
Topics in Theoretical Computer Science February 22, 2016

Lecture 1 (Notes)
Lecturer: Ola Svensson Scribes: Ola Svensson

Disclaimer: These notes were written for the lecturer only and may contain inconsistent notation,
typos, and they do not cite relevant works. They also contain extracts from the two main inspirations
of this course:

1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

2. The course http://theory.stanford.edu/ trevisan/cs254-14/index.html by Luca Trevisan.

1 Introduction

• Welcome

• Ola Svensson (ola.svensson@epfl.ch)

• http://theory.epfl.ch/courses/topicstcs

• Goal of course: cool results, nice powerful techniques that are useful elsewhere.

• Show cool introductory slides

1.1 Grading

• 4− 5 Problem sets [60%]

• Final exam [40%] or project (talk to me later on in the course if you wish to do a project)

• Scribes give bonus if needed

2 Turing Machines and Deterministic Time Complexity

Let us define the Turing machines (TM) and state some standard lemmas. We refer to Chapter 1 of the
textbook for their proofs.

2.1 Formal definition of a Turing Machine

A TM M is described by a tuple (Γ,Q, δ) containing:

• A finite set Γ of the symbols that M ’s tapes can contain. We assume that Γ contains the designated
“blank” symbol, denoted �; a designated “start” symbol, denoted B; and the numbers 0 and 1.
We call Γ the alphabet of M .

• A finite set Q of possible states M ’s register can be in. We assume that Q contains a designated
start state denoted qstart and a designated halting state, denoted qhalt.

• A function δ : Q × Γk → Q × Γk−1 × {L, S,R}k where k ≥ 2, describing the rules M use in
performing each step. This function is called the transition function of M (and k is the number
of tapes).

1

If the machine is in state q ∈ Q and (σ1, σ2, . . . , σk) are the symbols currently being read in the
k tapes and δ(q, (σ1, . . . , σk)) = (q′, (σ′2, . . . , σ

′
k), z) where z ∈ {L, S,R}k, then at the next step the σ

symbols in the last k − 1 tapes will be replaced by the σ′ symbols, the machine will be in state q′, and
the k heads will move Left, Right, or Stay in place, as given by z.

All tapes (except for the input) are initialized in their first location to the start symbol B and in all
other locations to the blank symbol �. The input tape contains initially the start symbol B, a finite
string x (“the input”), and the blank symbol � on the rest of its cells. All heads start at the left ends
of the tapes and the machine is in the special starting state qstart. This is called the start configuration
of M on input x.

Each step of the computation is performed by applying the function δ as described previously. The
special halting state qhalt has the property that once that machine is in qhalt, the transition function δ
does not allow it to further modify any tape or change states.

2.2 Robustness and Universality

• The size of the alphabet, the number of tapes do not really matter

• Turing Machines are expressive enough to simulate themselves: there is a universal Turing machine
that can simulate any other Turing machine by only incurring a multiplicative factor in the time.

2.3 Deterministic time

Definition 1 We say that a machine decides a language L ⊆ {0, 1}∗ if it computes the function fL :
{0, 1}∗ → {0, 1}, where fL(x) = 1⇔ x ∈ L.

Definition 2 Let T : N→ N be some function. A language L is in DTIME(T (n)) iff there is a Turing
machine that runs in time at most c · T (n) for some constant c > 0 and decides L.

Definition 3 (The class P)

P =
⋃
c≥1

DTIME(nc)

3 Time Hierarchy

• Shortest path, addition, multiplication, sorting can all be done in polynomial time with a small
exponent.

• Do you know any problem that is polynomial time solvable but requires time like n50?

• So maybe DTIME(n10) = DTIME(n100)? Not really. . .

3.1 Main Tool: Diagonalization

• Essentially only known tool for proving separations between complexity classes.

• The basic principle is the same as in Cantor’s proof that the set of real numbers is not countable
(1892).

• Used by Turing to prove the undecidability of the Halting problem (1936)

• To prove the Time Hierarchy Theorem by Hartmanis and Stearns (1965)

2

3.1.1 Cantor’s diagonal argument

Let T be the set of all infinite sequences of binary digits.

Lemma 4 If s1, s2, . . . , sn, . . . is any enumeration of the elements from T , then there is always an
element s of T which corresponds to no sn in the enumeration.

Proof Given an enumeration of arbitrary members from T like e.g.

s1 = (0, 0, 0, 0, 0, 0, 0, ...)

s2 = (1, 1, 1, 1, 1, 1, 1, ...)

s3 = (0, 1, 0, 1, 0, 1, 0, ...)

s4 = (1, 0, 1, 0, 1, 0, 1, ...)

s5 = (1, 1, 0, 1, 0, 1, 1, ...)

s6 = (0, 0, 1, 1, 0, 1, 1, ...)

s7 = (1, 0, 0, 0, 1, 0, 0, ...)

...

construct the sequence s by choosing the ith digit as complementary to the i:th digit of si. In the
example, this yields:

s1 = (0, 0, 0, 0, 0, 0, 0, ...)

s2 = (1,1, 1, 1, 1, 1, 1, ...)

s3 = (0, 1,0, 1, 0, 1, 0, ...)

s4 = (1, 0, 1,0, 1, 0, 1, ...)

s5 = (1, 1, 0, 1,0, 1, 1, ...)

s6 = (0, 0, 1, 1, 0,1, 1, ...)

s7 = (1, 0, 0, 0, 1, 0,0, ...)

...

s = (1,0,1,1,1,0,1, ...)

By construction, s differs from each sn since their nth digit differ. Hence, s cannot occur in the
enumeration.

The above lemma implies that T is uncountable. If it was countable we can enumerate T but we just
proved that that is not possible.

3.1.2 Halting problem is undecidable

Consider the language L = {α ∈ {0, 1}∗ : Mα(α) does not halt and accept}. Note that L can be decided
if the Halting problem can be decided. Therefore, the following implies that the Halting problem is
undecidable.

Lemma 5 The language L is undecidable.

Proof Suppose that there exists a TM M that decides L. Let α be a binary encoding of M . Then
M(α) accepts if Mα(α) does not halt and accept which is a contradiction since Mα = M . Similarly if
M(α) rejects then Mα(α) halts and accepts which is again a contradiction.

3

α1 α2 α3 α4

α1 Mα1
(α1) Mα1

(α2) Mα1
(α3) Mα1

(α4)
α2 Mα2(α1) Mα2(α2) Mα2(α3) Mα2(α4)
α3 Mα3(α1) Mα3(α2) Mα3(α3) Mα3(α4)
α4 Mα4

(α1) Mα4
(α2) Mα4

(α3) Mα4
(α4)

...
L

3.2 Time Hierarchy – Simplified Version

Lemma 6 DTIME(n1.5) (DTIME(n).

Proof
The proof is basically by diagonalization by simulating every turing machine < n1.5 steps.
Consider the following Turing machine D:

On input x run for |x|1.4 steps the Universal TM U to simulate the execution of Mx on x. If U
outputs some bit b ∈ {0, 1} in this time then compute the opposite answer. Else output 0.

• By definition D halts in time n1.4 and hence the language L decided by D is in DTIME(n1.5).

• Suppose toward contradiction that L ∈ DTIME(n). That is there exists a TM M and constant
c such that, given any input x ∈ {0, 1}∗, M halts within c|x| steps and outputs D(x).

• Time to simulate M by U is at most c′ · c|x| log c|x|.

• Let x be a string representing M such that c′ · c|x| log c|x| < |x|1.4.

• Then D will obtain the output b = M(x) within n1.4 steps, but by definition of D we have
D(x) = 1− b 6= M(x). Thus we have derived a contradiction.

Exercise 1 Prove the general Time Hierarchy Theorem. That is consider our simplified proof and
understand what f(n) and g(n) need to satisfy so that DTIME(f(n)) (DTIME(g(n)).

Exercise 2 If time, prove the Space Hierarchy Theorem. Recall that a TM M can be simulated in
roughly the same space (losing a constant factor).

4

