
Topics in Theoretical Computer Science February 23, 2015

Lecture 2
Lecturer: Ola Svensson Scribes: Pierre Sarton, Niklas Gehlen, Tobias Räderscheidt

1 Last Lecture

In the previous lecture, we introduced the probabilistic method, which allowed us to prove the existence
of a combinatorial object with specified properties. In general, the argument goes as follows: select an
object at random from the set, and calculate the probability that it satisfies the required property; if this
probability is strictly positive then such an object must exist. However this approach is not powerful
enough when the events we are considering are not independent.

2 Lovász Local Lemma

Definition 1 An event A is mutually independent from a set {Bi} of events if for every subset β of
events or their complements contained in {Bi}

PrA | β = PrA

In a general setting, we have a set of n bad events {Ai} that we are trying to avoid, such that
Pr [Ai] ≤ p < 1, for i ∈ {1, 2, . . . , n}. If we assume that these events are independent, then their
complements are independent as well and we can show that

Pr
∧
i

Āi ≥ (1− p)n > 0

However, if we remove the independence assumption, the union bound yields

Pr
∧
i

Āi ≥ 1−
∑
i

Pr Āi

The Lovász Local Lemma improves upon the union bound in the case where the events are not mutually
independent, but their dependencies are restricted. It was proved by Erdös and Lovász in 1975 [1].

Theorem 2 (Lovász Local Lemma) Let A1, A2, . . . , An be a set of ”bad” events with PrAi ≤ p < 1, and
each Ai is dependent on at most d other Aj. If p · (d+ 1) · e ≤ 1, then

Pr

n∧
i=1

Āi > 0

Before proving the theorem, we give an example showing that the bound is almost tight. Consider
events A1, . . . , Ad+1, each happening with probability 1

d+1 . We assume that in each outcome exactly

one bad event happens. Consider figure 1. In that case we have p · (d+ 1) = 1 and Pr
∧n

i=1 Āi = 0.

A1

1
10

A2

1
10

A3

1
10

A4

1
10

A5

1
10

A6

1
10

A7

1
10

A8

1
10

A9

1
10

A10

1
10

Figure 1: Example with p = PrAi = 1
10 and d = 9

1

This shows the tightness of the bound. We continue with the proof of the Lovász Local Lemma. To
do so, we will use the following lemma:

Lemma 3 For any S ⊂ {1, . . . , n} and i ∈ {1, . . . , n} the following holds:

PrAi |
∧
j∈S

Āj ≤
1

d+ 1

Proof We show the lemma by induction on the size m of S.
Base Case
For m = 0 we obtain

PrAi ≤ p ≤
1

(d+ 1) · e
<

1

(d+ 1)

where the second inequation follows by the condition of Lovász Local Lemma.
Inductive Case
Assume that the claim is true for all S with |S| < m. We prove the claim for an S with |S| = m. At

first we partition S into S = S1 ∪S2 such that S1 contains those events of S that Ai depends on. Recall
that

PrA|B =
PrA ∧B

PrB

In the following we will apply this equation several times. Using this equation we get

PrAi|
∧
j∈S

Āj =
PrAi ∧

∧
j∈S1

Āj |
∧

j∈S2
Āj

Pr
∧

j∈S1
Āj |

∧
j∈S2

Āj

To bound this term further, we want to give an upper bound on the numerator and a lower bound on
the denominator. The upper bound on the numerator is easily obtained as:

PrAi ∧
∧
j∈S1

Āj |
∧
j∈S2

Āj ≤ PrAi|
∧
j∈S2

Āj = PrAi

2

We continue with the lower bound on the denominator. W.l.o.g. let S1 = {1, . . . , r}. Therefore, we can
rewrite the denominator as:

Pr

r∧
j=1

Āj |
∧
j∈S2

Āj = Pr Ā1 | Ā2 ∧ Ā3 ∧ . . . ∧ Ār ∧
∧
j∈S2

Āj

·Pr Ā2 | Ā3 ∧ Ā4 ∧ . . . ∧ Ār ∧
∧
j∈S2

Āj

...

·Pr Ār |
∧
j∈S2

Āj

=

1− PrA1 | Ā2 ∧ Ā3 ∧ . . . ∧ Ār ∧
∧
j∈S2

Āj


·

1− PrA2 | Ā3 ∧ Ā4 ∧ . . . ∧ Ār ∧
∧
j∈S2

Āj


...

·

1− PrAr |
∧
j∈S2

Āj


I.B.
≥
(

1− 1

d+ 1

)
·
(

1− 1

d+ 1

)
· . . . ·

(
1− 1

d+ 1

)
=

(
1− 1

d+ 1

)r

≥
(

1− 1

d+ 1

)d

>
1

e

We combine both bounds and obtain:

PrAi|
∧
j∈S

Āj =
PrAi ∧

∧
j∈S1

Āj |
∧

j∈S2
Āj

Pr
∧

j∈S1
Āj |

∧
j∈S2

Āj

≤PrAi

e−1
≤ p · e ≤ 1

d+ 1

This concludes the proof of the lemma.

We will now apply the lemma to prove the theorem.
Proof We need to show that desired event occurs with positive probability. This probability can be
bounded by

Pr

n∧
i=1

Āi = Pr Ā1 | Ā2 ∧ Ā3 ∧ . . . ∧ Ān

·Pr Ā2 | Ā3 ∧ Ā4 ∧ . . . ∧ Ān

...

·Pr Ān

≥
(

1− 1

d+ 1

)n

> 0

3

where the inequality follows from lemma 3.

2.1 Application: k-SAT

We use the Lovász Local Lemma to prove that any k-CNF formula is satisfiable if a certain condition
holds. First we define the k-SAT problem:

Input Boolean formula ϕ =
∧n

i=1 Ci in k-CNF.

with m boolean variables x1, . . . , xm

and n clauses C1, . . . , Cn being conjunctions of k different literals

Output Decide whether there is a satisfying interpretation of ϕ

Let us focus on a special case, the 3-SAT problem, as an example.

An instance of 3-SAT consists of clauses, one can be represented this way :

(x1 ∨ x2 ∨ x3)

We now state and prove two straightforward lemmas.

Lemma 4 Every 3-SAT instance with six clauses is satisfiable.

Proof We can use either Combinatorial or Probabilistic proof
Combinatorial
Assuming worst case there is at most 3 variables, which can create a total of 8 clauses. Let us take

one of the two clauses that are not in the six clauses of our instance, for example (x1 ∨x2 ∨x3). We can
choose an assignment of x1, x2, x3 such that this clause is false, thus making all other clauses true.

Probabilistic
Consider a uniformly random truth assignment. For each clause C in the instance,
Pr[C is false]= 2−3,
from the Union Bound we get : Pr[∃ clause that is false] ≤ 6 ∗ 2−3

⇒ Pr[Satisfiable] ≥ 1− 6 ∗ 2−3 = 1
4 > 0.

Lemma 5 Any 3-SAT instance where every variable appears exactly once is satisfiable.

Proof Consider a uniformly random truth assignment.
Let A1, ..., Am be the events that the i-th clause in the instance is false. Pr[Ai is false] = 1

8
Observe that Ais are mutually independent.

Pr

n∧
i=1

Āi =

(
7

8

)m

> 0

We now formalize the condition to guarantee the satisfiability of an k-CNF formula.

Lemma 6 Any instance ϕ of k-Sat in which no variable appears in more than 2k−2

k clauses is satisfiable.

4

Proof We take an assignment X : {x1, . . . , xm} → {true, false} uniformly at random. Let Ai be the
”bad” event that clause Ci is unsatisfied by the random assignment X.
Let us determine the probability PrAi. Since each clause consists of k different literals and each literal
evaluates to false with probability 1

2 we get:

PrAi =
1

2k
=: p

Now let us bound the maximum dependency of Ai. Let j 6= i. It is obvious that Ai is dependent on Aj

if and only if Ci and Cj share a variable. Each variable may occur in at most 2k−2

k clauses. Since Ci

consists of k literals, it can be dependent on at most k 2k−2

k = 2k−2 other clauses.
Thus we can apply the Lovász Local Lemma with p = 1

2k−2 and d = 2k−2 and get p·(d+1)·e ≤ p·d·4 = 1
for sufficiently large d. Applying the Lovász Local Lemma we get that the probability of getting a
satisfying assignment Pr[

∧n
i=1 Āi] > 0. Using the probabilistic method, we can conclude that there is in

fact a satisfying assignment for ϕ.

2.2 Exercise 1: Application: 2-COLORING in a hyper graph

We use Lovász Local Lemma to prove that certain hyper graphs always have a 2-Coloring. A hyper
graph is a tuple H = (V,E) with vertices V and hyper edges E. That is, each edge is a subset of the
set of vertices V . A 2-Coloring is an assignment c : V → {red, blue} of colors to vertices such that there
is no monochromatic hyper edge. A monochromatic edge is an edge connecting only nodes of the same
color.

Exercise 1 Let H = (V,E) be a hyper graph in which every edge has at least k elements and intersects
at most d other edges. For which k, d has H a 2-Coloring?

Solution We take a coloring uniformly at random. Let Ae be the bad event that edge e became
monochromatic. This is the case when all vertices of e are either blue or all red. Now consider the
probability of Ae:

PrAe =

(
1

2

)k

+

(
1

2

)k

= 21−k =: p

We need to choose d such that the condition of the Lovász Local Lemma is satisfied. That is, p·(d+1)·e ≤
1. This can be achieved by choosing d ≤ 21−k

e − 1.

2.3 Exercise 2: Subtrees

The proof of Lovász Local Lemma given beforehand was non-constructive. Later on we will give a
constructive proof. To do so, the following statement will be useful.

Exercise 2 Consider a graph G of degree at most d + 2. Give an upper bound on the number of
subtrees of G consisting of s nodes.

Solution For a fixed root we order the vertices in an arbitrarily (but fixed) order. Note, that this also
orders the neighbors of a vertex uniquely. We will encode each tree with a bitstring of length (d+ 1) · s
containing s− 1 ones. We count the number of trees rooted at a vertex v.
Assume we had such an encoding. Then, the number of trees can be at most the number of bitstrings
of this kind. That is: (

(d+ 1) · s
s− 1

)
≤
(

(d+ 1) · s · e
s− 1

)s

≤ ((d+ 2) · e)s

5

It remains to be shown how a tree T can be encoded in such a fashion. The general idea is to do a
pre-order traversal of T starting at the root v. When we discover a new vertex u, we output a string of
length (d + 1). This string indicates whether for every neighbor w of u, w is contained in the tree. In
particular, the string has a ”1” at the ith position if and only if, the ith neighbor is a child of u in T .
This is visualized in figure 2:

v

0

00 01 02 03

1

10 11 12 13

2

20 21 22 23

3

30 31 32 33

Figure 2: Tree of size 4 with coding 1100 0000 1000 0000

Because we have n possible roots, the total number of possible trees can be bounded by n·((d+2)·e)s.

6

2.4 A Constructive Proof of Lovász Local Lemma

The previous proof in this lecture was non-constructive. It did not show how to obtain an algorithm
that computes the desired object. In this subsection we present the constructive version of this proof in
[2] and [3] by giving a randomized algorithm for k-SAT. For the general case a similar algorithm can be
constructed. We use the notation as before.

Algorithm 1 Randomized k-SAT

1: Pick random truth assignment X : {x1, . . . , xm} → {true, false}
2: while there is an unsatisfied clause C do
3: Reflip all variables in C
4: end while
5: Return the satisfying assignment

Obviously this algorithm returns a satisfying assignment on termination. It remains to be shown
that it in fact terminates in acceptable runtime.

Theorem 7 Let p · (d+ 1) · e ≤ 1− ε for a constant ε > 0. Then the expected amount of reflips in the
algorithm will be in Θ(n).

Proof Let C1, C2, . . . be the (possibly infinite) sequence of clauses that are reflipped by the algorithm
in that order. With each Ct we associate the tree Tt with a root node labeled as Ct. We add clause
C1, . . . Ct−1 in reversed order as follows: For i = t−1, . . . , 1 we ignore Ci if it does not share any variable
with any clause in Tt. Otherwise, we add Ci as a child of the deepest clause sharing at least one variable
with Ci.

x1 ∨ x̄4 ∨ x5

x3 ∨ x4 ∨ x̄5 x̄1 ∨ x̄2 ∨ x6

x1 ∨ x̄3 ∨ x̄4

x3, x4

x4, x5 x1

Figure 3: Example with reflipped clauses (x1 ∨ x̄3 ∨ x̄4), (x̄1 ∨ x̄2 ∨x6), (x3 ∨x4 ∨ x̄5) and (x1 ∨ x̄4 ∨x5)

We use the constructed tree Tt to prove the theorem by bounding the expected number of reflips.
To do so, we have to measure the probability of a certain tree appearing.

7

Claim Consider any tree Tt of s nodes. The probability of this tree appearing is at most 2−sk.
Proof Consider a leaf of maximal depth in Tt. The corresponding clause does not share any variables
with a clause which has been reflipped earlier. Thus, this clause was unsatisfied by the original assign-
ment. This happens with probability 2−k. Since every variable in this clause is reflipped, the assignment
of variables of higher clauses is independent. Hence, each node independently appears with probability
2−k. Because the tree consists of s nodes, its probability of appearing is 2−sk.

We use the claim to calculate the estimated amount of reflips for finding a satisfying assignment.
Note that, by definition, two trees Ti and Tj with i < j can’t be identical, hence it suffices to count the
number of distinct trees.

E[#reflips] =E[# trees appearing]

=

∞∑
s=1

E[# trees of size s]

≤n ·
∞∑
s=1

bound on the amount of trees︷ ︸︸ ︷
((d+ 1) · e)s · 2−sk︸︷︷︸

probility of a tree appearing

=n ·
∞∑
s=1

((d+ 1) · e · 2−k)s

=n ·
∞∑
s=1

((d+ 1) · e · p)s

≤n ·
∞∑
s=1

(1− ε)s

≤ n

1− (1− ε)
=
n

ε
= Θ(n)

This finishes the proof of the theorem.

References

[1] Paul Erdos and László Lovász. Problems and results on 3-chromatic hypergraphs and some related
questions. Infinite and finite sets, 10:609–627, 1975.

[2] Robin A Moser. A constructive proof of the lovász local lemma. In Proceedings of the 41st annual
ACM symposium on Theory of computing, pages 343–350. ACM, 2009.

[3] Robin A Moser and Gábor Tardos. A constructive proof of the general lovász local lemma. Journal
of the ACM (JACM), 57(2):11, 2010.

8

