1 Introduction

- Recall last lecture: Non-determinism and why diagonalization alone will not solve P vs NP question.
- Today circuits and non-uniform computation.

2 Circuits

A circuit C has n inputs and m outputs, and is constructed with AND, OR, and NOT gates. Each gate has fan-in 2 except the NOT gate which has fan-in 1. The out-degree can be any number. A circuit is not allowed to have any cycles.

Example 1 A circuit C computing the XOR function, i.e., $C(x_1, x_2) = 1$ iff $x_1 \neq x_2$:

Definition 1 (Size) The size of a circuit C, denoted by $|C|$, is the number of its gates.

- The size of the XOR circuit C above is 5.

Definition 2 (Circuit families and language recognition) Let $T : \mathbb{N} \to \mathbb{N}$ be a function. A $T(n)$-size circuit family is a sequence of $\{C_n\}_{n \in \mathbb{N}}$ of Boolean circuits, where C_n has n inputs and a single output, and its size $|C_n| \leq T(n)$ for every n.

We say that language L is in $\text{SIZE}(T(n))$ if there exists a $T(n)$-size circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that for every $x \in \{0, 1\}^n$, $x \in L \iff C_n(x) = 1$.

Example 2 For any $B \subseteq \{0, 1\}^*$, the unary language $U_B = \{1^n : \text{exists a string of length } n \text{ in } B\}$ has a linear-sized circuit family. If $1^n \in U_B$ the circuit is simply a tree of AND gates and otherwise if $1^n \notin U_B$ then the circuit C_n is the trivial circuit that always outputs 0.

Example 3 The language $\{\langle m, n, m+n \rangle : m, n \in \mathbb{Z}\}$ also has linear-sized circuits that implement the grade-school algorithm for addition.
3 Basic Circuit Upper and Lower Bounds

- Notice that, unlike the complexity classes we defined with Turing machines, circuits is a non-uniform computational model: we can have different circuits for each size of the problem/language. For Turing machines we had the same machine for infinite (all) inputs of a problem (an uniform computational model).

- Indeed, unlike other complexity measures such as time and space, for which there are languages of arbitrarily high complexity, the size complexity of a problem is always at most exponential.

Theorem 3 For every language L, $L \in \text{SIZE}(2^n)$.

Proof

- We need to show that for every Boolean function $f : \{0, 1\}^n \rightarrow \{0, 1\}$, f has a circuit of size $O(2^n)$.

- Use the identity $f(x_1, x_2, \ldots, x_n) = (x_1 \land f(1, x_2, \ldots, x_n)) \lor (\bar{x}_1 \land f(0, x_2, \ldots, x_n))$ to recursively construct a circuit for f as follows:

- The recurrence relation for the size of the circuit is $s(n) = 4 + 2 \cdot s(n - 1)$ with say base case $s(1) = 0$ which solves to $s(n) = 2^n - 4$.

On the other hand, most languages do require exponential size circuits:

Theorem 4 There are languages L such that $L \notin \text{SIZE}(o(2^n/n))$. In particular, for every $n \geq 11$, there exists $f : \{0, 1\}^n \rightarrow \{0, 1\}$ that cannot be computed by a circuit of size $2^n/4n$.

Proof This is a counting argument:

- There are 2^{2^n} functions $f : \{0, 1\}^n \rightarrow \{0, 1\}$.

- We claim that the number of circuits of size s is at most $2^{O(s \log s)}$, assuming $s \geq n$.

- To bound the number of circuits of size s, we create a compact binary encoding of such circuits.

- Identify gates with numbers $1, 2, \ldots, s$. For each gate, specify where the two/one inputs are coming from, and the type of the gate. The total number of bits required to represent the circuits is

$$s \cdot (2 \log(n + s) + 2) \leq s \cdot (2 \log 2s + 3) = s \cdot (2 \log s + 5).$$
• So the number of circuits of size s is at most $2^{2s \log s + 5s}$ and this is not sufficient to compute all possible functions if

$$2^{2s \log s + 5s} < 2^n.$$

• This is satisfied if $s \leq 2^n/(4n)$ and $n \geq 11.$

3.1 Some comments

Although almost all functions $f : \{0, 1\}^n \to \{0, 1\}$ require large circuits, we are unable to show that "natural ones" require large circuits. The best lower bound on an NP language is something like $5n.$

We do not even know if every language in NEXP does have a polysize circuit family.

Also, there are small circuits that compute undecidable problems (see exercises below).

3.2 Exercises

Exercise 1 Give a circuit for computing the XOR function of 4 bits. Can you generalize it to n bits? What is the size of the circuit?

Exercise 2 Show that there is a undecidable language L with a linear-sized circuit family.

Definition 5 An Oblivious Turing machine (OTM) is a machine for which, at every time $t,$ no matter what input we have, the j:th head is at cell $s_j(t)$ for some function $s_j.$

Exercise 3 How can any TM be simulated by an OTM? (Here you do not need to be overly formal and we allow for a moderate increase in running time and space.)

Exercise 4 (Nonuniform Hierarchy Theorem) The nonuniform hierarchy theorem says that for every functions $T, T' : \mathbb{N} \to \mathbb{N}$ with $2^{n/n} > T'(n) > 10T(n) > n,$

$$\text{SIZE}(T(n)) \subsetneq \text{SIZE}(T'(n)).$$

Show that \(\text{SIZE}(n) \subsetneq \text{SIZE}(n^2). \)

4 Simulation of Efficient Computation by Small Circuits

We show that any $T(n)$-time OTM can be simulated by a circuit of size at most $O(T(n)).$

As any TM can be simulated by an OTM by incurring a logarithmic multiplicative loss in the running time it follows that

$$P \subseteq P_{/\text{poly}} := \cup_n \text{SIZE}(n^e).$$

Theorem 6 Let M be a $T(n)$-time OTM. There exists an $O(T(n))$-sized circuit family $\{C_n\}_{n \in \mathbb{N}}$ such that

$$C_n(x) = M(x) \quad \text{for every } x \in \{0, 1\}^n.$$

Proof
• Let $x \in \{0, 1\}^*$ be some input for M and define the transcript of M’s execution on x to be the sequence $z_1, \ldots, z_{T(n)}$ of snapshots (the machine’s state and symbols read by all heads) of the execution at each step in time.

• Each snapshot z_i can be encoded by a constant-sized binary string (say by ℓ bits).

• Moreover, we can compute the ℓ bits encoding z_i based on the following information:

 1. What is the state of the machine at time i?
 2. What is written on the heads of the tapes at time i?

The answer to the first question depends on the snapshot z_{i-1}. The answer to the second question depends on (potentially) an input bit and the snapshots z_{i_1}, \ldots, z_{i_k} where z_{i_j} denotes the last step the M’s j:th head was in the same position as it is in the i:th step. (Notice that i_1, \ldots, i_k depend only on i and not on the actual input x as M is oblivious).

• Because there are only a constant number of strings of constant length, we can compute the ℓ bits encoding z_i from these previous snapshots using a constant-sized circuit.

• The composition of all these constant sized circuits gives rise to a circuit that on input x computes the encoding of the snapshot $z_{T(n)}$. An overview of the circuit is as follows:

 - If the snapshot $z_{T(n)}$ is accepting, the circuit outputs 1 and otherwise it outputs 0.
 - Thus, there is a $O(T(n))$-sized circuit C_n such that $C_n(x) = M(x)$ for every $x \in \{0, 1\}^n$.

Remark The proof of the above theorem actually gives a stronger result than in the statement: the circuit is not only of size $O(T(n))$ but it is also computable in time $O(T(n))$.

Remark The proof of the above theorem relied crucially on that computation is local.

5 Circuit Satisfiability and a proof of the Cook-Levin Theorem

Boolean circuits give an alternative proof of the central Cook-Levin Theorem that shows that 3-SAT is NP-complete.

Definition 7 (Circuit satisfiability or CKT-SAT) The language CKT-SAT consists of all (strings representing) circuits that produce a single bit of output and that have a satisfying assignment.

CKT-SAT is clearly in NP because the satisfying assignment can serve as the certificate. The Cook-Levin Theorem follows immediately from the next two lemmas.

Lemma 8 CKT-SAT is NP-hard.

Proof

• If $L \in$ NP then there is a polynomial-time TM M and a polynomial p such that $x \in L$ iff $M(x, u) = 1$ for some $u \in \{0, 1\}^{p(|x|)}$.

• The proof of Theorem 6 yields a polynomial-time transformation from M, x to a circuit C such that $M(x, u) = C(u)$ for every $u \in \{0, 1\}^{p(|x|)}$. Thus $x \in L$ iff $C \in$ CKT-SAT.

Lemma 9 CKT-SAT \leq_p 3-SAT.

Proof Map a circuit C into a 3-SAT formula φ as follows:

• For every node/gate v_i of C, we will have a corresponding variable z_i in φ.

• If the node v_i is an AND of the nodes v_j and v_k then we add to φ the clauses that are equivalent to the condition $z_i = (z_j \land z_k)$.

• Similarly, if v_i is an OR of v_j and v_k we add the clauses that are equivalent to $z_i = (z_j \lor z_k)$.

• And, if v_i is the NOT of v_j then we add the clauses that are equivalent to $z_i = \neg z_j$.

• Finally, if v_i is the output node of C then we add the clause (z_i) to φ.

• It is not hard to see that the formula φ is satisfiable iff the circuit C is. Moreover, the reduction runs in polynomial time.

6 Exercises

A Turing machine with advice has, for each n, an advice string α_n, which it is allowed to use in its computation whenever the input has size n.

Exercise 5 Show that P/poly is equivalent to TMs with polynomial size advice.