
Topics in Theoretical Computer Science April 16, 2013

Lecture 14
Lecturer: Ola Svensson Scribes: Cijo Jose and James Newling

Copied from the lecture notes of the ”Approximation Algorithms and Hardness of Approximation”
course (2013):

1. Sections 1-3: ”Introduction to SDP” scribed by Marwa El Halabi.

2. Section 4: ”SDP (Graph Coloring)” scribed by Marwa El Halabi and Slobodan Mitrovic.

1 Semidefinite Programming and Graph Partitioning
Thus far we have seen how linear programs can aid in devising approximation algorithms for NP-hard
optimization problems. In this lecture we introduce a more general class of relaxations which allows
variables to be vectors instead of scalars. In particular we introduce a relaxation for problems that can
be formulated as strict quadratic programs.

Definition 1 (Quadratic program) A quadratic program (QP) is an optimization problem whose ob-
jective function is quadratic, subject to quadratic constraints. If in addition all monomials are of degree
0 or 2, then it is a strict quadratic program.

Example 1.1 Quadratic program

max
∑
i∈V

x2
i + 5

∑
i∈V

xi (1)

s.t xi = x2
i , xi ∈ 0, 1 ∀i ∈ V.

Example 1.2 Strict quadratic program

max
∑

(i,j)∈E

xixj (2)

s.t x2
i = 1 ∀i ∈ V.

1.1 Maximum Cut
Given an undirected graph G = (V,E), the goal of the maximum cut problem is to find a partition of
the vertices, (S, S̄), that maximizes the number of edges crossing the cut, i.e. edges with one endpoint
in S and the other endpoint in S̄. We denote the number of edges crossing the maximum cut by
OPTMax-Cut. The max cut problem is know to be NP-Hard, so our goal is to find a good polynomial
time approximation algorithm for it. Note that |E| is an upper bound on OPTMax-Cut. Thus, we can
achieve a 1

2 -approximation for max cut simply by placing each vertex in S or S̄ with probability 1/2.
The max cut problem can be formulated as a quadratic program:

max
∑

(i,j)∈E

xi(1− xj) + xj(1− xi) (3)

s.t xi ∈ {0, 1} ∀i ∈ V.

where each variable xi is set to one if vertex i is in set S, and to zero if in set S̄. Note that an edge with
both ends in the same set will not contribute to the objective function.

1

If we relax the integer constraint in this QP, we have the following formulation:

max
∑

(i,j)∈E

xi(1− xj) + xj(1− xi) (4)

s.t xi ∈ [0, 1] ∀i ∈ V.

If we can solve this relaxed version optimally, we will still be able to find a max cut. Consider the
solution for the relaxed QP, OPTrel. For any vertex h ∈ V , with fractional value assigned to xh, we can
rewrite the objective function (3) as follows. Let δ(h) denote all the vertices adjacent to vertex h.

∑
i,j∈E\δ(h)

xi(1− xj) + xj(1− xi) + xh

A︷ ︸︸ ︷∑
j∈δ(h)

(1− xj) +(1− xh)

B︷ ︸︸ ︷∑
j∈δ(h)

xj .

Then if A ≥ B, we round xh to one, otherwise we round it to zero. Let’s denote by OPTrd the solution
we get after rounding OPTrel. Note that OPTrel ≤ OPTrd, so by solving the relaxed QP for max cut
and rounding the solution, we obtain an integral solution that is at least as good as OPTrel, which is at
least as good as the true optimal value OPTmax-cut. We can deduce from this that solving this particular
relaxed version is also NP-hard, since it boils down to solving exactly the NP-hard max cut problem
in polynomial time. So relaxing the integrality constraint does not help here. Instead, we’ll relax the
max cut problem to a semidefinite program.

Definition 2 (Semidefinite program (SDP)) A semidefinite program is a convex optmization prob-
lem concerned with the optmization of a linear objective function over the intersection of cone of positive
semdefinite matrices with an affine space. A cone is defined as a subset of vector space that is closed
under multiplication by positive scalars . In other words the subset C of a vector space V is a cone if
and only if λx belongs to C for any x in C and any positive scalar λ. If C is positive semidefinite then
the cone is called as positive semidefinite cone.

We recall the definition of positive semidefinite matrix:
Definition 3 A symmetric matrix X ∈ Rn×n is positive semidefinite (X � 0) iff for all y ∈ Rn,
yTXy ≥ 0.

Theorem 4 X ∈ Rn×n is a symmetric matrix, then the following are equivalent:

1. X is positive semidefinite.
2. All eigenvalues of X are non negative.
3. ∃V ∈ Rm×n, m ≤ n, s.t X = V TV .

Note that we can compute the eigendecomposition of a symmetric matrix X = QΛQT in polynomial
time, thus we can test for positive definiteness in polynomial time. However, the decomposition V TV
is not polynomial time computable, since taking the square root of the diagonal matrix Λ can lead to
irrational values. We can get an arbitrarily good approximation of this decomposition, so we can assume
we have the exact decomposition in polynomial time, given that this inaccuracy can be included in the
approximation factor.

By replacing the variable xij in a SDP by the inner product of the two vectors vi and vj in the
decomposition X = V TV corresponding to entry xij , we obtain an equivalent vector program:

max
∑
i,j

cijxij

s.t
∑
i,j

aijkxij = bk

xij = xji

X � 0

⇐⇒

max
∑
i,j

cij(vi · vj)

s.t
∑
i,j

aijk(vi · vj) = bk

vi ∈ Rn

2

The max cut problem admits a strict quadratic program formulation, which can be relaxed to a vector
program:

max
∑

(i,j)∈E

1− vi · vj
2

s.t vi ∈ {−1, 1}
=⇒

max
∑

(i,j)∈E

1− vi · vj
2

s.t vi · vi = 1
vi ∈ Rn

1.2 Random Hyperplane Rounding
Given a solution {vu| ∀u ∈ V } to the vector program of max cut with value OPTv, we round our solution
as follows:

• Pick a vector r uniformly at random from a unit hyper sphere.

• For all u ∈ V :
{
r · vu ≥ 0 ⇒ u→ S

r · vu < 0 ⇒ u→ S̄
.

This rounding procedure is called random hyperplane rounding.

Theorem 5 There exist a polynomial time algorithm that achieves a 0.878-approximation of the maxi-
mum cut with high probability.

To prove Theorem 5,we will start with the following lemmas.

Lemma 6 Let x1, ..., xn be random variables picked independently from a N (0, 1). Let d =
√
x2

1 + x2
2...+ x2

n

then r = (x1/d, ..., xn/d) is a random vector distributed uniformly on the n dimensional unit hypersphere.

Proof The distribution of random variables x1, ..., xn that we have picked from N (0, 1) has the
following probablility density function (PDF)

P (x1, ..., xn) =
n∏
i=1

1√
2π
e
−xi

2
2 (5)

= 1
2π n2

e
−
∑n

i=1
xi

2

2 (6)

It is clear that the PDF only depends on the length of the vector not on the direction, which implies that
if we sample a vector from the above distribution then it has equal probability of being in any direction
and normalizing the vector by its length will yield a uniformly distributed vector on the n-dimensional
unit hypersphere.

Lemma 7 The projections of r on to unit vectors e1 and e2 are independent iff e1 and e2 are orthogonal.

Proof Let’s denote r1 and r2 the projections of r onto e1 and e2, respectively. The projections of a
Gaussian random vector are also Gaussian random vectors, so it’s sufficient to have E[r1r2] = 0 for r1
and r2 to be independent. Since E[r1r2] = E[(eT1 r)(rT e2)] = eT1 E[rrT]e2 = eT1 e2, lemma follows directly.

Corollary 8 Let r′ be the projection of r onto a 2-dimensional plane, then r′

‖r′‖ is uniformly distributed
on a unit circle in the plane.

3

Lemma 9 The probability that edge (i, j) is cut is arccos(vi·vj)
π = θij

π , where θij is the angle between
vectors vi and vj.

Proof Project vector r onto the plane containing vi and vj . It is easy to see that edge (i, j) is cut iff r
falls within the area formed by the vectors perpendicular to vi and vj , which has area equal to 2θij/(2π).

Lemma 10 For x ∈ [−1, 1], one can show that: arccos(x)
π ≥ 0.878

(1−x
2
)
.

Let W be a random variable denoting the weight of the cut we obtain from solving the vector program
for max cut and then applying the random hyperplane rounding. Then:

E[W] = E

 ∑
(i,j)∈E

Pr [edge (i, j) is cut]

=

∑
(i,j)∈E

θij
π

(by lemma 9)

=
∑

(i,j)∈E

arccos(vi · vj)
π

≥ 0.878 1− (vi · vj)
2 (by lemma 10)

= 0.878 OPTv
≥ 0.878 OPTmax-cut

Given this expected value, one can show the existence of an algorithm that achieves a 0.878-
approximation of the maximum cut in polynomial time, with high probability. This concludes the
proof of Theorem 5.

Finally, we give an example to show that this approximation factor is almost tight. Consider a 5-cycle
graph. OPTmax-cut = 4, while the optimal solution for the SDP is placing the 5 vector in a 2-dimensional
plane with an angle 2π

5 between each two vectors. The approximation factor achieved in this case is
0.884.

1.3 Correlation Clustering
Given an undirected graph G = (V,E), we assign for each edge (i, j) ∈ E the weights W+

ij and W−ij to
denote how similar or different the endpoints of this edge are, respectively. (In our analysis we’ll assume
each edge have only one of these two kind of weights, but the approximation algorithm will still work in
general.) The goal of the correlation clustering problem is to find a partition of the graph into clusters
of similar vertices. In other words, we aim to maximize the following objective function:

max
∑

i,j are in the same cluster
W+
ij +

∑
i,j are in different clusters

W−ij .

We denote the optimal value by OPTcc.

The correlation clustering problem also admits a simple 1
2 -approximation algorithm by picking the

best of the following two procedures:

1. Form one cluster: S = V .

2. Set each vertex to be in its own cluster.

4

Note that if the total sum of W+
ij in the graph is greater than the total sum of W−ij , choice 1 will guar-

antee at least half OPTcc, otherwise choice 2 will.

The correlation clustering problem admits an exact formulation that can be relaxed to a vector
program:

max
∑

(i,j)∈E

(
W+
ij (vi · vj) +W−ij (1− vi · vj)

)
s.t vi ∈ {e1, e2, · · · , en} ∀i ∈ V

=⇒

max
∑

(i,j)∈E

(
W+
ij (vi · vj) +W−ij (1− vi · vj)

)
s.t vi · vi = 1

vi · vj ≥ 0
vi ∈ Rn

where ek denotes the unit vector with the kth entry set to one. In the exact formulation, vi is set to ek
if vertex i belongs to cluster k.

1.4 Rounding Algorithm for Correlation Clustering
Given a solution {vu| ∀u ∈ V } to the vector program of correlation clustering with value OPTv, we
round our solution as follows:
- Pick two random vectors r1 and r2 s.t each entry is drawn from the standard distribution N (0, 1).
- Form 4 clusters as follows:

R1 = {i ∈ V : r1 · vi ≥ 0 and r2 · vi ≥ 0}
R2 = {i ∈ V : r1 · vi ≥ 0 and r2 · vi ≤ 0}
R3 = {i ∈ V : r1 · vi ≤ 0 and r2 · vi ≥ 0}
R4 = {i ∈ V : r1 · vi ≤ 0 and r2 · vi ≤ 0}.

Theorem 11 There exists a polynomial time algorithm that achieves a 3
4 -approximation of the correla-

tion clustering problem with high probability.

Proof We start with a useful lemma:

Lemma 12 For x ∈ [0, 1], one can show that (1− acos(x)
π)2

x ≥ 0.75 and 1−(1− acos(x)
π)2

1−x ≥ 0.75.

Let xij be a random variable that takes the value one if i and j are in the same cluster. Note that the
probability that vi and vj are not separated by either r1 or r2, is (1− arccos(vi·vj)

π)2. Thus,

E[xij] = (1− arccos(vi · vj)
π

)2

Let W be a random variable denoting the weight of the clustering we obtain from solving the vector
program of correlation clustering and then applying the random 2-hyperplane rounding.

E[W] = E[
∑

(i,j)∈E

W+
ij xij +W−ij (1− xij)]

=
∑

(i,j)∈E

W+
ij (1− arccos(vi · vj)

π
)2 +W−ij (1− (1− arccos(vi · vj)

π
)2)

≥ 0.75
∑

(i,j)∈E

W+
ij (vi · vj) +W−ij (1− vi · vj) (by lemma 12)

= 0.75 OPTv
≥ 0.75 OPTcc.

5

Given this expected value, one can show the existence of an algorithm that achieves a 0.75-approximation
for the correlation clustering problem in polynomial time, with high probability.

2 Exercise 1
Show that the QP: max

∑
(i,j)∈E(1 − xi)xj + xi(1 − xj) such that xi ∈ [0, 1]∀i ∈ V solves max cut

exactly. Probabilistically: Consider rounding the solution of the QP x as follows: x∗i = 1 with prob-
ability xi and x∗i = 0 with probability 1 − xi. The expected value of the objective function is then∑
i,j E

(
(1− x∗i)x∗j + x∗i (1− x∗j)

)
=
∑

(i,j)∈E(1 − xi)xj + xi(1 − xj) by independence of the x∗i and x∗j .
Thus the expected value after rounding is the optimal before rounding. But as the optimal rounding
can never be less than the optimal before rounding, the value after rounding must always be the value
before rounding. Thus there is optimal solution which is binary, solving max cut.

3 Exercise 2
Part a: Formulate an SDP relaxation for MAX 2-SAT. Hint: Introduce a fake variable x0 that represents
true. Part b: Give an αGW -approximation algorithm for MAX 2-SAT. Fact: For any 0 ≤ θ ≤ π, we
have (1− θ/π) ≥ αGW

2 (1 + cos(θ))
Solution also to be found on page 263 of Vazirani’s Approximation Algorithms1. We wish to assign

true/false to x1 . . . xn such that as many of the m clauses. We introduce variables yi ∈ {1,−1} for
i = 1 . . . n and an additional dummy variable y0 ∈ {1,−1} to represent true, so that Boolean variable xi
is true iff yi = y0. We will define the value of variable xi as: v(xi) = 1 if xi is true and c(xi) = 0if xi is
false, so

v(xi) = 1 + yiy0

2
v(x̄i) = 1− yiy0

2 .

A clause of the form xi ∨ xj is unsatisfied (false) iff both xi and xj are false, so

v(xi ∨ xj) = 1− v(x̄i)v(x̄j)
= . . .

= 1
4 [(1 + yiy0) + (1 + yjy0) + (1− yiyj)] .

For a clause of the form x̄i ∨ xj , we have

v(x̄i ∨ xj) = 1
4 [(1− yiy0) + (1 + yjy0) + (1 + yiyj)] ,

with similar expressions for the cases xi ∨ x̄j and x̄i ∨ x̄j . Maximising the number of satisfied clauses
this corresponds to choosing y1 . . . yn so as to maximise∑

clauses
(1± yiy0) + (1± yjy0) + (1± yiyj), (7)

where in each term in the sum the signs depend on the form of the clause. Eq. (7) is a special case of
the more general, ∑

i=0...n
j=0...n

aij(1 + yiyj)/2 + bij(1− yiyj)/2.

1www.cc.gatech.edu/fac/Vijay.Vazirani/book.pdf

6

We now relax yi ∈ {−1, 1} to allow yi ∈ Rn+1 with ‖yi‖2 = 1, resulting in a SDP which we solve exactly
in polynomial time. It remains to map the returned vectors y1 . . . yn to Boolean values, for which the
same rounding as in max-cut is used. That is, select r ∈ Sn uniformly at random and choose xi according
to sign(r · yi). Such rounding is roughly motivated by an argument for metric preservation. We show
that this is an αGW -approximation algorithm:

As shown when used for max-cut,

P(vi and vj are separated) = θij
π

≥ αGW
2 (1− cos(θij)) .

Similarly, using the fact provided,

P(vi and vj are not separated) = 1− θij
π

≥ αGW
2 (1 + cos(θij)) .

We use these inequalities in the following calculation,

E(value of returned solution)

=
∑
ij

ai,jP(vi and vj are separated) +
∑
ij

bi,jP(vi and vj are not separated)

=
∑
ij

aij(1−
θij
π

) + bij
θij
π

≥
∑
ij

aij
αGW

2 (1 + cos(θij)) +
∑
ij

bij
αGW

2 (1− cos(θij))

= αGW

∑
ij

aij

(
1 + vi · vj

2

)
+
∑
ij

bij

(
1− vi · vj

2

)
= αGWOPTSDP .

As OPT ≤ OPTSDP , we conclude that E(value of returned solution) ≥ αGWOPT , concluding that we
indeed have an αGW -approximation algorithm.

4 Coloring 3-Colorable Graphs
What follows in these notes was not covered in 2014 and is included for the interested
reader (notes from 2013) In previous lectures, we illustrated how to formulate the max cut problem
as a vector programs (or SDP), by relaxing the variables in the exact formulation from scalars to vec-
tors. We showed that solving the SDP up to an arbitrarily small additive error and then rounding the
vector solution to a feasible solution for the original problem provides a polynomial time approximation
algorithm for this problem. In this lecture, we will continue exploring SDP by studying the problem of
coloring a 3-colorable graph, which is a special instance of the general graph coloring problem.

In the graph coloring problem, we are given an undirected graph G = (V,E). Our goal is to find a
legal coloring (also called proper coloring, or simply coloring) of the graph with the minimum number
of colors. A legal coloring of a graph is a coloring where each vertex is assigned a color such that no
two adjacent vertices have the same color. This problem is known to be NP-hard and even finding an
approximation with a factor better than n1−ε, for any ε > 0 is NP-hard. Instead, we focus our attention

7

on special instances of the graph coloring problem in which we are given a k-colorable graph, and our
goal is to find a legal coloring of this graph with the fewest number of colors. In what follows, we will
assume G is a 3-colorable graph. Note that it is still NP-hard to decide if a graph can be colored with
three colors. It is also NP-hard to find a coloring of a 3-colorable graph with at most five colors. In our
discussion, we will focus on finding a coloring better than n.

4.1 Coloring with O(
√

n) Colors
We denote the maximum degree of a graph by ∆.

Lemma 13 We can efficiently color any graph with ∆ + 1 colors, by greedily coloring the graph.

Given a 3-colorable graph G, we can find a legal coloring using at most O(
√
n) colors.

1. If G has a vertex v with degree d(v) ≥
√
n, we use three new colors to color this vertex and its

neighbors δ(v). Since G is 3-colorable, the neighbors of any vertex v form a bipartite graph (since
none of these vertices can have the same color as vertex v). Thus, we can color the set δ(v) using
two colors. We use a third color to color vertex v. We repeat this step until no vertices with degree
higher than

√
n remain.

2. Once G has ∆ <
√
n, we can apply Lemma ?? to color the rest of the graph using

√
n colors.

Note that Step 1 will be executed at most n√
n

-times, since at each iteration we are coloring at least
√
n vertices. At each of these iterations we are using three new colors. So at the end of this phase, we

will have used at most 3
√
n colors. In the second step, we use only

√
n colors. So in total we will color

the graph with at most 4
√
n colors.

In the following sections, we note that we will often use Õ() notation to hide log factors.

4.2 Õ(n0.631) Colors
To find a coloring of a k-colorable graph, we need to partition the graph into sets such that all edges are
cut. We want to formulate this problem as an SDP, so we represent each vertex by a vector vi ∈ Rn. As
we have seen in the previous lecture, if we are partitioning the vertices randomly, two vertices are more
likely to be separated if their corresponding vectors are away from each other, which corresponds to a
small inner product, so our goal is to minimize the quantity vi · vj for any edge (i, j) ∈ E. We formulate
the following vector program for the graph coloring problem for a k-colorable graph:

min λ

s.t vi · vj ≤ λ ∀(i, j) ∈ E
vi · vi = 1 ∀i ∈ V
vi ∈ Rn

When G is 3-colorable, there exists a feasible solution of the above SDP for λ = − 1
2 . To see this, note

that any legal 3-coloring of G will partition the vertex set into three independent sets (an independent
set is a set where no two vertices are connected by an edge) where each set correspond to a color. Thus
an optimal exact solution for the above SDP would consist of mapping each independent set to one of
the ‘color’ vectors, which are each at an angle of 2π

3 from each other. Thus, any legal coloring of a
3-colorable graph is a feasible solution of the following SDP:

vi · vj ≤ −
1
2 ∀(i, j) ∈ E

vi · vi = 1 ∀i ∈ V
vi ∈ Rn

8

To give a coloring of G, we will solve this SDP and then apply a randomized rounding strategy to
color the vertices. The goal in rounding is to avoid using too many colors and at the same time avoid
introducing monochromatic edges. We will use the following notion of a semicoloring.

Definition 14 (k-Semicoloring) A k-semicoloring of G is a k-coloring of the vertices such that at
most n

4 edges have endpoints of the same color.

Note that any k-semicoloring will directly result in a k-coloring of the rest of the graph after removing
all the monochromatic edges, so we obtain a k-coloring of at least n

2 vertices.

Lemma 15 If we can semicolor a graph G with k colors, then we can color G with k logn colors.

Proof Each round we use k colors and remove at least half the vertices. There are logn rounds, so
we use at most k logn colors.

Now we are ready to present our approximation algorithm:

1. Solve the SDP on G.

2. Set t = 2 + log3 ∆ and pick t random vectors {r1, r2, · · · , rt} where each entry ri is drawn from
the standard normal distribution N (0, 1).

3. These t vectors define 2t different regions based on the sign of the dot products with each of the t
vectors. We color each of these regions with a different color.

Lemma 16 Random hyperplane rounding with t hyperplanes produces a semicoloring using 4 ∆log3 2

colors with probability at least 1/2.

Proof The number of colors we are using is 2t = 4 · 2log3 ∆ = 4∆log3 2. Using the trivial upper bound
of n on ∆, we see that this is at most 4n0.631 colors.

We want to show that our coloring procedure produces a semicoloring on G, so we need to show that
the number of monochromatic edges is at most n

4 with probability at least 1/2.

Pr [edge (i, j) is monochromatic] = (1− arccos(vi · vj)
π

)t

= (1− arccos(−0.5)
π

)t

= (1− 1
π

2π
3)t

= (1
3)t

= 1
9∆ .

Let m = |E|. Then m ≤ n∆
2 . Let X be a random variable denoting the number of monochromatic edges

in our coloring. Then:

E[X] =
∑

(i,j)∈E

Pr [edge (i, j) is monochromatic] ≤ n∆
2 ·

1
9∆ = n

18 .

By Markov’s inequality, we have:

Pr
[
X ≥ n

4

]
≤ E[X]

n/4 ≤ 2
9 .

9

Then Lemma 16 holds with probability at least 7
9 .

Therefore this algorithm results in a O(n0.631 logn) = Õ(n0.631)-approximation which is even worst
than the first simple approximation algorithm, but it provides us with a way to combine the above
algorithm with the combinatorial algorithm to get a Õ(n0.387)-approximation algorithm.

4.3 Õ(n0.387) Colors
Let θ be some parameter that we define later. The following algorithm merges the two approximation
algorithms we presented so far.

1. If G has a vertex v with degree d(v) ≥ θ, we use three new colors to color the vertex v and its
neighbours δ(v). We repeat this step until no vertices with degree at least θ remain.

2. Once G has ∆ < θ, we use the second algorithm to color the rest of the graph with 4 θlog3 2 logn
colors.

Step 1 will use at most 3n
θ colors. Setting n

θ = θlog3 2, we have n = θlog3 6. Then we define θ as
θ = nlog6 3 ≈ n0.6131. In total, this approximation algorithm uses Õ(nθ) = Õ(n0.387) colors.

4.4 Õ
(
n1/4

)
Colors via Large Independent Sets

We now show how to color a 3-colorable graph with Õ
(
n1/4) colors in polynomial time. To do this, we

use the fact that in a legal coloring, a set of vertices of the same color form an independent set. We use
this fact to construct the following general algorithm:

1. Find an independent set I.

2. Color the vertices in I with a new color.

3. Remove I.

4. Repeat all the steps.

If in each iteration of Step 3 of the above algorithm, at least a γ-fraction of vertices are removed,
then after k iterations, at most (1 − γ)kn vertices remain. If we remove vertices until there is at least
one vertex, then using log(1− x) ≤ −x for |x| > 1, we derive kmax, the maximum number of iterations,
as follows:

(1− γ)kmaxn ≥ 1 ⇒ kmax ≤
1
γ

logn.

Thus, if we have an algorithm that colors a γ-fraction of the graph at each iteration, then the algorithm
will use O(1

γ lnn) colors.

As mentioned previously, we would like to map all the vertices onto vectors in a 2-dimensional plane,
so that any two vectors corresponding to the two endpoints of an edge are 120 degrees apart. There are
three such vectors, each corresponding to a single color, which are uniquely determined up to a rotation.
Since such a solution corresponds to an optimal integral solution and can therefore not solve such an SDP,
we relaxed the dimension of vectors onto which the vertices are mapped. However, after the relaxation,
there can be more than three vectors satisfying the constraints, and it is no longer straightforward to
map these vectors to colors. We still know that two vectors vi and vj representing an edge are far away
from each other, i.e. vi · vj = −1/2 for every (i, j) ∈ E. To benefit from such a structural guarantee,
we randomly sample an n-dimensional vector r and consider vectors that are close to it. Intuitively,

10

vectors that are close to r should also be close to each other and therefore form an independent set.
More formally, let

r = (r1, . . . , rn) such that ri ∈ N (0, 1),∀i ∈ {1, . . . , n},

and define
S(ε) = {i ∈ V : vi · r ≥ ε},

where ε will be determined later. Note that S(ε) might not be an independent set. We also define

S′(ε) = {i ∈ S(ε) : i has no neighbors in S(ε)},

which is an independent set. (Observe that a “smarter” way to define S′(ε) would be to find a maximal
matc hing in S(ε) and delete the vertices defining the matching. However, it would make our analysis
more complicated.) Next, our goal is to estimate the size of S′(ε).

First we recall some basic properties about the normal distribution N (0, 1) such as its probability
density and cumulative distribution functions:

p(x) = 1√
2π
e−

x2
2 ,

Φ(x) =
x∫

−∞

p(s)ds ⇒ Φ̄(x) = 1− Φ(x) =
∞∫
x

p(s)ds.

Observe that vi · r, for some vertex i ∈ V , does not depend on the vector vi since the distribution
of r is spherically symmetric. Therefore, we can rotate vi so that vi is any vector and without loss of
generality, we can assume that vi = (1, 0, . . . , 0), and thus vi · r = r1. Then, vi · r is distributed as
N (0, 1). This implies that:

Pr [i ∈ S(ε)] = Φ̄(ε) ⇒ E [|S(ε)|] = n Φ̄(ε). (8)

Now, we prove the following lemma, which gives an upper bound on the probability that a vertex i
“fails”, i.e. is not included in S′(ε), the independent set picked by our algorithm. In other words, we
wish to compute the probability that vertex i does not belong to S′(ε) given that it belongs to S(ε).

Lemma 17
Pr [i /∈ S′(ε) | i ∈ S(ε)] ≤ ∆Φ̄

(√
3ε
)
. (9)

Proof We have

Pr [i /∈ S′(ε) | i ∈ S(ε)] = Pr [∃(i, j) ∈ E : vj · r ≥ ε | vi · r ≥ ε]. (10)

From vi · vj = −1/2 and vi · vi = vj · vj = 1, we conclude that vj can be written in the following way

vj = −1
2vi +

√
3

2 u, such that vi · u = 0 and u · u = 1.

The last equation implies

u = 2√
3

(
vj + 1

2vi
)
.

If vi · r ≥ ε and vj · r ≥ ε, then

u · r = 2√
3

(
vj · r + 1

2vi · r
)
≥ 2√

3

(
ε+ 1

2ε
)

=
√

3ε.

11

Thus, we see that if i /∈ S′(ε) and i ∈ S(ε) (i.e. if both viṙ and vj · r are at least ε), then it must be the
case that the projection of r onto u is at least

√
3ε. However, note that if r · u ≥

√
3ε, then this does

necessarily imply that both r · vi and r · vj are at least ε.
Since u · vi = 0, r · u and r · vi are independently distributed. Thus, we have:

Pr [vj · r ≥ ε|vi · r ≥ ε] ≤ Pr
[
u · r ≥

√
3ε|vi · r ≥ ε

]
= Pr

[
u · r ≥

√
3ε
]

= Φ̄(
√

3ε).

To conclude the proof, we use a union bound over the neighbors of i. Since there are at most ∆ of them,
we have:

Pr [∃(i, j) ∈ E : vj · r ≥ ε | vi · r ≥ ε] ≤
∑

j:(i,j)∈E

Pr [vj · r ≥ ε | vi · r ≥ ε] ≤ ∆Φ̄
(√

3ε
)
,

which implies the lemma.

So, how should we choose ε? Intuitively, a smaller value of ε should result in the smaller number of
edges in S(ε), since two adjacent vertices should be far from each other. On the other hand, we would
like S(ε) to be large. We will set ε so that

∆Φ̄
(√

3ε
)
≤ 1/2. (11)

This will upper bound the probability that a vertex in S(ε) does not belong to S′(ε). Note that, along
with (8) and Lemma 17, it would further imply

E[|S′(ε)|] ≥ E[|S(ε)|]
2 = n

Φ̄(ε)
2 . (12)

Before we state the main result of this section, we state the following lemma without a proof.

Lemma 18 For x > 0,
x

1 + x2 p(x) ≤ Φ̄(x) ≤ 1
x
p(x).

Now we can state the following theorem which lower bounds the size of S′(ε).

Theorem 19
E[|S′(ε)|] ≥ Ω

(
n∆− 1

3 (ln ∆)− 1
2

)
.

Proof First, we derive ε so that (11) holds. By Lemma 18 we have

Φ̄
(√

3ε
)
≤ 1√

3ε
1√
2π
e−

3ε2
2 . (13)

From (11) and (13) we conclude it is sufficient to set ε =
√

2
3 ln ∆.

To estimate the size of S′(ε), we must lower bound the value of Φ(ε). We obtain the following bound
by applying Lemma 18 and using inequality x

1+x2 ≥ 1
2x , for x ≥ 1, as follows

Φ̄(ε) ≥ p(ε) ε

1 + ε2

= 1√
2π
e−

ε2
2

ε

1 + ε2

≥ 1√
2π
e−

ln ∆
3

1
2ε

≥ ∆− 1
3 (ln ∆)−

1
2 .

12

Applying the inequality in Equation (12) concludes the proof.

Theorem 19 says that in each iteration of the algorithm, we are able to find an independent set of
size at least Õ

(
n∆−1/3). This implies that we can color a given 3-colorable graph with O

(
∆1/3 logn

)
=

Õ
(
∆1/3) colors. We can summarize the given approach, which we call Independent-Set-Coloring,

as follows:

1. Solve SDP.

2. Pick a random vector r.

3. Pick a set S(ε) which is ε-close to r.

4. Let S′(ε) ⊆ S(ε) be vertices with degree zero in S(ε).

5. Remove the vertices in the independent set S′(ε) from the graph.

6. Repeat from Step 2 while the graph is non-empty.

Note that there is no need to resolve SDP in Step 1 in each iteration, since a solution for the initial
graph is valid for any subgraph.

Finally, we combine the algorithm from Section 4.1 with the algorithm Independent-Set-Coloring.

1. If G has a vertex v with degree d(v) ≥ n3/4, we use three new colors to color the vertex v and its
neighbours δ(v). We repeat this step until no vertices with degree at least n3/4 remain.

2. Once G has ∆ < n3/4, we use the algorithm Independent-Set-Coloring to color the rest of
the graph with at most Õ((n3/4)1/3) = Õ(n1/4) colors.

Observe that Step 1. will execute at most n/n3/4 = n1/4 times, using at most n1/4 colors. Thus, the
total number of colors used is at most Õ(n1/4).

13

