
Topics in Theoretical Computer Science April 29, 2014

Lecture 10
Lecturer: Ola Svensson Scribes: Romain Edelmann & Florian Tramèr

1 Introduction

In the previous lectures, we have introduced linear programming and shown how to devise and analyse
approximation algorithms for hard problems based on extreme point solutions. In this lecture, we
introduce the important concept of the dual of a linear program. We will see that duality can serve as
a useful tool to make use of the expressive power of linear programs, without actually having to solve
them. We will mostly use duality in order to analyse the performance guarantees of approximation
algorithms.

The approximation algorithms based on linear programs we have considered so far usually started
from an optimal solution to the LP, which thus must first be found, and then proceeded to round this
solution to an integer solution. In this lecture, we will consider more efficient algorithms, using mostly
greedy methods, which can also be shown to achieve good approximation guarantees.

2 Linear Programming Duality

2.1 Intuition

Consider the following simple linear program:

Minimize: 7x1 + 3x2

Subject to: x1 + x2 ≥ 2

3x1 + x2 ≥ 4

x1, x2 ≥ 0

Let OPT denote the optimal solution to this LP. Since this is a minimization problem, to find an
upper bound on OPT, we can simply look for a feasible solution to the LP. For instance, x1 = 1, x2 = 1
is a feasible solution with objective value 10.

In order to find a lower bound on OPT, we consider the constraints of the LP which we know to be
satisfied for a feasible solution. From the first constraint, we get that:

7x1 + 3x2 ≥ x1 + x2 ≥ 2.

Thus, we can conclude that OPT must be at least 2. Similarly, from the second constraint, we find
a bound of OPT ≥ 4. Taking this idea further, we consider linear combinations of the constraints of the
LP. For instance, we have that:

7x1 + 3x2 = (x1 + x2) + 2 · (3x1 + x2) ≥ 2 + 2 · 4 = 10.

By considering such linear combinations of the constraints, we can construct the dual linear pro-
gram corresponding to the original primal program. For each constraint of the primal program, we
associate a dual variable yi, representing the weight associated to the constraint in the linear combina-
tion. Since we are interested in lower bounding the primal OPT, these variables yi must be constrained
such that the linear combination of primal constraints doesn’t exceed the primal objective function.
Furthermore, we will seek to maximize the objective value of our linear combination to get as good a

1

lower bound on OPT as possible. From all this, we get the following dual linear program:

Maximize: 2y1 + 4y2

Subject to: y1 + 3y2 ≤ 7

y1 + y2 ≥ 3

y1, y2 ≥ 0

In this case, the optimal solution to the primal and dual LPs coincide. We will later on encounter
the strong duality theorem, which states that whenever both the primal and dual LPs are feasible, their
optimums coincide.

2.2 General Case

In this section we will show how to derive the dual program of a general linear minimization problem.
The analogue for maximization problems follows directly. Consider the following general primal LP with
n variables xi for i ∈ [1, n] and m constraints:

Minimize:
n∑
i=1

cixi

Subject to:
n∑
i=1

Ajixi ≥ bj ∀j = 1, . . . ,m

x ≥ 0

Then, the dual program has m variables yj for j ∈ [1,m] and n constraints:

Maximize:
m∑
j=1

bjyj

Subject to:
m∑
j=1

Ajiyj ≤ ci ∀i = 1, . . . , n

y ≥ 0

One can verify that if we take the dual of the dual problem, we get back to the primal problem,
as we should expect. We note that finding the dual of a linear program is essentially a mathematical
technicality, which could easily be automated for large LP instances.

2.3 Duality Theorems

We now present two of the main results on dual linear programs, known as the weak and strong duality
theorems. Again, we will only be concerned with primal minimization problems.

Theorem 1 (Weak Duality) If x is primal-feasible (meaning that x is a feasible solution to the primal
problem) and y is dual-feasible, then

n∑
i=1

cixi ≥
m∑
j=1

bjyj .

2

Proof By simple arithmetic, using the fact that both x and y are feasible solutions and thus that all
constraints are satisfied, we get:

m∑
j=1

bjyj ≤
m∑
j=1

n∑
i=1

Ajixiyj =

n∑
i=1

 m∑
j=1

Ajiyj

xi ≤
n∑
i=1

cixi.

This theorem is the main result we will use with respect to analysing approximation algorithms.
What the theorem tells us is that any dual-feasible solution is a lower bound to any primal-feasible
solution. In particular, any dual-feasible solution is a lower bound to the optimal primal solution, which
is itself a lower bound to the optimal primal integral solution.

Thus, instead of analysing the approximation ratio of a primal integral solution by bounding it in
terms of the optimal primal solution, we may also bound it in terms of any dual solution, which might
be much simpler. The following figure illustrates how solutions to the primal and dual problems are
distributed.

Dual Solutions

Primal OPT

Dual OPT

Primal Solutions

Primal Integral OPT

Note that we anticipated the statement of the strong duality theorem, by having the optimal primal
and optimal dual solutions coincide.

Theorem 2 (Strong Duality) If x is an optimal primal solution and y is an optimal dual solution,
then

n∑
i=1

cixi =

m∑
j=1

bjyj .

Furthermore, if the primal is unbounded (respectively infeasible), then the dual is infeasible (respectively
unbounded).

For a proof of the theorem, we suggest the classic text on linear programming by Vanderbei [4].

2.4 Applications to Set Cover

Recall the Set Cover problem. Given a universe U = {e1, . . . , em}, a family T of subsets of U and a cost
function C : T → R, we want to find a subfamily of T of sets whose union is U and whose combined
weight is minimized. We also recall the corresponding primal LP:

Minimize:
∑
S∈T

C(S) · xS

Subject to:
∑
S∈T :
e∈S

xS ≥ 1 ∀e ∈ U

xS ≥ 0 ∀S ∈ T (1)

3

To derive the dual LP, we introduce a variable ye for every element e ∈ U . We get:

Maximize:
∑
e∈U

ye

Subject to:
∑
e∈S

ye ≤ C(S) ∀S ∈ T

ye ≥ 0 ∀e ∈ U (2)

2.4.1 Set Cover via Dual Fitting

We will analyse the following greedy algorithm, making use of the popular idiom ‘the most bang for the
buck’.

Algorithm 1
C ← ∅
while C 6= U do

- Pick the set S ∈ T which minimizes
C(S)

|S ∩ (U \ C)|
- Add S to C

end while

Consider the algorithm step where set S gets added to C. For each newly added element e ∈ S ∩ (U \ C),
we define:

price(e) =
C(S)

|S ∩ (U \ C)|
.

This can be seen as having the cost of the set S distributed evenly over all newly added elements
from S. From this, the cost of the solution returned by the algorithm is simply∑

e∈U
price(e).

Suppose that setting ye = price(e) would yield a feasible solution to the dual LP. This would imply,
by the weak duality theorem, that the cost of our returned solution is upper bounded by the optimal
primal solution and must thus be optimal. This would imply that we have solved Set Cover exactly,
which is only possible if P = NP. We will thus scale down our dual solution a little in order for it to
become feasible. This technique is called ‘dual fitting’.

Definition 3 Let Hn =

n∑
i=1

1

i
denote the nth harmonic number.

Theorem 4 Let y be defined by ye =
price(e)
Hn

, ∀e ∈ U . Then y is a feasible dual solution. This implies

that our greedy algorithm is a Hn approximation algorithm for Set Cover.

Proof To show that y is a feasible dual solution, we will show that it satisfies all the constraints of
the dual LP (2). Trivially, all the constraints of the form ye ≥ 0 are satisfied. We thus only need to
verify the constraints of the form ∑

e∈S
ye ≤ C(S), S ∈ T .

Fix some arbitrary S ∈ T and let S = {ek, ek−1, . . . , e1}. We need to show that:

∑
e∈S

ye =

k∑
i=1

price(ei)
Hn

≤ C(S).

4

Let the elements of S be sorted in the order in which they were covered by the greedy algorithm (ek
is the first element from S which was covered and e1 was the last).

Claim 5 price(ei) ≤ C(S)
i , ∀ei ∈ S.

Proof When ek was covered by the algorithm, no elements from S were yet covered. If set S was
picked at that point, we would have:

price(ek) =
C(S)

|S ∩ (U \ C)|
=
C(S)

|S|
=
C(S)

k
.

Since our algorithm picks the set which minimizes the ratio C(S)
|S∩(U\C)| , the price associated to element

ek is upper bounded by C(S)
k .

Now consider the step of the algorithm where element ei was covered. Since we could have multiple
elements of S covered in the same step, let ej be the first element of S covered in this step (obviously
we have j ≥ i). If set S was picked by the algorithm, we would assign

price(ei) =
C(S)

|S ∩ (U \ C)|
=
C(S)

j
≥ C(S)

i
.

Again, since the algorithm picks the set with minimal ratio, we can upper bound the price assigned to
element ei by C(S)

i .

From this claim, the proof of the theorem follows directly since

∑
e∈S

ye =

k∑
i=1

price(ei)
Hn

≤ C(S)

Hn

k∑
i=1

1

i
= C(S)

Hk

Hn
≤ C(S). (3)

Thus, we know that our algorithm outputs a solution to the primal problem, a fraction at most Hn

larger than some feasible dual solution. Using the weak duality theorem, we know that our solution is
also at most Hn larger than the optimal primal solution. This implies the Hn-approximation ratio for
our greedy algorithm.

2.4.2 Set Cover via Primal-Dual

We will now present and analyse a different type of algorithm for Set Cover, based on the ‘primal-dual’
approach.

• We start with an infeasible primal solution x (usually x = 0) and a feasible dual solution y (also
usually y = 0).

• We maintain y to be a feasible solution throughout the execution of the algorithm

• In each step, we attempt to increment y, so as to ‘pay’ for a change in x.

• When the algorithm terminates, we want a feasible integral solution x, hopefully not much more
expensive than the dual solution y.

5

For Set Cover, our algorithm is as follows:

Algorithm 2
C ← ∅ (sets used)
V ← ∅ (covered elements)

while V 6= U do
- Pick any uncovered e ∈ U \ V.
- Increment ye until some dual constraint becomes tight, formally

∑
e∈S

ye = C(S) for some S /∈ C.

- Set xS = 1 for all sets S whose corresponding dual constraint is tight and add these sets to C.
- Set V =

⋃
S∈C

S

end while

Definition 6 Let f be defined as the maximum number of sets S ∈ T , an element is contained in.
Formally,

f = max
e∈U

|{S ∈ T : e ∈ S}|

Theorem 7 The solution returned by Algorithm 2 has cost at most f ·OPT, where OPT is the value of
the optimal solution to the primal Set Cover LP (1).

Proof Let C be the family of sets returned by Algorithm 2. As any S ∈ C has a tight corresponding
dual constraint, we have that:

COST =
∑
S∈C

C(S) =
∑
S∈C

(∑
e∈S

ye

)
≤
∑
S∈T

(∑
e∈S

ye

)
=
∑
e∈U

ye

(∑
S: e∈S

1

)
≤ f ·

∑
e∈U

ye ≤ f ·OPT, (4)

where the last inequality follows from the weak duality theorem.

3 Exercises

Exercise 1 Design and analyse an algorithm for Set-Cover with an approximation guarantee of Hk,
where k is the largest cardinality of a set S ∈ T .

Solution 1 From the proof of Theorem 4, we can see that if we define y by ye =
price(e)
Hk

, y is a feasible
solution to the dual problem. Indeed, for an arbitrary set S, we can rewrite equation (3) as

∑
e∈S

ye =

|S|∑
i=1

price(ei)
Hk

≤ C(S)

Hk

|S|∑
i=1

1

i
≤ C(S)

Hk

k∑
i=1

1

i
= C(S)

Hk

Hk
= C(S).

Thus, Algorithm 1 is actually a Hk-approximation algorithm for Set Cover.

6

Exercise 2 Prove that if

{
x is OPT primal
y is OPT dual

, then

ci =

m∑
j=1

Ajiyj or xi = 0, ∀i = 1, . . . , n (a)

bj =

n∑
i=1

Ajixi or yj = 0, ∀j = 1, . . . ,m (b)

This fact, known as complementary slackness states that if a variable is ‘used’ by an optimal
solution, the corresponding dual constraint is necessarily tight.

Furthermore, conditions (a) and (b) are necessary and sufficient conditions for x and y to be optimal
solutions to the primal and dual LPs.
(Hint: Use the proof of the weak duality theorem, along with the result of the strong duality theorem.)

Solution 2 Let x be the optimal primal solution. From the weak duality theorem proof, we have that:

m∑
j=1

bjyj ≤
n∑
i=1

 m∑
j=1

Ajiyj

xi.

Now, suppose that condition (a) doesn’t hold for some xi. Without loss of generality, we will assume
that:

x1 6= 0 and c1 >

m∑
j=1

Aj1yj .

Then, we get that:

m∑
j=1

bjyj ≤

 m∑
j=1

Aj1yj

x1 +

n∑
i=2

 m∑
j=1

Ajiyj

xi < c1x1 +

n∑
i=2

cixi <

n∑
i=1

cixi.

This result contradicts the statement of the strong duality theorem, implying a contradiction in our
assumption that condition (a) doesn’t hold for some xi.

The proof of the analogue result that condition (b) holds for an optimal dual solution y is exactly
the same, and not displayed here.

Exercise 3 Suppose you have an optimal primal solution x to the Set-Cover LP (1). Consider an
algorithm for Set-Cover, which picks all sets S with xS > 0. Show that this is a f -approximation
algorithm.

Solution 3 Since x is primal optimal, from exercise 2 we know that all non zero variables xS have
an associated tight dual constraint (complementary slackness). Furthermore, we have seen through the
analysis of Algorithm 2, that taking all sets S with an associated tight dual constraint leads to an f -
approximation.

Formally, let C be the family of sets returned by the algorithm, C = {S ∈ T : xS > 0}. By comple-
mentary slackness, we have that: ∑

e∈S
ye = C(S), ∀S ∈ C.

7

Then, as developed in equation (4), this implies that

COST =
∑
S∈C

C(S) =
∑
S∈C

(∑
e∈S

ye

)
≤ f ·OPT,

which concludes the proof.

4 The Metric Uncapacitated Facility Location Problem

4.1 Problem Definition

In this problem we are given a set D of clients1 and a set F of possible facilities. Each facility i ∈ F has
an opening cost fi. Also, connecting a client j ∈ D to a facility i ∈ F incurs a cost cij . The goal is to
find a subset of facilities I ⊆ F that minimizes the overall cost of openings and the costs of connecting
every client to the cheapest facility.

As an additional condition, we have that cij forms a metric, meaning that for any i, i′ ∈ F and
j, j′ ∈ D, the following holds:

cij ≤ cij′ + ci′j′ + ci′j

State of the Art It is proven to be NP-hard to approximate this problem to a factor 1.463 [1]. The
best known polynomial time algorithms can approximate this problem to a factor 1.488 [3].

4.2 Linear Programming Formulations

Primal Let the variable xij denote that a client j ∈ D is connected to a facility i ∈ F , and let yi
indicate whether facility i ∈ F is open or not. Then, the primal linear programming formulation of the
problem is as follows:

Minimize:
∑
i∈F

fi · yi +
∑

i∈F,j∈D
cij · xij

Subject to:
∑
i∈F

xij ≥ 1 ∀j ∈ D

yi − xij ≥ 0 ∀i ∈ F, j ∈ D
xij , yi ∈ [0, 1] ∀i ∈ F, j ∈ D (5)

The constraints are respectively there to ensure that:

1. Every client j ∈ D is connected to at least one facility i ∈ F .

2. If a client is connected to some facility, then the facility is open.

3. Clients can either be connected or not to facilities, and facilities can either be open or closed.

Dual As always, the dual can be obtained mechanically from the primal linear program. Let αj be a
variable for each j ∈ D and let βij be a variable for each pair of i ∈ F, j ∈ D. Then, the dual of the
previous linear program is defined as follows:

1D stands for ”demand”.

8

Maximize:
∑
j∈D

αj

Subject to:
∑
j∈D

βij ≤ fi ∀i ∈ F

αj − βij ≤ cij ∀i ∈ F, j ∈ D
αj , βij ≥ 0 ∀i ∈ F, j ∈ D (6)

4.3 Primal-Dual Algorithm

In this section, we will give a primal-dual algorithm that we will show to be a 3-approximation algorithm.
The algorithm was first described in [2]. It runs in two phases.

Phase One In the first phase, we start with αj = 0 and βij = 0 for all i ∈ F, j ∈ D, which is a dual
feasible solution. We then start increasing αj at the same rate for every unassigned client j and react
depending on the following events:

• A constraint αj ≤ cij + βij becomes tight and i is not temporarily opened :

– We add βij to the set of variables being increased.

• A constraint αj ≤ cij + βij becomes tight and i is temporarily opened :

– We remove αj from the set of variables being increased and declare i the connecting witness
of j.

• A constraint
∑
j∈D βij ≤ fi becomes tight:

– i is added to the set of temporarily opened facilities.

– Each client j with a tight edge to i is assigned to it. i is called a connecting witness of all
such j’s.

– The associated α’s and β’s are removed from the set of variables being increased.

When the set of variables to be increased is empty, then Phase one is done.
Note that at the end of this phase, we might have opened too many facilities. For example, take the

instance where any number of clients are connected to any number of facilities. Moreover, assume the
connection costs and opening costs are all the same. In this case, it is easy to see that all facilities will
be returned as a result of the first phase, but a single one would have sufficed. Therefore the result of
this phase might have arbitrarily greater cost than the optimal. The second phase is there to solve this
problem.

Phase Two In the second phase of the algorithm, we decide which of the temporarily opened facilities,
denoted by Ft, will indeed be opened. To do so, we construct a graph G = (V,E). The vertex set V
of G is the set of temporarily opened facilities i ∈ F returned from the first phase. We have an edge
(i, i′) ∈ E if there exists a client j ∈ D such that βij , βi′j > 0. We call an edge (i, j) such that βij > 0 a
special edge. Intuitively, the graph is a conflict graph, each edge indicating that at least one client has
contributed to the cost of opening the two given facilities.

To solve the conflict, we construct a maximal independent set, meaning that we greedily include
independent vertices until it is no longer possible. Note that it is not the same as constructing a
maximum independent set. This set of vertices indicates which of the facilities will definitively be
opened. We will denote this set by I.

9

Now that facilities have been opened, we must assign each client to an open facility. Lets denote by
φ(j) the open facility assigned to a client j ∈ D and let Fj be defined for all j ∈ D as

Fj = {i ∈ Ft : βij > 0}

For each client j ∈ D, three cases may arise:

1. I ∩ Fj 6= ∅ : In this case, as I is an independent set, we are bound to have that I ∩ Fj = {i} for
some i. We proceed to assign client j to facility i, noted as φ(j) = i. We say that the client is
directly connected. Note that βij > 0.

2. I ∩ Fj = ∅ and the connecting witness of j, say i′, is member of I. We set φ(j) = i′ and call this
client directly connected as well. Note that βi′j = 0 and αj = ci′j .

3. I ∩ Fj = ∅ and the connecting witness of j, again say i′, is not member of I. Let i ∈ I be a
neighbour of i′ in G. This i must exists since otherwise I wouldn’t be maximal. We set φ(j) = i
and call the client indirectly connected. Note that βij = 0 in this case.

4.4 Analysis of the Algorithm

First, we show how the dual solutions αj accounts for both the cost of opening facilities and connecting
clients to facilities. To show this, lets denote by αfj the contribution of j to opening costs and αcj the
contribution of j to connection costs:

αj = αfj + αcj .

If a client j is directly connected to i = φ(j), we have that αj = βij + cij . We set αfj = βij and αcj = cij .

In the case when the client j is indirectly connected, we set αfj = 0 and αcj = αj .

Lemma 8 Let Di be the set of clients connected to i ∈ I:

Di = {j ∈ D : φ(j) = i}

For each i ∈ I, the following holds: ∑
j∈Di

afj = fi

This means that the opening cost of i is accounted for by the αfj of every connected client.

Proof As we had that i was temporarily open at the end of the first phase, it must be the case that:∑
j:βij>0

βij = fi

By definition, every client j that contributes to this sum must be directly connected to i, since if it
was indirectly connected βij would be null.

Remember that for directly connected clients, we have that αfj = βij . In the case of directly connected

clients that have βij = 0, which don’t contribute to this sum, we have that αfj = βij = 0.

For indirectly connected clients, we have by definition αfj = 0.

Note that, for a client j directly connected to i ∈ I, we have that αcj = cij , meaning that connection
cost of each client is accounted for by its αcj . We are now left to analyse the connection cost of indirectly
connected clients. The following lemma address this point.

Lemma 9 For a client j indirectly connected to i ∈ I, we have that cij ≤ 3 · αcj, meaning that the
connection cost of each of those clients is bounded by three times its αcj.

10

Proof Let i′ 6= i be the connecting witness of client j. As j is indirectly connected to i, it must be
the case that (i, i′) is an edge in the graph G built during the second phase of the algorithm. Since i, i′

are neighbours in G, it must be the case that a client j′ exists such that βij′ , βi′j′ > 0, by definition of
G. The following diagram illustrates the situation.

j

i′

j′

i
special

tight

For analysis purposes, lets consider that during the first phase of the algorithms a time variable, called
t, is also increased along with all other variables. Let t1 and t2 be the values of t respectively when i and
i′ where declared temporarily opened. As the edge (i, j′) is tight, we have that αj = ci′j + βi′j ≥ ci′j .
Since (i, j′) and (i′, j′) are special edges (meaning that βij′ , βi′j′ > 0), we have that:

αj′ ≥ cij′ and αj′ ≥ ci′j′

By construction, those two edges became special at a time before i or i′ were temporarily opened. Note
also that after the opening of i or i′, αj′ would have stopped increasing.

αj′ ≤ min(t1, t2)

A final observation we make is that, as i′ is the connecting witness of j, we have that:

αj ≥ t2

From all those observations, we can derive that:

αj ≥ ci′j

αj ≥ t2 ≥ min(t1, t2) ≥ αj′ ≥ cij′ , ci′j′

Using the previous result and the fact that c is a metric, we get that:

cij ≤ ci′j + ci′j′ + cij′ ≤ 3 · αj

As we set αj = αcj for indirectly connected clients, we get that:

cij ≤ 3 · αj = 3 · αcj

Which concludes the proof.

11

Theorem 10 The proposed algorithm is a 3-approximation algorithm for the metric uncapacitated fa-
cility location problem.

Proof Remember that the cost of a solution is given by:

PrimalCost =
∑
j∈D

cφ(j),j +
∑
i∈I

fi

The cost of the dual solution is given by:

DualCost =
∑
j∈D

αj =
∑
j∈D

αcj +
∑
j∈D

αfj

Using the weak duality theorem, we have that DualCost ≤ OPT where OPT is the primal optimal. We
will proceed to show that PrimalCost ≤ 3 ·DualCost ≤ 3 ·OPT .

Using the previous lemmas, we can get that:

PrimalCost =
∑
j∈D

cφ(j),j +
∑
i∈I

fi ≤ 3
∑
j∈D

acj +
∑
j∈D

afj ≤ 3
∑
j∈D

aj = 3 ·DualCost ≤ 3 ·OPT

This concludes the proof of the 3-approximation.

References

[1] S. Guha and S. Khuller. Greedy strikes back: Improved facility location algorithms. In Proceed-
ings of the ninth annual ACM-SIAM symposium on Discrete algorithms, pages 649–657. Society for
Industrial and Applied Mathematics, 1998.

[2] K. Jain and V. V. Vazirani. Primal-dual approximation algorithms for metric facility location and
k-median problems. In Foundations of Computer Science, 1999. 40th Annual Symposium on, pages
2–13. IEEE, 1999.

[3] S. Li. A 1.488 approximation algorithm for the uncapacitated facility location problem. In Proceedings
of the 38th International Conference on Automata, Languages and Programming - Volume Part II,
ICALP’11, pages 77–88, Berlin, Heidelberg, 2011. Springer-Verlag.

[4] R. J. Vanderbei. Linear programming: Foundations and extensions, 1996.

12

