Introduction

Recall last lecture:

- Circuits: non-uniform computational model; the size of a circuit is the number of gates.
- A language L is in $\text{SIZE}(T(n))$ if there exists a $T(n)$-size circuit family $\{C_n\}_{n \in \mathbb{Z}}$ such that for every $x \in \{0,1\}^n \leftrightarrow C_n(x) = 1$.
- For every language L, $L \in \text{SIZE}(O(2^n))$.
- At the same time almost all languages require circuits of size $\approx 2^n/n$. This followed from a counting argument.
- We let $P/poly := \bigcup_c \text{SIZE}(n^c)$.
- Kind of surprising at first, we showed that $P/poly$ contains undecidable languages. The key reason is that it is a non-uniform computational model (we have a different circuit for each input length $n \in \mathbb{N}$).
- We also showed that $P \subseteq P/poly$ by showing that for any language $L \in P$ (and any $n \in \mathbb{N}$) we can in polynomial time construct a circuit C_n of polynomial size such that $C_n(x) = 1 \iff x \in L$ for all $x \in \{0,1\}^n$.

Today:

- We first give an alternative proof of the Cook-Levin Theorem using circuits.
- We then discuss randomized computing. What problems have better randomized algorithms than deterministic ones?
- Different randomized complexity classes.
- Connecting randomization to circuits (Adleman’s Theorem).

Circuit Satisfiability and a proof of the Cook-Levin Theorem

Boolean circuits give an alternative proof of the central Cook-Levin Theorem that shows that 3-SAT is NP-complete.

Definition 1 (Circuit satisfiability or CKT-SAT) The language CKT-SAT consists of all (strings representing) circuits that produce a single bit of output and that have a satisfying assignment.
CKT-SAT is clearly in \(\text{NP} \) because the satisfying assignment can serve as the certificate. The Cook-Levin Theorem follows immediately from the next two lemmas.

Lemma 2 CKT-SAT is \(\text{NP} \)-hard.

Proof
- If \(L \in \text{NP} \) then there is a polynomial-time TM \(M \) and a polynomial \(p \) such that \(x \in L \) iff \(M(x, u) = 1 \) for some \(u \in \{0,1\}^{p(|x|)} \).
- The proof that \(\text{P} \subseteq \text{P/poly} \) yields a polynomial-time transformation from \(M, x \) to a circuit \(C \) such that \(M(x, u) = C(u) \) for every \(u \in \{0,1\}^{p(|x|)} \). Thus \(x \in L \) iff \(C \in \text{CKT-SAT} \).

Lemma 3 CKT-SAT \(\leq_p \) 3-SAT.

Proof Map a circuit \(C \) into a 3-SAT formula \(\varphi \) as follows:
- For every node/gate \(v_i \) of \(C \), we will have a corresponding variable \(z_i \) in \(\varphi \).
- If the node \(v_i \) is an AND of the nodes \(v_j \) and \(v_k \) then we add to \(\varphi \) the clauses that are equivalent to the condition \(z_i = (z_j \land z_k) \).
- Similarly, if \(v_i \) is an OR of \(v_j \) and \(v_k \) we add the clauses that are equivalent to \(z_i = (z_j \lor z_k) \).
- And, if \(v_i \) is the NOT of \(v_j \) then we add the clauses that are equivalent to \(z_i = \neg z_j \).
- Finally, if \(v_i \) is the output node of \(C \) then we add the clause \((z_i) \) to \(\varphi \).
- It is not hard to see that the formula \(\varphi \) is satisfiable iff the circuit \(C \) is. Moreover, the reduction runs in polynomial time.

3 Randomized computation

As this is a complexity course, we wish to understand the power of computing when we are allowed to flip a coin.

Let us first define randomized computation formally using probabilistic TMs.

Definition 4 A probabilistic Turing machine (PTM) is a TM with two transition functions \(\delta_0 \) and \(\delta_1 \). To execute a PTM \(M \) on an input \(x \), we choose in each step with probability 1/2 to apply the transition function \(\delta_0 \) and with probability 1/2 to apply the transition function \(\delta_1 \). The machine only outputs 1 (“Accept”) or 0 (“Reject”).

This definition is a little abstract at first. It is indeed hard to design algorithms when thinking in this low level abstraction. The following less formal but intuitive definition can be helpful: A randomized algorithm is an algorithm that has the ability to toss coins.
3.1 Some examples of randomized algorithms

3.1.1 Finding a median

Given \(n \) integers \(a_1, \ldots, a_n \) how do you find the median by a fast algorithm?

The standard way is to solve the following slightly more general problem: Given integers \(a_1, \ldots, a_n \) and \(1 \leq k \leq n \), find the \(k \) largest integer.

The randomized algorithm is recursive and works as follows

1. Pick a random \(i \in [n] \) and let \(x = a_i \).
2. Scan the list \(\{a_1, \ldots, a_n\} \) and count the number \(m \) of \(a_i \)'s such that \(a_i \leq x \).
3. If \(m = k \), then output \(x \).
4. Otherwise, if \(m > k \), then copy to a new list \(L \) all elements such that \(a_i < x \) and find the \(k \)-th largest integer in \(L \) (which is a smaller instance).
5. Otherwise (if \(m < k \)) copy to a new list \(H \) all elements such that \(a_i > x \) and find \(k - m \)-th largest integer in \(H \) (which again is a smaller instance).

An analysis similar to the analysis of QuickSort shows that this algorithm runs in expected linear time. There is also a deterministic algorithm that runs in linear time but it is much more involved and harder/slower to implement.

3.1.2 Polynomial identity testing

How do you efficiently check whether two polynomials \(P \) and \(Q \) are identical?

This is equivalent to checking whether a single polynomial is equal to zero, i.e., check whether \(P - Q \equiv 0 \).

We assume the polynomials are given implicitly (think determinant, permanent). Note that e.g. the polynomial \(\prod_{i=1}^{n}(1 + x_i) \) can be evaluated efficiently but has \(2^n \) many terms. This means that to check whether a polynomial is equivalent to 0 we can not afford to write out all the terms.

The simple randomized algorithm is based on the Schwartz-Zippel Lemma:

Lemma 5 Let \(p(x_1, \ldots, x_m) \) be a nonzero polynomial of total degree at most \(d \). Let \(S \) be a finite set of integers. Then, if \(a_1, \ldots, a_m \) are randomly chosen from \(S \), then

\[
\Pr[p(a_1, a_2, \ldots, a_m) \neq 0] \geq 1 - \frac{d}{|S|}.
\]

This suggest the following simple algorithm to check whether a polynomial \(p \) of degree \(d \) is equivalent to 0:

1. Choose \(a_1, \ldots, a_m \) at random from \(\{1, \ldots, 3d\} \).
2. Output that the polynomial is equivalent to 0 if \(p(a_1, \ldots, a_m) = 0 \).

Note that the algorithm is always correct if \(p \equiv 0 \). If \(p \neq 0 \) then by Lemma 5 it succeeds with probability at least \(2/3 \). This probability can be boosted by repeating the algorithm more times.

It remains a major open problem to find an efficient deterministic algorithm for polynomial identity testing.
4 Two-sided, One-sided and Zero-Sided Error

In our examples, we saw different types of randomized algorithms. One that always reported a true answer with expected polynomial time running time. Another that always run in polynomial time but could with a small probability output the wrong answer. Let’s make these differences formal.

Definition 6 (Two-sided error) Let $\text{BPTIME}(T(n))$ be the class of languages that contain language L if there is a probabilistic TM M running in time $T(n)$ satisfying

$$\Pr[M(x) = L(x)] \geq \frac{2}{3} \quad \text{for every } x \in \{0,1\}^*.$$

Let $\text{BPP} = \cup_c \text{BPTIME}(n^c)$.

Definition 7 (One-sided error) $\text{RTIME}(T(n))$ contains every language L for which there is a probabilistic TM M running in $T(n)$ time such that

$$x \in L \Rightarrow \Pr[M(x) = 1] \geq \frac{2}{3}$$

$$x \notin L \Rightarrow \Pr[M(x) = 0] = 1.$$

Let $\text{RP} = \cup_c \text{RTIME}(n^c)$.

We also define the class capturing the other one-sided error (on inputs not in the language) as $\text{coRP} = \{L : \bar{L} \in \text{RP}\}$.

• Note that polynomial identity testing is in coRP.

Definition 8 (Zero-sided error) The class $\text{ZTIME}(T(n))$ contains all the languages for which there is a machine M that runs in expected time $O(T(n))$ such that for every input x, whenever M halts on x, we have $M(x) = L(x)$.

Define $\text{ZPP} = \cup_c \text{ZTIME}(n^c)$.

• Finding the median is morally in ZPP. (Only morally, since we didn’t define it as a decision problem.)

5 Exercises

Exercise 1 Show that $\text{RP} \subseteq \text{NP}$.

Exercise 2 Show that $\text{BPP} \subseteq \text{EXP}$.

Embarrassingly, it is not known whether BPP is a strict subset of NEXP even though it is believed that $\text{BPP} = \text{P}$.

Exercise 3 Let $L \in \text{BPP}$. Show that there is a polynomial time probabilistic TM M such that

$$\Pr[M(x) = L(x)] \geq 1 - \frac{1}{2|x|+1}.$$

6 Error reduction: solution to Exercise 3

• You may have wondered why the constant $2/3$ came up in the definition of BPTIME and RTIME.

• Well it is an arbitrary choice and it doesn’t really matter because we can always improve our error probability by repetition.
To see that let us prove Exercise 3.

- As \(L \) is in \(\text{BPP} \), there is a polynomial time probabilistic TM \(M' \) such that \(\Pr[M(x) = L(x)] = 2/3 \).

- The machine \(M \) simply does the following:

 For every input \(x \in \{0,1\}^* \), run \(M'(x) \) for \(k = 100|x| \) times obtaining outputs \(y_1, \ldots, y_k \in \{0,1\} \). If the majority of these outputs is 1, then output 1; otherwise, output 0.

- To analyze \(M \), define for every \(i \in [k] \) the random indicator variable \(X_i \) to equal 1 if \(y_i = L(x) \) and to equal 0 otherwise.

- Note that \(X_1, \ldots, X_k \) are independent Boolean random variables with \(E[X_i] = \Pr[X_i = 1] = 2/3 \).

- Note also that our algorithm returns the right answer if \(X_1 + X_2 + \cdots + X_k > k/2 \).

- Let \(\mu = E[X_1 + \cdots + X_k] = 2k/3 \). Now applying a Chernoff bound yields that

 \[
 \Pr[M \text{ outputs incorrect answer}] \leq \Pr\left[\left| \sum_{i=1}^{k} X_i - \mu \right| \geq 1/4 \mu \right] < e^{-\Omega(\mu)} < 2^{-(n+1)},
 \]

 by the choice of \(k \).

- Hence, we have defined a polynomial time probabilistic TM \(M \) such that

 \[
 \Pr[M(x) = L(x)] \geq 1 - \frac{1}{2^{n+1}} \quad \text{for all } x \in \{0,1\}^*.
 \]

Notice that we can further improve the error probability by increasing the number of repetitions.

7 Adleman’s Theorem: \(\text{BPP} \subseteq \text{P}/\text{poly} \)

- As previously stated, it is believed that \(\text{P} = \text{BPP} \).

- Therefore, we should expect that \(\text{BPP} \subseteq \text{P}/\text{poly} \) since \(\text{P} \subseteq \text{P}/\text{poly} \).

Theorem 9 (Adleman’78) \(\text{BPP} \subseteq \text{P}/\text{poly} \).

Proof

- Let \(L \in \text{BPP} \). By Exercise 3, there exists a probabilistic TM \(M \) such that on inputs of length \(n \) satisfies

 \[
 \Pr[M(x) = L(x)] \geq 1 - \frac{1}{2^{n+1}},
 \]

- Here, the probability is over the random/probabilistic choices of \(M \). If we let \(M(x, r) \) denote the execution of \(M \) with random choices \(r \in \{0,1\}^{\text{poly}(n)} \). Then we can write this probability as

 \[
 \Pr_r[M(x, r) = L(x)] \geq 1 - \frac{1}{2^{n+1}} \quad \text{or equivalently as} \quad \Pr_r[M(x, r) \neq L(x)] < \frac{1}{2^{n+1}}.
 \]

- Now consider all inputs \(x \in \{0,1\}^n \) of length \(n \). Then a simple union bound yields

 \[
 \Pr_r[M(x, r) \neq L(x) \text{ for all } x \in \{0,1\}^n] \leq \sum_{x \in \{0,1\}^n} \Pr_r[M(x, r) \neq L(x)] < 2^n \cdot \frac{1}{2^{n+1}} = 1/2.
 \]
This means that for each \(n \in \mathbb{N} \), there exist random choices \(r_n \in \{0, 1\}^{\text{poly}(n)} \) such that
\[
M(r_n, x) = L(x) \quad \text{for all } x \in \{0, 1\}^n.
\]

As \(M(r_n, \cdot) \) is a deterministic polynomial time execution we can write down a polynomial size circuit \(C_n \) (in the same way we did last lecture) so that
\[
C_n(x) = M(r_n, x) = L(x) \quad \text{for all } x \in \{0, 1\}^n.
\]

It follows that \(L \) has a polynomial sized circuit family \(\{C_n\}_{n \in \mathbb{N}} \), which completes the proof.

8 Some comments

- Randomization seems to help when designing algorithms from an intuitive point of view.
- However, it is believed that it does not change the power of polynomial time computation, i.e., that \(P = BPP \).
- It is actually open to prove that \(BPTIME(n) \subset BPTIME(n^{100}) \) and \(BPP \subseteq NEXP \).
- Moreover, it is known that in order to prove \(P = BPP \) one also has to prove new interesting circuit lower bounds.
- We are thus quite far from proving \(P = BPP \) but at least we could show that \(BPP \) has polynomial size circuits.
- \(P/\text{poly} \) is a mysterious class. We know that \(NP \not\subseteq P/\text{poly} \) would imply \(P \neq NP \). However, is that reasonable to expect as \(P/\text{poly} \) also contains undecidable languages? In the next lecture, we will show that this is indeed reasonable to expect because otherwise something called the polynomial hierarchy collapses (Karp-Lipton Theorem).
- This gives the hope that we can resolve the \(P \) vs \(NP \) question by studying circuits. However, Razborov showed that such a proof would need to not be “natural”.
- We can then continue to discuss circuit lower bounds in restricted models or start with interactive proofs. Any opinions?

9 Exercise

Exercise 4

1. Prove that a language \(L \) is in \(ZPP \) iff there exists a polynomial-time PTM \(M \) with outputs in \(\{0, 1, ?\} \) such that for every \(x \in \{0, 1\}^* \), with probability 1, \(M(x) \in \{L(x), ?\} \) and \(\Pr[M(x) = ?] \leq 1/2 \).

2. Show that \(ZPP = RP \cap \text{coRP} \).