
Topics in Theoretical Computer Science March 11, 2014

Lecture 4
Lecturer: Ola Svensson Scribes: Pierre-Alain Dupont, Cyprien Mangin

1 Introduction

In the last lecture, we discussed bipartite expanders and their applications (error correcting codes,
saving randomness) from a graph-theoretic point of view. In this lecture, we will approach expanders in
a different way, through the graph’s underlying adjacency matrix. This approach will prove advantageous
in many applications.

2 Algebraic point of view of expanders

Let us remember the combinatorial definition of expanders:

Definition 1 (combinatorial point of view)
An n-vertex, d-regular graph G = (V,E) is an ε-edge expander if ∀S ⊂ V : |S| ≤ n/2, |E(S, S)| ≥ εd|S|,
where E(S, S) = {(u, v) ∈ E : u ∈ S, v ∈ S}.

There is an alternative definition for expander graphs, based on the algebraic properties of their
random walk matrix(to be defined later):

Definition 2 (algebraic point of view)
An n-vertex, d-regular graph G is an ε-edge expander if λ2 ≤ 1 − ε where λ2 is the second largest
eigenvalue of the random walk matrix of G.

In order to be able to analyze λ2, we need to know a bit more about what are the eigenvalues of an
adjacency matrix. The following section will therefore focus on common spectral graph theory results
before we can go back to expanders.

3 Spectral graph theory

3.1 Basics

Let us give some basic definitions:

Definition 3 The adjacency matrix A of graph G is a matrix such that Aij = 1 if and only if (i, j) ∈ E.

Definition 4 The normalized adjacency matrix(or random walk matrix) M of a d-regular graph is equal
to 1

dA, with A being the adjacency matrix.

Example:

a

b c

d
A =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

M =


0 1

2 0 1
2

1
2 0 1

2 0
0 1

2 0 1
2

1
2 0 1

2 0


Now, M has some special structure, which we will exploit:

Observation 5 M is a real symmetric matrix.

Observation 6 M is a doubly stochastic matrix, i.e., each of its rows sums to 1 and each of its columns
sums to 1.
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The following is a fact derived using standard Linear Algebra:

Fact 7 If M ∈ Rn×n is symmetric, then:

1. M has n non-necessarily distinct real eigenvalues λ1 ≥ λ2 ≥ ... ≥ λn.

2. If v1 is an eigenvector for λ1 of length 1, then there exist (v2, v3, ...vn) such that vi is an eigenvector
of λi and (v1, v2, ..., vn) are orthogonal.
This means that no matter how the first eigenvector v1 is chosen, we can always find an orthonormal
basis.

Example: (using the same 4-cycle)

λ1 = 1, λ2 = 0 = λ3, λ4 = −1

v1 =


1
2
1
2
1
2
1
2

 v2 =


0
− 1√

2

0
1√
2

 v3 =


− 1√

2

0
1√
2

0

 v4 =


− 1

2
1
2
− 1

2
1
2


Observation 8 Consider x ∈ Rn which assigns a value x(v) to each vertex v ∈ V and let y = Mx. In
general, y(v) =

∑
(u,v)∈E

x(u)
d , which is the average value according to x of v’s neighbours. This is a very

good intuition to keep in mind when dealing with spectral graph theory.

Lemma 9 Let M be the normalized adjacency matrix of a d-regular graph G. Then:

0. λ1 = 1.

1. λ2 = 1 ⇐⇒ G is disconnected.
More generally, |{i|λi = 1}| is the number of connected components in G.

2. λn = −1 ⇐⇒ one component of G is bipartite.

Proof

0. Since M


1
1
...
1

 = 1 ×


1
1
...
1

, 1 is an eigenvalue and therefore λ1, the greatest of all eigenvalues,

must be greater or equal to 1.
Additionally, if we consider any eigenvector x and v ∈ V such that x(v) is maximized and y = Mx,
we have y(v) =

∑
(u,v)∈E

x(u)
d ≤

∑
(u,v)∈E

x(v)
d = x(v). Therefore, λ1 ≤ 1.

1. Not proved.

2. See exercise 1.
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3.2 Eigenvalues as solutions to optimization problems

Next, we will see an alternative way to define the eigenvalues of a real symmetric matrix M , as the
solution to the problem of maximizing the Rayleigh quotient

xTMx

xTx

Lemma 10 Given real summetric matrix M ∈ Rn×n, λ1 = max
x∈Rn

xTMx
xT x

.

Proof

1. First, let’s prove λ1 ≤ max
x∈Rn

xTMx
xT x

:

Indeed, vT1 Mv1
vT1 v1

=
vT1 λ1v1
vT1 v1

= λ1
vT1 v1
vT1 v1

= λ1

2. Next, we need to prove λ1 ≥ max
x∈Rn

xTMx
xT x

Let y be the vector that attains the maximum value.

Since (v1, v2, ..., vn) is a basis, ∃(α1, α2, ..., αn) : y =
n∑
i=1

αivi

Then yTMy
yT y

=

n∑
i=1

α2
iλi

n∑
i=1

α2
i

≤ λ1

n∑
i=1

α2
i

n∑
i=1

α2
i

= λ1.

Lemma 11 Given real summetric matrix M ∈ Rn×n, λ2 = max
x∈Rn:x⊥v1

xT ·M ·x
xT ·x .

Proof Similar to the last lemma.

Note: Given a random walk matrix M of a d-regular n-vertex graph, if we pick v1 =


1√
n
1√
n

...
1√
n

,

x ⊥ v1 ⇐⇒
n∑
i=1

xi = 0.

4 Cheeger’s Inequalities

Now that we have seen some basic properties about adjencency matrices and eigenvalues, we shall show
that the second largest eigenvalue is very much related to the expansion properties of the graph. To do
so, we will prove Cheeger’s Inequalities, which provide bounds on the expansion of the graph.

But first of all, let’s define the expansion of a graph. This is just a convenient way to write the
combinatorial definition of an expander.

Definition 12 Let G = (V,E) be a d-regular graph with n vertices. We define the expansion h(S) of a
cut (S, S̄):

h(S) =
E(S, S̄)

d ·min{|S|,
∣∣S̄∣∣}

We also define the expansion h(G) of the graph G:

h(G) = min
S⊂V

h(S)
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Theorem 13 (Cheeger’s Inequalities)

1− λ2
2

≤ h(G) ≤
√

2(1− λ2)

Since being an ε-expander is equivalent to ε ≤ h(G), these inequalities are a useful tool to prove that
a given graph is (or not) an expander, through algebraic methods. Namely, the first inequality says that
G is an expander if λ2 < 1. These inequalities are a link between the algebraic definition of expanders
and its combinatorial counterpart.

In this lecture, we will prove only the ”easy” direction, that is, the first inequality:

1− λ2
2

≤ h(G)

To achieve this, we introduce the sparsity of a cut (S, S̄):

Definition 14 Let G = (V,E) be a d-regular graph with n vertices. We define the sparsity φ(S) of a
cut (S, S̄):

φ(S) =
E(S, S̄)
d
n |S|

∣∣S̄∣∣
We also define the sparsity φ(G) of the graph G:

φ(G) = min
S⊂V

φ(S)

Note that for any S, either |S| ≥ n
2 or

∣∣S̄∣∣ ≥ n
2 . If, for instance,

∣∣S̄∣∣ ≥ n
2 , then:

1

n
|S|
∣∣S̄∣∣ ≥ 1

2
|S| ≥ 1

2
min{|S|,

∣∣S̄∣∣}
This implies that φ(S)

2 ≤ h(S) for any S. We shall therefore prove this direction of the inequality by
proving the following claim.

Claim 15
1− λ2 ≤ φ(G)

Proof Let S be the set of vertices that minimizes φ(S) and x be the characteristic vector of S, defined
by:

xi =

{
1 if i ∈ S
0 otherwise

The value E(S, S̄) is the number of edges between S and its complementary. An edge (i, j) is between
S and its complementary if and only if (xi = 1 and xj = 0) or (xi = 0 and xj = 1). Therefore, we can
write:

E(S, S̄) =
∑

(i,j)∈E

|xi − xj | =
∑

(i,j)∈E

(xi − xj)2

The second equality comes from the fact that |xi − xj | can only be 0 or 1. We can introduce the
adjacency matrix in this expression; we just have to be careful because we will count each edge twice.

E(S, S̄) =
1

2

∑
i,j

Aij(xi − xj)2 =
d

2

∑
i,j

Mij(xi − xj)2
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Similarly, we can view the product |S|
∣∣S̄∣∣ as the number of edges in the complete bipartite graph

S ∪ S̄ and write:
d

n
|S|
∣∣S̄∣∣ =

d

2n

∑
i,j

(xi − xj)2

Since the difference xi−xj does not change if we add a constant vector to x, let’s define y to be x+ c
where c is chosen so that

∑n
i=1 yi = 0. The intention behind this choice is to make sure y is orthogonal

to v1.
Now recall the value we are interested in is:

φ(S) =
E(S, S̄)
d
n |S|

∣∣S̄∣∣
We will simplify separately the denominator and the numerator.

The denominator

d

n
|S|
∣∣S̄∣∣ =

d

2n

∑
i,j

(xi − xj)2

=
d

2n

∑
i,j

(yi − yj)2

=
d

2n

 n∑
i=1

n∑
j=1

y2i +

n∑
i=1

n∑
j=1

y2j − 2

n∑
i=1

n∑
j=1

yiyj


=

d

2n

 n∑
i=1

ny2i +

n∑
j=1

ny2j − 2

(
n∑
i=1

yi

)2


We chose y specifically so that
∑n
i=1 yi = 0, therefore:

d

n
|S|
∣∣S̄∣∣ = d

n∑
i=1

y2i = dyT y

The numerator

E(S, S̄) =
d

2

∑
i,j

Mij(xi − xj)2

=
d

2

∑
i,j

Mij(yi − yj)2

=
d

2

 n∑
i=1

n∑
j=1

Mijy
2
i +

n∑
i=1

n∑
j=1

Mijy
2
j − 2

n∑
i=1

n∑
j=1

Mijyiyj


Since Mij is a doubly-stochastic matrix, we know that the sum of Mij along a row or a column is
equal to 1.

E(S, S̄) =
d

2

 n∑
i=1

y2i +

n∑
j=1

y2j − 2

n∑
i=1

n∑
j=1

Mijyiyj


= d

(
yT y − yTMy

)
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We finally get a nice expression:

φ(S) =
d
(
yT y − yTMy

)
dyT y

= 1− yTMy

yT y

Since we know that y is orthogonal to v1, we have the following:

yTMy

yT y
≤ max
x∈Rn:x⊥v1

xTMx

xTx
= λ2

We can now conclude:
φ(G) = φ(S) ≥ 1− λ2

5 Exercises

The first exercise will show the relation between the smallest eigenvalue and the bipartition of a graph.
The second exercise will prove that a random walk on a graph is rapidly mixing, if we can bound the
absolute value of every eigenvalue but λ1 away from 1.

Exercise 1 Given a connected d-regular graph G = (V,E) with n vertices, show that it is bipartite
if and only if λn = −1.

Solution First, let’s assume that G is bipartite, V = V1 ∪ V2. We consider the vector x defined by:

xi =

{
1 if i ∈ V1
−1 if i ∈ V2

Since every vertex in V1 has its neighbours in V2, and conversely, we have Mx = −x. Therefore, -1
is an eigenvalue for M and it has to be the smallest, since the absolute value of every eigenvalue of M
is bounded by 1. Hence λn = −1.

We now assume λn = −1 and we consider an eigenvector x associated with λn. Let xi = D be
the largest component of x in absolute value. Since (Mx)i = −xi is the average of the value of the d
neighbours of i, it means that those neighbours have to be associated with the value −D. The same
goes for the neighbours of the neighbours of i which have to be associated with the value D. Since the
graph is connected, we can extend the reasoning to every vertex.

We just proved that each component of x is either D or −D. Let V1 = {i : xi = D} and V2 =
{i : xi = −D}. We also proved that every neighbour of a vertex in V1 has to be in V2, and conversely.
Therefore, G is bipartite with V = V1 ∪ V2.

Exercise 2 Consider a d-regular graph G with |λi| ≤ 1− ε for all i ≥ 2. Show that a random walk
is rapidly mixing, i.e., that no matter from which vertex we start, after O(log n) steps we will be at any
vertex with probability ≈ 1

n . More formally, show that if we let x be the vector that is equal to 1 on the
vertex where the random walk starts, then∣∣∣∣∣∣∣∣Mkx−

(
1

n
, . . . ,

1

n

)∣∣∣∣∣∣∣∣
1

≤ o
(

1

n2

)
when k = c

ε log n for some constant c.
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What happens if it is a bipartite graph?

Solution Let’s assume, for the sake of simplicity, that we start from the vertex 1. Let (v1, . . . , vn),
where vi is an eigenvector for the eigenvalue λi, is an orthonormal basis. It means we can decompose x
on it:

x =

n∑
i=1

αivi

where αi = x · vi. In particular, α1 = x · v1 = 1√
n

. Since we also have
(
1
n , . . . ,

1
n

)
= 1√

n

(
1√
n
, . . . , 1√

n

)
,

we can write: ∣∣∣∣∣∣∣∣Mkx−
(

1

n
, . . . ,

1

n

)∣∣∣∣∣∣∣∣
1

=

∣∣∣∣∣
∣∣∣∣∣
n∑
i=2

αiλ
k
i vi

∣∣∣∣∣
∣∣∣∣∣
1

≤ (1− ε)k
∣∣∣∣∣
∣∣∣∣∣
n∑
i=2

αivi

∣∣∣∣∣
∣∣∣∣∣
1

So if we take k = c
ε log n and we write A = ||

∑n
i=2 αivi||1, we have:∣∣∣∣∣∣∣∣Mkx−

(
1

n
, . . . ,

1

n

)∣∣∣∣∣∣∣∣
1

≤ A(1− ε)
logn
ε c ≤ A

(
1

e

)c logn
=

A

nc

If we take c > 2, we obtain the result that we wanted.
In the case of a bipartite graph, the problem is that the probabilities are very different depending on

whether we did an even number of steps or not. To get back a random walk that will be rapidly mixing,
one solution is to use a lazy random walk, that is the same random walk, but with a prior probability
of 1

2 to stay where we are.
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