
Computational Complexity October 25, 2018

Lecture 8 (Notes)
Lecturer: Ola Svensson Scribes: Ola Svensson

Disclaimer: These notes were written for the lecturer only and may contain inconsistent notation,
typos, and they do not cite relevant works. They also contain extracts from the two main inspirations
of this course:

1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

2. The course http://theory.stanford.edu/ trevisan/cs254-14/index.html by Luca Trevisan.

1 Introduction

Recall last lecture:

• Natural proofs (Razborov and Rudic’94): a barrier for proving lower bounds on circuits. If the
predicate P distinguishing your function from those of small circuits (polysize) satisfies

Constructiveness: P(g) can be evaluated in time 2O(n) for any g : {0, 1}n → {0, 1};
Largeness: Prg[P(g) = 1] ≥ 1/n

then no subexponentially strong one-way functions exist (a conclusion we believe is unlikely).

• Interactive proofs aim to understand interactive proofs from a complexity-theoretic perspective.

• Interaction does not add any power if it is deterministic, i.e., dIP = NP.

Today:

• Today we see that randomness (seemingly) adds power to the verifier. In particular, we consider
graph nonisomorphism (GNI) and show that if the verifier is allowed to use randomness, then
GNI ∈ IP. In contrast, GNI is not known to be in NP.

• We also distinguished between private random coins (IP) and public coins where the prover sees
the randomness of the prover (AM).

• Surprisingly, public and private coin models are not very different:

AM[k + 2] ⊆ IP[k].

2 The class IP: Interactive Proofs with a Probabilistic Verifier

We want to capture the additional power of a probabilistic verifier seen in the socks example from last
lecture. To this end, we extend “deterministic” interaction to that of including a probabilistic verifier:

• The verifier f is now probabilistic, so we add an additional m-bit input r to the function f .

• That is the interaction is now

a1 = f(x, r)

a2 = g(x, a1)

a3 = f(x, r, a1, a2)

and so on.

1

• Notice that the prover (g) does not see the random coins. For this reason this is called private
coins as opposed to public coins that we discuss later.

• The interaction 〈f, g〉(x) is now a random variable of r ∈ {0, 1}m. Similarly the output outf 〈f, g〉(x)
is also a random variable of r.

Definition 1 (Probabilistic verifiers and the class IP) For an integer k ≥ 1, we say that a lan-
guage L is in IP[k] if there is a probabilistic TM V that on input x, r, a1, . . . , ai runs in time polynomial
in |x|, and can have a k-round interaction with any function P such that

(Completeness) x ∈ L⇒ ∃P : {0, 1}∗ → {0, 1}∗ : Pr[outV 〈V, P 〉(x) = 1] ≥ 2/3.

(Soundness) x 6∈ L⇒ ∀P : {0, 1}∗ → {0, 1}∗ : Pr[outV 〈V, P 〉(x) = 1] ≤ 1/3.

We define IP = ∪c≥1IP[nc].

Remark We give the following remarks:

• The constants 2/3 and 1/3 are arbitrary and they can be made very small (just as for BPP) using
sequential repetition that repeats the basic protocol m times and takes the majority answer. In
fact, using a more complicated proof, it can be shown that we can decrease the probability of error
without increasing the number of rounds using something called parallel repetition (where we run
the m executions of the protocol in parallel).

• Replacing the constant 2/3 with 1 in the completeness requirement does not change the class IP.
(This is a non-trivial fact.)

• In contrast, replacing the constant 1/3 with 0 in the soundness case is equivalent to having a
deterministic verifier and hence reduces the class IP to NP.

2.1 Interactive proof for graph nonisomorphism

We give an example of a language in IP that is not known to be in NP.

• Two graphs G1 and G2 are isomorphic if they are the same up to a renumbering of vertices; in
other words, if there is a permutation π such that π(G1) = G2.

• The GI problem is the following: given G1, G2 decide if they are isomorphic.

• Clearly GI is in NP. Why? It is actually not known whetherGI is NP-complete or in P. Together
with factoring, it is the most famous such unresolved problem. Recently, Laszlo Babai made major
progress by showing that GI can be solved in time O(nlogn).

Here we give an interactive proof for the complementary problem GNI that is not known to be in
NP. That is GNI is the following problem: decide whether two given graphs G1, G2 are not isomorphic.

Protocol: Private-coin Graph Nonisomorphism (The protocol is very similar to the “sock”-
protocol.)

V: Pick i ∈ {1, 2} uniformly at random. Randomly permute the vertices of Gi to get a new graph H.
Send H to P .

P: Identify which of G1, G2 was used to produce H. Let Gj be that graph. Send j to V .

V: Accept if i = j; reject otherwise.

2

As in the “sock”-protocol, it is easy to see that if the graphs are not isomorphic then the verifier
always accepts. However, if they are isomorphic, the verifier accepts with probability ≤ 1/2 (repeating
the protocol decreases this probability further).

Remark One can see that in the above protocol the prover reveals no information except that the
graphs are nonisomorphic. This is called a zero-knowledge proof because the verifier learns nothing except
the truth of the statement. This has been formalized and studied. It has wide spread applications. For
example, to prove that you hold the password without revealing the password itself.

3 Public Coins and AM

Our proof system for the “socks” problem and graph nonisomorphism seemed to crucially rely on the
verifier’s access to a source of private random coins that are not seen by the prover. Allowing the prover
full access to the verifier’s random string leads to the model of interactive proofs with public coins

Definition 2 (AM) For every k, the complexity class AM[k] is defined as the subset of IP[k] obtained
when we restrict the verifier’s messages to be random bits and not allowing it to use any other random
bits that are not contained in these messages.

• An interactive proof where the verifier has this form is called a public coin proof, sometimes also
known as an Arthur-Merlin proof.

• Note that we are not assuming that the verifier sends any other messages than the random coins.
This is w.l.o.g. as the almighty prover can reconstruct everything by seeing the random coins of
the verifier.

• Also note that the verifier does not get to see all random coins at once but rather they are revealed
to the prover iteratively message by message.

• We denote (slightly inconsistently) by AM the class AM[2]. That is AM is the class of languages
with an interactive proof that consists of the verifier sending a random string, and the prover
responding with a message, where the verifier’s decision is obtained by applying a deterministic
polynomial-time function to the transcript.

3.1 Simulating Private Coins by Public Coins

Clearly, for every k, AM[k] ⊆ IP[k]. More surprisingly:

Theorem 3 (Goldwasser-Sipser’87) For every k : N→ N with k(n) computable in poly(n),

IP[k] ⊆ AM[k + 2].

Instead of proving this theorem in its full generality we prove the also surprising fact:

Theorem 4 GNI ∈ AM[2]

The proof of this theorem demonstrates the power of recasting the problem. Indeed, it seems very
hard to simply adapt the protocol with private coins that we saw previously. Instead, look at graph
nonisomorphism in the following more quantitative way:

3

• Consider the following set of labeled graphs

S = {H : H is isomorphic to G1 or G2}.

Note that it is easy to certify that a graph H is a member of S by providing the permutation
mapping of either G1 or G2 to H.

• An n-vertex graph has at most n! equivalent graphs (all permutations). For simplicity, assume
that both G1 and G2 have each exactly n! equivalent graphs (symmetries can be dealt with ap-
propriately).

• Then, we have

– If G1 is not isomorphic to G2, |S| = 2n! (and |S × S × S × S| = 16(n!)4).

– If G1 is isomorphic to G2, |S| = n! (and |S × S × S × S| = (n!)4).

• Hence, if we let S′ = S×S×S×S, we have reduced the problem of the prover to that of convincing
the verifier that |S′| ≥ 16(n!)4 holds instead of |S′| ≤ (n!)4.

• This is done by a set lower bound protocol that we now describe.

Set Lower Bound Protocol (Simplified version of Goldwasser-Sipser protocol):

Conditions: S is a set such that membership in S can be certified. Both partities know a number K. The
prover’s goal is to convince the verifier that |S| ≥ K and the verifier should reject with good
probability if |S| ≤ K/16.

V: Randomly pick a hash function h : S → {1, 2, . . . ,K/4} (that sends each element in S to a random
element in {1, . . . ,K/4}. Pick y ∈ {1, . . . ,K/4} uniformly at random. Send h, y (or equivalently
the randomly used bits) to the prover.

P: Try to find an x ∈ S such that h(x) = y. Send such an x to V together with a certificate that
x ∈ S.

V’s output: If h(x) = y and the certificate validates that x ∈ S then accept; otherwise reject.

Remark The hash function as written now would take too many random bits to encode, namely
|S| log(K/4). However, one can prove that a family of pairwise independent hash function suffices
(not too hard, see textbook). Such a function can then be sent using O(log |S|) random bits which is
polynomial.

Let us now analyze the protocol. Clearly, the prover (being all powerful) can make the verifier accept
iff h, y happen to be such that x ∈ S exists satisfying h(x) = y.

Claim 5 The protocol has completeness at least 2/3, i.e., if |S| ≥ K then the verifier outputs 1 with
probability at least 2/3.

Proof

• Let y be the randomly chosen element in {1, . . . ,K/4}.

• The probability that h hashes an element x from S to y is

1− Pr[h(x) 6= y for all x ∈ S] = 1−
(

1− 4

K

)K

≥ 2/3.

(For the equality we used that the hash function sends each element in S to a random element in
{1, . . . ,K/4} independently and uniformly at random.)

4

Claim 6 The protocol has soundness at most 1/3, i.e., if |S| ≤ K/16, then the verifier outputs 1 with
probability at most 1/3.

Proof

• Let y be the randomly chosen element in {1, . . . ,K/4}.

• The elements in S are at most hashed to K/16 elements in {1, . . . ,K/4}, i.e., a 1/4 fraction of the
elements.

• Since the hashing is uniform, the probability that there exists x ∈ S such that h(x) = y is at most
1/4.

This finishes the analysis of the set lower bound protocol and thereby also of the fact thatGNI ∈ AM.

Some remarks:

• Theorem 3 is a bit harder but similar: in that case the idea is to make the set S contain all the
(private) random strings that makes the private-coin verifier accept.

• Our protocol for set lower bound does not have perfect completeness. However, this can be achieved
and thus implying a perfectly complete public-coins proof for GNI.

• Moreover, (as almost always) the soundness can be made exponentially small in the size of the
input.

4 Evidence that Graph Isomorphism is not NP-complete

Recall our result on GNI: (after slight modifications to obtain perfect completeness and error reduction),
there exists a probabilistic public-coin verifier V that asks a single question to the verifier P such that

〈G1, G2〉 ∈ GNI⇒ ∃P : Pr[V accepts] = 1

〈G1, G2〉 6∈ GNI⇒ ∀P : Pr[V accepts] <
1

2n+1

Based on this results, we can show the following (proved by Boppana, H̊astad, Zachos’87):

Theorem 7 If GI is NP-complete, then Σp
2 = Πp

2 (in other words, the polynomial hierarchy collapses
to its second level).

Proof

• It is sufficient to show that the assumption implies Σp
2 ⊆ Πp

2 as Σp
2 is the complement of Πp

2. Hence,
it implies that Σp

2 = Πp
2.

• If GI is NP-complete, then GNI is coNP-complete.

• This implies that there is a function (reduction) f such that for every n variable formula ϕ

∀y ∈ {0, 1}nϕ(y) holds ⇔ f(ϕ) ∈ GNI.

5

• Consider an arbitrary Σp
2SAT formula ψ = ∃x ∈ {0, 1}n∀y ∈ {0, 1}n : ϕ(x, y).

• The formula ψ is equivalent to ∃x ∈ {0, 1}ng(x) ∈ GNI, where g(x) := f(ϕ(x, ·)), i.e., the formula
obtained from ϕ by fixing x.

• Now using our results about Arthur-Merlin proofs for GNI we have that GNI has a two round
AM proof with perfect completeness and soundness error less than 2−(n+1).

• Let V be the polytime verifier for this proof system and denote by m the length of the verifier’s
random tape and by m′ the length of the prover’s message.

• We claim that ψ is true if and only if

∀r ∈ {0, 1}m∃x ∈ {0, 1}n∃a ∈ {0, 1}m
′

: V (g(x), r, a) = 1. (1)

• Indeed, if ψ is true, then perfect completeness clearly implies the above.

• On the other hand, if ψ is false, this means that

∀x ∈ {0, 1}ng(x) 6∈ GNI.

• Now, using the fact that the soundness error of the interactive proof is less than 2−(n+1) and
the number of x’s is 2n, we conclude that there exists a string r ∈ {0, 1}m such that for every
x ∈ {0, 1}n, the prover in the AM proof has no response a that will cause the verifier to accept.
In other words, (1) is false in this case as required.

• Since deciding the truth of (1) is in Πp
2, we have shown Σp

2 ⊆ Πp
2.

6

