
Topics in Theoretical Computer Science March 9, 2015

Lecture 4 (based on [3] and [6])
Lecturer: Ola Svensson Scribes: Bartlomiej Dudek

1 Combinatorial Optimization: Bipartite Matchings and LPs

Last lecture:

• Bipartite Expanders (existence through probabilistic method, deterministic constructions exist)

• Applications: Error Correcting Codes, Saving Random Bits

In this lecture1 we shall start our journey into combinatorial optimization. We shall see

• Combinatorial Algorithm for Bipartite Matching (König’s theorem and Hall’s theorem)

• Linear programming (Extreme point structure)

• Minimum weight perfect matching

2 Basics: Matchings

Bipartite matching is a basic combinatorial optimization problem arising in many different applications,
like:

• scheduling - consider employees, jobs to do and each employee is capable of doing only certain jobs
- what is the biggest number of jobs that can be done simultaneously?

• ad allocation - for example Google AdWords use generalization of online bipartite matching prob-
lem to decide what ads to display with each query so as to maximize its revenue [1]

• chemistry - many properties of chemical compounds depend on perfect matching of their carbon
skeleton

• economy - stable allocation of goods, workers, spouses...

Definition 1 (Matching) For a graph G = (V,E) a matching M ⊆ E is a subset of the edges so that
every vertex v ∈ V is incident to at most one edge in M , i.e. |{e ∈M : v ∈ e}| ≤ 1 for all v ∈ V .

A matching M is perfect if every vertex is “matched”, that is every vertex is incident to exactly one
edge in M .

We will be interested in the following problems on bipartite graphs:

Maximum cardinality matching problem: Find a matching M of maximum size.

Minimum weight/cost perfect matching problem: Given a cost cij for all (i, j) ∈ E, find a
perfect matching of minimum cost where the cost of a matching M is given by c(M) =

∑
(i,j)∈M cij .

The same problems are also interesting on general graphs and efficient, but more complicated algo-
rithms exist, like Edmond’s blossom algorithm [2] that solves maximum cardinality matching problem
in general graphs in O(

√
|V | · |E|) time or a randomized approach [5] running in O(|V |ω) time, where ω

is the exponent of best known matrix multiplication algorithm (today ω ≈ 2.373) [7].

1Large parts of this lecture is based on http://math.mit.edu/ goemans/18433S11/matching-notes.pdf

1

1

2

3

4

5

6

7

8

9

10

Figure 1: The edges (1, 6), (2, 7), (3, 8) and (5, 10) form a matching (of maximum cardinality). Vertices
1, 2, 5, and 8 form a vertex cover (of minimum cardinality).

3 Maximum cardinality matching problem

3.1 Duality

Before giving an algorithm, perhaps an easier question is: how would you give a short proof that a given
matching is optimal?

For this purpose, one would like to find upper bounds on the size of the largest matching and hope
that the smallest of these upper bounds be equal to the size of the largest matching. This is a duality
concept that will be very important in this subject. In this case, the dual problem will be a famous
combinatorial optimization problem: vertex cover.

Vertex cover: A vertex cover is a set C of vertices so that all edges e of E are incident to at least one
edge in C. In other words, there is no edge completely contained in V \ C.

We clearly have the following:

|M | ≤ |C| for any matching M and vertex cover C.

This follows from the fact that, given any matching M , a vertex cover C must contain at least one
of the end points of each edge in M .

This is weak duality : The maximum size of a matching is at most the minimum size of a vertex cover.
We shall in fact prove strong duality (that equality holds) for bipartite graphs:

Theorem 2 (König 1931) For any bipartite graph, the maximum size of a matching is equal to the
minimum size of a vertex cover.

The proof of this theorem will be algorithmic. It will give an efficient algorithm for both finding a
maximum size matching and a minimum size vertex cover of a bipartite graph. Note that whenever one
has min max statement as above, the problem lies in NP ∩ coNP which may indicate that it has an
efficient algorithm.

3.2 Algorithm

Recall that a path is a collection of edges (v0, v1), (v1, v2), . . . , (vk−1, vk) where the vi’s are distinct
vertices. We can simply represent a path as v0 − v1 − v2 − . . .− vk.

2

Definition 3 (Alternating path) An alternating path with respect to M is a path that alternates
between edges in M and edges in E \M .

Definition 4 (Augmenting path) An augmenting path with respect to M is an alternating path in
which the first and last vertices are unmatched.

1

2

3

4

5

6

Figure 2: The edges (3, 4), (4, 1), (1, 5), (5, 2), (2, 6) form an augmenting path

The definition of an augmenting path motivates the following algorithm:

Algorithm:

1. Initialization: let M = ∅

2. While exists an augmenting path P , update M = M∆P ≡ (M \ P) ∪ (P \M).

3. Return M .

Exercise 1 Devise an efficient algorithm for finding an augmenting path P (if one exists). What is the
total running time of the matching algorithm?

Solution
Recall, that the graph is bipartite so V = L ∪R and all edges are between L and R.
We can run from all unmatched vertices of L a BFS or DFS that goes from left to right using edges

from E \M and from right to left using edges from M . If it reaches an unmatched vertex in R we have
an augmenting path. Note, that it’s no difference from which “side” of graph we start our search - we’ll
end in the second.
Clearly, finding an augmenting path takes O(|V |+ |E|) time as we need to visit every edge at most once.
Furthermore maximum matching can have cardinality O(|V |) so the total running time of the matching
algorithm is O(|V | ∗ (|V |+ |E|)). 2

We now prove that the algorithm indeed finds a maximum matching. (The statement and proof is
taken from [3]).

Theorem 5 A matching M is maximum if and only if there are no augmenting paths with respect to
M .

Proof (By contradiction)
(⇒) Let P be some augmenting path with respect to M . Then M ′ = M∆P is matching of greater

cardinality than M . This contradicts the optimality of M .
(⇐) If M is not maximum, let M∗ be a maximum matching so that |M∗| > |M |. Let Q = M∆M∗.

Then
2It can be done even better: Hopcroft-Karp algorithm that finds many shortest augmenting paths in each iteration

simultaneously, runs in time O(
√
|V | · |E|). Very recently Aleksander Madry [4] further improved this running time for

sparse graphs.

3

• Q has more edges from M∗ than from M (since |M∗| > |M | implies that |M∗ \M | > |M \M∗|).

• Each vertex is incident to at most one edge in M ∩Q and one edge in M∗ ∩Q, so each vertex is
incident to 0, 1 or 2 edges from M∆M∗.

• Thus Q is composed of cycles and paths that alternate between edges from M and M∗.

• Therefore there must be some path with more edges from M∗ in it than from M (as in total in
Q there are more edges from M∗ than in M and cycles consist of the same number of edges from
M∗ and M). This path is an augmenting path with respect to M .

Hence, there must exist an augmenting path P with respect to M , which is a contradiction.

3.3 Proof of König’s Theorem

Consider a maximum matching M∗ of G = (A ∪ B,E). Let L the vertices reachable from unmatched
vertices in A by alternating paths with respect to M∗. The following proves König’s theorem.

(The proof is taken from [3].)

Lemma 6 We have that C∗ = (A \ L) ∪ (B ∩ L) is a vertex cover. Moreover, |C∗| = |M∗|.

Proof We first show that C∗ is a vertex cover. Suppose toward contradiction that it is not. Then
there is an edge e = (a, b) ∈ E with a ∈ A ∩ L and b ∈ B \ L. The edge cannot belong to the matching.
If it did then b should be in L because otherwise a would not be in L, but b /∈ L. Hence e ∈ E \M .
This however, implies that there is an alternating path from an unmatched vertex to b (namely go to a
and take the edge (a, b)) contradicting the fact that b 6∈ L.

To show the second part of the proof, we show that |C∗| ≤ |M∗|, since the reverse inequality is true
for any matching and any vertex cover. The proof follows from the following observations:

1. No vertex in A \ L is unmatched by the definition of L;

2. No vertex in B ∩ L is unmatched since this would imply the existence of an augmenting path
(which contradicts that M∗ is optimal).

3. There is no edge of the matching between a vertex a ∈ A \ L and a vertex b ∈ B ∩ L. Otherwise
a would be in L, because either the alternating path to b goes through a or we can extend it to
a from b.

These remarks imply that every vertex in C∗ is matched and moreover the corresponding edges of the
matching are distinct. Hence, |C∗| ≤ |M∗|.

3.4 Example of Algorithm

Here we can see augmenting paths (in red color) that are found in each iteration of the algorithm:

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

4

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

1

2

3

4

5

6

7

8

9

10

3.5 Exercises

(Exercises are taken from [3].)

Exercise 2 Deduce Hall’s theorem from König’s theorem:

Theorem 7 (Hall’35) Given a bipartite graph G = (A∪B,E) G has a matching of size |A| if and only
if for every S ⊆ A we have |N(S)| ≥ |S|, where N(S) = {b ∈ B|∃a ∈ S with (a, b) ∈ E}.

5

Proof Clearly right-hand-side is a necessary condition (otherwise we would have small proof that
there’s no matching of size |A|). To prove sufficiency let’s suppose that (i)|M∗| < |A| and we’ll show
that exists S : |N(S)| < |S|. From König’s theorem exists vertex cover C∗ s.t. |C∗| = |M∗|. Let
A′ = C∗ ∩A,B′ = C∗ ∩B, hence (ii)|A′|+ |B′| = |M∗|.

A'
B'

S=A\A'

Since A′ ∪ B′ is vertex cover, all neighbours of vertices in S = A \ A′ lie in B′, so (iii) N(S) ⊆ B′

and we have:

|S| = |A \A′| = |A| − |A′| > |M∗| − |A′| = |A′|+ |B′| − |A′| = |B′| ≥ N(S)

So finally we get: |S| > N(S) what proves that RHS from Hall’s theorem is both necessary and sufficient
for existence of matching of size |A|.

Exercise 3 Show that in any graph (not necessarily bipartite) the size of minimum vertex cover is at
most twice the size of maximum matching.

Solution Clearly taking all ends of edges from maximum matching gives us a vertex cover. Otherwise
suppose there is an edge e that has both ends unmatched, then our matching wasn’t maximum, because
we can extend it adding the edge e.

Exercise 4 An edge cover of a graph G = (V,E) is a subset R of E such that every vertex of V is
incident to at least one edge in R. Let G be a bipartite graph with no isolated veretx. Show that the
cardinality of the minimum edge cover R∗ of G is equal to |V | minus the cardinality of the maximum
matching M∗ of G. Give an efficient algorithm for finding the minimum edge cover of G. Is it also true
for non-bipartite graphs?

Solution Let’s consider a general graph, as the statement is true for all graphs.
Let R∗ - minimum edge cover, M∗ - maximum matching, V - set of vertices in G. We’ll bound the size
of edge cover from two sides:

Firstly, (i) |R∗| ≤ |M∗|+ (|V | − 2|M∗|) = |V | − |M∗| as we can take all edges from M∗ and one edge
from each unmatched vertex.

Secondly, let’s consider minimum edge cover R∗ and let M - maximum matching on G using edges
only from R∗.

There are |V | − 2|M | unmatched vertices and there is no edge in R∗ between any pair of them -
otherwise M won’t be maximal. As R∗ is an edge cover, for each unmatched vertex v there will be
exactly one edge in R∗ incident to v and one matched vertex.

Thus we have |R∗| = |M | + |V | − 2|M | = |V | − |M | ≥ |V | − |M∗| as |M | ≤ |M∗|, beacuse M∗ is
maximum matching using all edges E of G, not only those from R∗.
So we have that |V | − |M∗| ≤ |R∗| ≤ |V | − |M∗| so |R∗| = |V | − |M∗|.

In part (i) we showed how to construct an edge cover of that size: simply take all edges from M∗

and edges from each of unmatched vertex. We showed in Exercise 1 how to find maximum matching
it bipartite graphs in O(|V | · (|V | + |E|)) time and also mentioned how to do it faster. In [2] there’s
described an algorithm finding maximum matching in general graphs, but it’s more complicated.

6

4 Linear Programming

(Large parts of the following is taken from [6].)
A linear programing problem is the problem of finding values for variables that optimize a given

linear objective function, subject to linear constraints.
Let us state an LP problem.

Maximize x+ y

Subject to x+ y ≤ 2

y ≤ 1

x, y ≥ 0

The following figure shows the feasible area.

Feasible Solution

Definition 8 A linear programming problem is the problem of finding values for n variables x1, x2, . . . , xn ∈
R that minimize (or equivalently, maximize) a given linear objective function, subject to m linear con-
straints

minimize:
n∑

i=1

cixi

Subject to:
∑
i

ei,jxi = bj for j = 1, . . . ,m1∑
i

di,kxi ≥ gk for k = 1, . . . ,m2∑
i

fi,pxi ≤ lp for p = 1, . . . ,m3

where m1 +m2 +m3 = m.

4.1 Motivation

We see that Linear Programming is a very powerful tool - it can be used in many applications, industrial
and theoretical as well, like:

• obtaining an optimal production plan to maximize a profit of a factory

7

• modeling network flow problems (what is maximum possible flow that doesn’t exceed capacity of
each connection)

• microeconomics

• theory - many theoretical problems can be introduced as Integer Program (LP in which xi ∈ Z)
that can be relaxed to LP obtaining p.e. a good approximation of optimal result- we’ll see such
applications later in the course

4.2 Some history

It was first formalized and applied to problems in economics in the 1930s by Leonid Kantorovich. Kan-
torivich’s work was hidden behind the Iron Curtain (where it was largely ignored) and therefore unknown
in the West. Linear programming was rediscovered and applied to shipping problems in the early 1940s
by Tjalling Koopmans.
Simplex Method was published by George Dantzig in 1947: it is the first complete algorithm to solve
linear programming problems.
The principle is the following: we start from an extreme point and then we look at its neighbors. If one
of these is better we move to it and continue in the same way, else we stop. Once we stop, we can be
sure that we have an optimal solution, since we’re in a convex polytope. Even if it’s usually extremely
fast, we know some bad examples where this method visits an exponential number of extreme points
before to reach a solution, so this method does not always run in polynomial time.
Ellipsoid Method was studied by Leonid Khachiyan in the seventies.
This method is guaranteed to run in poly time (exactly poly(n,m, log(u)) where u is the largest constant)
but it is slow in practice.
We do a binary search for the optimal value of the objective function, so we can add the objective
function as a constraint, and just need to decide if there exists a feasible point. We start by taking an
ellipsoid surrounding the feasible area. We then check the center of the ellipsoid, if it’s inside the area
then we have our solution, else we identify a violated constraint, and cut our ellipsoid in two parts using
this constraint, and construct a new ellipsoid around the part of the old ellipsoid in which the constraint
is satisfied. We repeat this process until we find a feasible point or can be sure that the feasible area is
empty.
Interior point Method developed by Narendra Karmarkar in 1984.
In this Method we move in the region to find an OPT solution.

4.3 Extreme Points

Let us first define an extreme point:

Definition 9 A feasible solution is an extreme point if it cannot be written as a convex combination of
other feasible solutions.

Just to recall:

Definition 10 A convex combination of points x1, x2, ..., xn is a point of the form
∑n

i=1 λixi where the
real numbers λi satisfy

∑n
i=1 λi = 1 and ∀iλi ∈ [0, 1]

Now, we state a theorem about extreme points. Extreme points are important because sometimes
they have useful structural properties, which we can exploit to round LP solutions.

Theorem 11 If the feasible region is bounded, there always exists an optimum which is an extreme
point.

8

If the feasible region is not a bounded, then we might not have any extreme points. For example,
the following LP does not contain any extreme points.

Maximize y

Subject to y ≤ 1

y ≥ 0

Feasible Solution

Exercise 5 (LP-duality) Consider the problem of finding x1, x2, x3 ∈ R so as to

minimize 7x1 + x2 + 5x3

subject to x1 − x2 + 3x3 ≥ 10

5x1 + 2x2 − x3 ≥ 6

x1, x2, x3 ≥ 0

How can you give a short certificate that there is a solution of value 26?
How can you give a short certificate that there is no solution of value less than 26?

Solution Consider such a solution: x1 = 1.75, x2 = 0, x3 = 2.75. Clearly it meets all constraints and
it’s value is 26.

Now let’s multiply the first inequality by 2 and add it to the second and fourth obtaining:
7x1 + x2 + 5x3 ≥ 26 so that’s a short certificate that there is no solution of value less than 26.

5 Minimum Cost Perfect Matching

In this section we are going to concentrate on minimum cost bipartite perfect matching. The LP for this
problem is (we may assume the graph is complete bipartite, why?)

Minimize
∑
e∈E

xece

Subject to
∑

e=(a,b)∈E

xe = 1 ∀a ∈ A

∑
e=(a,b)∈E

xe = 1 ∀b ∈ B

xe ≥ 0 ∀e ∈ E

9

Claim 12 Any extreme point solution to Matching LP is integral.

Proof Let x∗ be an extreme point for the graph G = (V1, V2, E) and let Ef = {0 < x∗e < 1}. Suppose
towards contradiction that Ef 6= ∅. Note that Ef must then contain a cycle: indeed any vertex incident
to an edge in Ef is incident to at least two edges in Ef . All these edges are fractional and we want to

define y and z so that they are feasible solutions and x∗ = 1
2 (y + z). Let e1, e2, ..., e2k be the edges of

the cycle. Let y, z be

ye =

 x∗e + ε if e ∈ {e1, e3, e5, ..., e2k−1}
x∗e − ε if e ∈ {e2, e4, e6, ..., e2k}
x∗e otherwise

ze =

 x∗e − ε if e ∈ {e1, e3, e5, ..., e2k−1}
x∗e + ε if e ∈ {e2, e4, e6, ..., e2k}
x∗e otherwise

Now one need to choose such small ε that both y and z are feasible, so all the numbers ye and ze are
in [0, 1]. For example ε = min{min{x∗e, 1− x∗e} : e ∈ Ef} gives y and z feasible. Now one can easily see
that x∗ = 1

2 (y + z) what contradicts with assumption that x∗ is an extreme point.

Because of the above theorem, the polytope

P = {x :
∑

b:(a,b)∈E

x(a,b) = 1 a ∈ A

∑
a:(a,b)∈E

x(a,b) = 1 b ∈ B

x(a,b) ≥ 0 (a, b) ∈ E}

is called the bipartite perfect matching polytope.

Exercise 6 Show that the LP relaxation for matching is not an exact relaxation for non-bipartite graphs.
Then show that any extreme point is half-integral.

(Hint: use the fact that we can map every feasible point into a feasible point for the bipartite case
and vice-versa)

Solution Let’s write an LP for the maximum matching problem:

Maximize
∑
e∈E

xe

Subject to
∑

e=(a,b)∈E

xe = 1 ∀a ∈ V

xe ≥ 0 ∀e ∈ E

Here is an example showing that it is not an exact relaxation:

10

1 2

3

1

1 1

Because we take ∀e∈Ee = 1/2 that gives optimal value, but is not integral.

Half-integrality Now, considering LP for maximum matching in graph G we’ll think of it’s solutions
as points in a polytope PG formed by the given LP.
We just learned that all extreme points in PG are integral ifG is bipartite. To see that every extreme point
in polytope of general graph is half-integral, we need to consider such bipartite graph: H = (L ∪R,F),
where L = {uL : u ∈ V }, R = {uR : u ∈ V } and F = {(uL, vR) : (u, v) ∈ E} ∪ {(vL, uR) : (u, v) ∈ E}.

Let’s see how we can map feasible points from PG (let’s denote them as x) to feasible points (y) in
PH and vice-versa. The mapping will only “look” at correspoing edges:

G→ H : ∀(u, v) ∈ E : y(uL,vR) := y(vL,uR) := x(u,v)

H → G : ∀(u, v) ∈ E : x(u,v) :=
y(uL,vR) + y(vL,uR)

2

Observe that mapped points lie inside corresponding polytopes and mapping from G to H doubles
value of the objective function whilst mapping from H to G divides by 2.

x*

y

a b

c

a'
b'

c'

P :
G

P : H

y'

Suppose toward contradiction that there is an extreme point x∗ of polytope PG that is not half-
integral. It can be mapped to a point y ∈ PH that is not an extreme point (as it’s not integral), so it’s
a convex combination of 2|F | + 1 extreme integral points of PH (in the picture: a, b, c) 3. It’s easy to
see that integral points of PH are mapped to half-integral points of PG so y′ (mapping of y into PG) is
a convex combination of half-integral points of PG (here: a′, b′, c′). That leads to a contradiction with
assumption that x∗ is an extreme point, so all extreme points of PG are half-integral.

References

[1] A. Mehta, A. Saberi, U. Vazirani, V.Vazirani: AdWords and Generalized On-line Matching, 2007.

[2] J. Edmonds: Paths, trees, and flowers, 1965.

[3] Michel X. Goemans: Lecture notes on bipartite matching, 2009,
http://www-math.mit.edu/ goemans/18433S09/matching-notes.pdf
3Carathéodory’s theorem states that in d-dimensional space a convex hull enclosing the points consits of d+ 1 points

11

[4] Aleksander Madry: Navigating Central Path with Electrical Flows: From Flows to Matchings, and
Back, 2013.

[5] M. Mucha, P. Sankowski Maximum Matchings via Gaussian Elimination.

[6] Ashkan Norouzi-Fard, Christos Kalaitzis: Scribes of Lecture 9 in Topics in TCS 2014.
http://theory.epfl.ch/courses/topicstcs/Lecture9.pdf

[7] V. Vassilevska Williams Multiplying matrices in O(n2.373) time, 2012.

12

