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Lecture 4

Lecturer: Ola Svensson Scribes: Pierre-Alain Dupont, Cyprien Mangin

1 Introduction

In the last lecture, we discussed bipartite expanders and their applications (error correcting codes,
saving randomness) from a graph-theoretic point of view. In this lecture, we will approach expanders in
a different way, through the graph’s underlying adjacency matrix. This approach will prove advantageous
in many applications.

2 Algebraic point of view of expanders

Let us remember the combinatorial definition of expanders:

Definition 1 (combinatorial point of view) B
An n-vertez, d-regular graph G = (V, E) is an e-edge expander if VS C V : |S| < n/2,|E(S,S)| > ed|S],
where E(S,S5) = {(u,v) € E:u e S,ve S}

There is an alternative definition for expander graphs, based on the algebraic properties of their
random walk matrix(to be defined later):

Definition 2 (algebraic point of view)
An n-vertex, d-reqular graph G is an e-edge expander if Ao < 1 — € where Ao is the second largest
eigenvalue of the random walk matriz of G.

In order to be able to analyze Ao, we need to know a bit more about what are the eigenvalues of an
adjacency matrix. The following section will therefore focus on common spectral graph theory results
before we can go back to expanders.

3 Spectral graph theory
3.1 Basics

Let us give some basic definitions:

Definition 3 The adjacency matriz A of graph G is a matriz such that A;; =1 if and only if (i,5) € E.

Definition 4 The normalized adjacency matriz(or random walk matriz) M of a d-regular graph is equal
to %A, with A being the adjacency matriz.
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Now, M has some special structure, which we will exploit:

Observation 5 M is a real symmetric matriz.

Observation 6 M is a doubly stochastic matriz, i.e., each of its rows sums to 1 and each of its columns
sums to 1.



The following is a fact derived using standard Linear Algebra:
Fact 7 If M € R™"*" is symmetric, then:
1. M has n non-necessarily distinct real eigenvalues A\ > Ao > ... > \,.

2. If vy is an eigenvector for Ay of length 1, then there exist (va,vs, ...v,) such that v; is an eigenvector

of \i and (v1,va,...,v,) are orthogonal.
This means that no matter how the first eigenvector vy is chosen, we can always find an orthonormal
basts.

Example: (using the same 4-cycle)
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Observation 8 Consider x € R™ which assigns a value x(v) to each vertex v € V and let y = Mz. In

general, y(v) = . z(du) , which is the average value according to x of v’s neighbours. This is a very
(u,v)EE

good intuition to keep in mind when dealing with spectral graph theory.

Lemma 9 Let M be the normalized adjacency matriz of a d-reqular graph G. Then:
0. \y =1.

1. Ay =1 < (G is disconnected.
More generally, |{i|\; = 1}| is the number of connected components in G.

2. \p = —1 <= one component of G is bipartite.
Proof
1 1
0. Since M =1x , 1 is an eigenvalue and therefore \;, the greatest of all eigenvalues,
1 1

must be greater or equal to 1.
Additionally, if we consider any eigenvector  and v € V such that x(v) is maximized and y = Mz,
we have y(v) = > % < ¥ % = z(v). Therefore, A; < 1.

(u,v)EE (u,v)EE
1. Not proved.
2. See exercise 1.



3.2 Eigenvalues as solutions to optimization problems

Next, we will see an alternative way to define the eigenvalues of a real symmetric matrix M, as the
solution to the problem of maximizing the Rayleigh quotient

e Mz
zTx
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Lemma 10 Given real summetric matriz M € R™ ™, A\ = max “Z%’”
r€R™ °

Proof

. T ay
1. First, let’s prove A\; < max Mz .
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2T Mz
2. Next, we need to prove A\; > max L
J’E]Rn Tt

Let y be the vector that attains the maximum value.

n
Since (v1,va,...,v,) is a basis, a1, ag, ..., an) 1y = > a;v;
i=1
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Lemma 11 Given real summetric matriz M € R™*™, Ay = max 7IITA£E$-

zER™:x vy

Proof Similar to the last lemma. Il

Note: Given a random walk matrix M of a d-regular n-vertex graph, if we pick v; = ,

s

S

n
zlv <= > x;=0.

i=1

4 Cheeger’s Inequalities

Now that we have seen some basic properties about adjencency matrices and eigenvalues, we shall show
that the second largest eigenvalue is very much related to the expansion properties of the graph. To do
so, we will prove Cheeger’s Inequalities, which provide bounds on the expansion of the graph.

But first of all, let’s define the expansion of a graph. This is just a convenient way to write the
combinatorial definition of an expander.

Definition 12 Let G = (V, E) be a d-regular graph with n vertices. We define the expansion h(S) of a
cut (S,5):
(5.5
h(S) = __ BG5S
d-min{|S|, |S]}
We also define the expansion h(G) of the graph G:

hG) = krgnclg h(S)



Theorem 13 (Cheeger’s Inequalities)

1?2 < h(G) <

2(1— A2)

Since being an e-expander is equivalent to € < h(G), these inequalities are a useful tool to prove that

a given graph is (or not) an expander, through algebraic methods. Namely, the first inequality says that
and its combinatorial counterpart.

G is an expander if Ay < 1. These inequalities are a link between the algebraic definition of expanders

In this lecture, we will prove only the "easy” direction, that is, the first inequality:

1—A
—"2 < (@)
2
To achieve this, we introduce the sparsity of a cut (5, .5):
Definition 14 Let G = (V, E) be a d-reqular graph with n vertices. We define the sparsity ¢(S) of a
cut (S,5):

We also define the sparsity ¢(G) of the graph G:

$(G) = min 6(S)

ScVv
Note that for any S, either |S| > 2 or |S| > 2. If, for instance, |S| > 2, then:
2 2 2

1 - 1 1
£|S|’S} 2 5|51 2 5 min{|S],
This implies that ¢(5)

2
proving the following claim.

S|}

< h(S) for any S. We shall therefore prove this direction of the inequality by
Claim 15

1- X2 <9(G)
by:

Proof Let S be the set of vertices that minimizes ¢(S) and x be the characteristic vector of .S, defined

1 ifieS
xXr; =
0 otherwise

The value E(S, S) is the number of edges between S and its complementary. An edge (i, 7) is between
S and its complementary if and only if (2; = 1 and z; = 0) or (z; = 0 and x; = 1). Therefore, we can
write:

E(S,8) = Y |lm—ajl= Y (w—w)
(i.J)€E (i.J)€E
The second equality comes from the fact that |z; — x| can only be 0 or 1. We can introduce the

adjacency matrix in this expression; we just have to be careful because we will count each edge twice.

1 d
(5.8) =3 D Aij(wi— ) = §ZMM(%‘ — ;)
2] 4,3



Similarly, we can view the product |S HS | as the number of edges in the complete bipartite graph

SU S and write: J J
E|SHS| ~ o Z(mz IJ)
i,j
Since the difference x; —x; does not change if we add a constant vector to z, let’s define y to be x+¢
where c is chosen so that Z?:l y; = 0. The intention behind this choice is to make sure y is orthogonal
to vy.
Now recall the value we are interested in is:

_ E(S,S)
4151|5]

¢(5)

We will simplify separately the denominator and the numerator.

The denominator

d el d 2
2¥)
d
:% ,.(yl_yj)2
2,7
d [ n o n n o n n o n
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_i:l j=1 i=1 j=1 i=1 j=1

d i n n n 2
S SEES oV hory
=1 j=1 i=1
We chose y specifically so that > ; y; = 0, therefore:

é Q| — - 2 T
—ISIIS|=d_vi=dy"y

=1

The numerator

- d
E(S, S) = 5 ZMU(xi — xj)2
0,J

d
=3 ZMij(yi —y;)?
0,7

d n n n n n n
) ZZMZJy12+ZZM1JyJ2 _QZZMijyiyj

i=1 j=1 i=1 j=1 i=1 j=1

Since M;; is a doubly-stochastic matrix, we know that the sum of M;; along a row or a column is
equal to 1.

E(S,9) = g STy -2 ) My,
i=1 i=1

i=1 j=1
=d(y"y—y" My)



We finally get a nice expression:

5(5) = d(y'y —y"™My) | y"My
dy™y yTy

Since we know that y is orthogonal to v1, we have the following:

TM xT Ma
y = Y < max 7 = A2
Yty xER™:xlvy X+ X

We can now conclude:

P(G) = (5) 21— Az

5 Exercises

The first exercise will show the relation between the smallest eigenvalue and the bipartition of a graph.
The second exercise will prove that a random walk on a graph is rapidly mixing, if we can bound the
absolute value of every eigenvalue but \; away from 1.

Exercise 1 Given a connected d-regular graph G = (V, E) with n vertices, show that it is bipartite
if and only if A, = —1.

Solution First, let’s assume that G is bipartite, V = V; U V5. We consider the vector = defined by:

m__l ifiew
=1 ifie Vs

Since every vertex in V has its neighbours in V5, and conversely, we have Mx = —x. Therefore, -1
is an eigenvalue for M and it has to be the smallest, since the absolute value of every eigenvalue of M
is bounded by 1. Hence A, = —1.

We now assume A\, = —1 and we consider an eigenvector z associated with A,. Let xz; = D be
the largest component of x in absolute value. Since (Mz); = —z; is the average of the value of the d
neighbours of 7, it means that those neighbours have to be associated with the value —D. The same
goes for the neighbours of the neighbours of ¢ which have to be associated with the value D. Since the
graph is connected, we can extend the reasoning to every vertex.

We just proved that each component of x is either D or —D. Let Vi = {i : ; = D} and V5 =

{i: x; = —=D}. We also proved that every neighbour of a vertex in V; has to be in V5, and conversely.
Therefore, G is bipartite with V = V; U V5.
|

Exercise 2 Consider a d-regular graph G with |\;| <1 — € for all ¢ > 2. Show that a random walk
is rapidly mixing, i.e., that no matter from which vertex we start, after O(logn) steps we will be at any
vertex with probability &~ % More formally, show that if we let = be the vector that is equal to 1 on the
vertex where the random walk starts, then

< 1
1 ’ ("2>

1 1
HMk,T— (7...,)
n n

when k = £logn for some constant c.




What happens if it is a bipartite graph?

Solution Let’s assume, for the sake of simplicity, that we start from the vertex 1. Let (v1,...,v,),
where v; is an eigenvector for the eigenvalue );, is an orthonormal basis. It means we can decompose x
on it:

n
T = Z ;U5
i=1
where o; = z - v;. In particular, oy = = - v; = —=. Since we also have (l l) =1 (L L
) i » 1 1 NG nyt v \vn o yn )
we can write:
1 1 n n
HMka:— <n"”7n) 1 = Zai)\fvi <(1—e)F Zaivi
=2 1 1=2 1
So if we take k = £logn and we write A = ||}, ovi]|;, we have:
1 1 osn 1\“¢" 4
Mo — () < A1- " cg() _4
n n 1 e ne

If we take ¢ > 2, we obtain the result that we wanted.

In the case of a bipartite graph, the problem is that the probabilities are very different depending on
whether we did an even number of steps or not. To get back a random walk that will be rapidly mixing,
one solution is to use a lazy random walk, that is the same random walk, but with a prior probability
of % to stay where we are.

]



