 0. We believe that such functions exist (think crypt e.g. factoring).

• Note that theorem implies that if subexponentially strong one-way functions exist, then no natural
proof can prove NP (P/poly.

We do not cover the proof in this part of the course but it is given with (much) more interesting
information in Chapter 23 of the textbook.

3 Interactive Proofs

• Standard notion of a mathematical proof is closely related to the certificate definition of NP:

To prove that a statement is true one provides a sequence of steps/symbols, and the verifier
checks that they present a valid proof/certificate.

• However, people often use a more general way to convince one another of the validity of statements:

They interact with one another, where the person verifying the proof (called verifier) asks
the person providing it (the prover) for a series of explanations before he is convinced.

• Interactive proofs aim to understand such proofs from a complexity-theoretic perspective.

• We will see that if the verifier has to be deterministic then we can still only recognize NP, i.e.,
interaction does not add any power.

3

• However, if we add randomness to the verifier, then we get PSPACE!

• When adding randomness to the verifier one can distinguish between private vs public coins. We
will discuss this difference in this lecture and prove the PSPACE result in the next lecture.

3.1 Warm up: Interactive Proofs with deterministic verifier (and prover)

When defining interactive proofs, it makes sense to allow the prover any computational power (after all,
he or she can have proved something really great) but it should be easy to verify. Therefore, we will
always require the verifier to run in polynomial time (but have no restrictions on the prover)!

Let us now formally define “interaction”.

Definition 2 Let f, g : {0, 1}∗ → {0, 1}∗ be functions and k an integer (allowed to depend on input
size). A k-round interaction of f and g on input x ∈ {0, 1}∗, denoted by 〈f, g〉(x) is the sequence of
strings a1, . . . , ak defined as follows:

a1 = f(x) (verifier computes first question based on input)

a2 = g(x, a1) (prover answers first question)

a3 = f(x, a1, a2) (verifier computes first question based on input and previous answers)

a4 = g(x, a1, a2, a3) (prover answers second question)
...

a2i+1 = f(x, a1, . . . , a2i) for 2i < k

a2i+2 = g(x, a1, . . . , a2i+1) for 2i+ 1 < k

The output of f at the end of the interaction denoted outf 〈f, g〉(x) is defined to be f(x, a1, . . . , ak); we
assume this output is in {0, 1}.

Having defined interaction, the definition of a deterministic proof system follows quite naturally.

Definition 3 We say that a language L has a k-round deterministic proof system if there is a determin-
istic TM V that on input x, a1, . . . , ai runs in time polynomial in |x|, and can have a k-round interaction
with any function P such that

(Completeness) x ∈ L⇒ ∃P : {0, 1}∗ → {0, 1}∗ : outV 〈V, P 〉(x) = 1.

(Soundness) x 6∈ L⇒ ∀P : {0, 1}∗ → {0, 1}∗ : outV 〈V, P 〉(x) = 0.

The class dIP contains all languages with a k(n)-round deterministic interactive proof system where
k(n) is polynomial in n = |x|.

3.2 dIP = NP and a simple randomized protocol

It is an exercise to see that deterministic interaction does not add any power:

Exercise 1 We have dIP = NP.

In light of the above, we extend the power of the verifier by allowing him to use randomization.
We now give a simple example that illustrates the benefit of randomness in this setting. Consider the
following problem:

• Marla (prover) has one red sock and one yellow sock, but her friend Arthur (verifier), who is color-
blind, does not believe her that the socks have different colors. How can she convince him that
this is really the case?

4

We assume that Arthur takes the two socks from Marla, and he can then flip coins and then ask Marla
questions based on the outcome of these random tosses. How can he do it so as to get convinced (with
reasonable probability) that Marla has two different socks if it is the case?

The protocol is as follows:

• Marla gives both socks to Artur. Artur holds one of the socks in each hand.

• Marla then turns her back to Artur and he tosses a coin.

• If then coin flip is “heads” then he keeps the socks as they are and otherwise he switches them
between his left and right hands.

• He then asks Marla to guess whether he switched or not.

We leave as an exercise to prove that, if the socks have different colors, then Marla can always answer
correctly. Otherwise, if they have the same color, she can answer correctly with probability at most 1/2.
Repeating the protocol, say 100 times, improves the error guarantee and so Artur can be sure whether
the socks are of the same color or not.

5

