
Topics in Theoretical Computer Science March 14, 2016

Lecture 4 (Notes)
Lecturer: Ola Svensson Scribes: Ola Svensson

Disclaimer: These notes were written for the lecturer only and may contain inconsistent notation,
typos, and they do not cite relevant works. They also contain extracts from the two main inspirations
of this course:

1. The book Computational Complexity: A Modern Approach by Sanjeev Arora and Boaz Barak;

2. The course http://theory.stanford.edu/ trevisan/cs254-14/index.html by Luca Trevisan.

1 Introduction

Recall last lecture:

• Circuits: non-uniform computational model; the size of a circuit is the number of gates.

• A language L is in SIZE(T (n))) if there exists a T (n)-size circuit family {Cn}n∈Z such that for
every x ∈ {0, 1}n ⇔ Cn(x) = 1.

• For every language L, L ∈ SIZE(O(2n)).

• At the same time almost all languages require circuits of size ≈ 2n/n. This followed from a counting
argument.

• We let P/poly := ∪cSIZE(nc).

• Kind of surprising at first, we showed that P/poly contains undecidable languages. The key

reason is that it is a non-uniform computational model (we have a different circuit for each input
length n ∈ N).

• We also showed that P ⊆ P/poly by showing that for any language L ∈ P (and any n ∈ N) we

can in polynomial time construct a circuit Cn of polynomial size such that Cn(x) = 1⇔ x ∈ L for
all x ∈ {0, 1}n.

Today:

• We first give an alternative proof of the Cook-Levin Theorem using circuits.

• We then discuss randomized computing. What problems have better randomized algorithms than
deterministic ones?

• Different randomized complexity classes.

• Connecting randomization to circuits (Adleman’s Theorem).

2 Circuit Satisfiability and a proof of the Cook-Levin Theorem

Boolean circuits give an alternative proof of the central Cook-Levin Theorem that shows that 3-SAT is
NP-complete.

Definition 1 (Circuit satisfiability or CKT-SAT) The language CKT-SAT consists of all (strings
representing) circuits that produce a single bit of output and that have a satisfying assignment.

1

CKT-SAT is clearly in NP because the satisfying assignment can serve as the certificate. The
Cook-Levin Theorem follows immediately from the next two lemmas.

Lemma 2 CKT-SAT is NP-hard.

Proof

• If L ∈ NP then there is a polynomial-time TM M and a polynomial p such that x ∈ L iff
M(x, u) = 1 for some u ∈ {0, 1}p(|x|).

• The proof that P ⊆ P/poly yields a polynomial-time transformation from M,x to a circuit C

such that M(x, u) = C(u) for every u ∈ {0, 1}p(|x|). Thus x ∈ L iff C ∈ CKT-SAT.

Lemma 3 CKT-SAT ≤p 3-SAT.

Proof Map a circuit C into a 3-SAT formula ϕ as follows:

• For every node/gate vi of C, we will have a corresponding variable zi in ϕ.

• If the node vi is an AND of the nodes vj and vk then we add to ϕ the clauses that are equivalent
to the condition zi = (zj ∧ zk).

• Similarly, if vi is an OR of vj and vk we add the clauses that are equivalent to zi = (zj ∨ zk).

• And, if vi is the NOT of vj then we add the clauses that are equivalent to zi = ¬zj .

• Finally, if vi is the output node of C then we add the clause (zi) to ϕ.

• It is not hard to see that the formula ϕ is satisfiable iff the circuit C is. Moreover, the reduction
runs in polynomial time.

3 Randomized computation

As this is a complexity course, we wish to understand the power of computing when we are allowed to
flip a coin.

Let us first define randomized computation formally using probabilistic TMs.

Definition 4 A probabilistic Turing machine (PTM) is a TM with two transition functions δ0 and δ1.
To execute a PTM M on an input x, we choose in each step with probability 1/2 to apply the transition
function δ0 and with probability 1/2 to apply the transition function δ1. The machine only outputs 1
(“Accept”) or 0 (“Reject”).

This definition is a little abstract at first. It is indeed hard to design algorithms when thinking in this
low level abstraction. The following less formal but intuitive definition can be helpful: A randomized
algorithm is an algorithm that has the ability to toss coins.

2

3.1 Some examples of randomized algorithms

3.1.1 Finding a median

Given n integers a1, . . . , an how do you find the median by a fast algorithm?
The standard way is to solve the following slightly more general problem: Given integers a1, . . . , an

and 1 ≤ k ≤ n, find the k largest integer.
The randomized algorithm is recursive and works as follows

1. Pick a random i ∈ [n] and let x = ai.

2. Scan the list {a1, . . . , an} and count the number m of ai’s such that ai ≤ x.

3. If m = k, then output x.

4. Otherwise, if m > k, then copy to a new list L all elements such that ai < x and find the k:th
largest integer in L (which is a smaller instance).

5. Otherwise (if m < k) copy to a new list H all elements such that ai > x and find k−m:th largest
integer in H (which again is a smaller instance).

An analysis similar to the analysis of QuickSort shows that this algorithm runs in expected linear
time. There is also a deterministic algorithm that runs in linear time but it is much more involved and
harder/slower to implement.

3.1.2 Polynomial identity testing

How do you efficiently check whether two polynomials P and Q are identical?
This is equivalent to checking whether a single polynomial is equal to zero, i.e., check whether

P −Q ≡ 0.
We assume the polynomials are given implicitly (think determinant, permanent). Note that e.g. the

polynomial
∏n
i=1(1 + xi) can be evaluated efficiently but has 2n many terms. This means that to check

whether a polynomial is equivalent to 0 we can not afford to write out all the terms.
The simple randomized algorithm is based on the Schwartz-Zippel Lemma:

Lemma 5 Let p(x1, . . . , xm) be a nonzero polynomial of total degree at most d. Let S be a finite set of
integers. Then, if a1, . . . , am are randomly chosen from S, then

Pr[p(a1, a2, . . . , am) 6= 0] ≥ 1− d

|S|
.

This suggest the following simple algorithm to check whether a polynomial p of degree d is equivalent
to 0:

1. Choose a1, . . . , am at random from {1, . . . , 3d}.

2. Output that the polynomial is equivalent to 0 if p(a1, . . . , am) = 0.

Note that the algorithm is always correct if p ≡ 0. If p 6≡ 0 then by Lemma 5 it succeeds with
probability at least 2/3. This probability can be boosted by repeating the algorithm more times.

It remains a major open problem to find an efficient deterministic algorithm for polynomial identity
testing.

3

4 Two-sided, One-sided and Zero-Sided Error

In our examples, we saw different types of randomized algorithms. One that always reported a true
answer with expected polynomial time running time. Another that always run in polynomial time but
could with a small probability output the wrong answer. Let’s make these differences formal.

Definition 6 (Two-sided error) Let BPTIME(T (n)) be the class of languages that contain language
L if there is a probabilistic TM M running in time T (n) satisfying

Pr[M(x) = L(x)] ≥ 2/3 for every x ∈ {0, 1}∗.

Let BPP = ∪cBPTIME(nc).

Definition 7 (One-sided error) RTIME(T (n)) contains every language L for which there is a prob-
abilistic TM M running in T (n) time such that

x ∈ L⇒ Pr[M(x) = 1] ≥ 2/3

x 6∈ L⇒ Pr[M(x) = 0] = 1.

Let RP = ∪cRTIME(nc).
We also define the class capturing the other one-sided error (on inputs not in the language) as

coRP = {L : L̄ ∈ RP}.

• Note that polynomial identity testing is in coRP.

Definition 8 (Zero-sided error) The class ZTIME(T (n)) contains all the languages for which there
is a machine M that runs in expected time O(T (n)) such that for every input x, whenever M halts on
x, we have M(x) = L(x).

Define ZPP = ∪cZTIME(nc).

• Finding the median is morally in ZPP. (Only morally, since we didn’t define it as a decision
problem.)

5 Exercises

Exercise 1 Show that RP ⊆ NP.

Exercise 2 Show that BPP ⊆ EXP.

Embarrassingly, it is not known whether BPP is a strict subset of NEXP even though it is believed
that BPP = P.

Exercise 3 Let L ∈ BPP. Show that there is a polynomial time probabilistic TM M such that

Pr[M(x) = L(x)] ≥ 1− 1

2|x|+1
.

6 Error reduction: solution to Exercise 3

• You may have wondered why the constant 2/3 came up in the definition of BPTIME and RTIME.

• Well it is an arbitrary choice and it doesn’t really matter because we can always improve our error
probability by repetition.

4

To see that let us prove Exercise 3.

• As L is in BPP, there is a polynomial time probabilistic TM M ′ such that Pr[M(x) = L(x)] = 2/3.

• The machine M simply does the following:

For every input x ∈ {0, 1}∗, run M ′(x) for k = 100|x| times obtaining outputs y1, . . . , yk ∈
{0, 1}. If the majority of these outputs is 1, then output 1; otherwise, output 0.

• To analyze M , define for every i ∈ [k] the random indicator variable Xi to equal 1 if yi = L(x)
and to equal 0 otherwise.

• Note that X1, . . . , Xk are independent Boolean random variables with E[Xi] = Pr[Xi = 1] = 2/3.
Note also that our algorithm returns the right answer if X1 +X2 + · · ·+Xk > k/2.

• Let µ = E[X1 + . . . Xk] = 2k/3. Now applying a Chernoff bound yields that

Pr[M outputs incorrect answer] ≤ Pr

[
|
k∑
i=1

Xi − µ| ≥
1

4
µ

]
< e−Ω(µ) < 2−(n+1),

by the choice of k.

• Hence, we have defined a polynomial time probabilistic TM M such that

Pr[M(x) = L(x)] ≥ 1− 1

2n+1
for all x ∈ {0, 1}∗.

Notice that we can further improve the error probability by increasing the number of repetitions.

7 Adleman’s Theorem: BPP ⊆ P/poly
• As previously stated, it is believed that P = BPP.

• Therefore, we should expect that BPP ⊆ P/poly since P ⊆ P/poly.

Theorem 9 (Adleman’78) BPP ⊆ P/poly.

Proof

• Let L ∈ BPP. By Exercise 3, there exists a probabilistic TM M such that on inputs of length n
satisfies

Pr[M(x) = L(x)] ≥ 1− 1

2n+1
.

• Here, the probability is over the random/probabilistic choices of M . If we let M(x, r) denote the
execution of M with random choices r ∈ {0, 1}poly(n). Then we can write this probability as

Pr
r

[M(x, r) = L(x)] ≥ 1− 1

2n+1
, or equivalently as Pr

r
[M(x, r) 6= L(x)] <

1

2|x|+1
.

• Now consider all inputs x ∈ {0, 1}n of length n. Then a simple union bound yields

Pr
r

[M(x, r) 6= L(x) for all x ∈ {0, 1}n] ≤
∑

x∈{0,1}n
Pr
r

[M(x, r) 6= L(x)] < 2n · 1

2n+1
= 1/2.

5

• This means that for each n ∈ N, there exist random choices rn ∈ {0, 1}poly(n) such that

M(rn, x) = L(x) for all x ∈ {0, 1}n.

• As M(rn, ·) is a deterministic polynomial time execution we can write down a polynomial size
circuit Cn (in the same way we did last lecture) so that

Cn(x) = M(rn, x) = L(x) for all x ∈ {0, 1}n.

• It follows that L has a polynomial sized circuit family {Cn}n∈N, which completes the proof.

8 Some comments

• Randomization seems to help when designing algorithms from an intuitive point of view.

• However, it is believed that it does not change the power of polynomial time computation, i.e.,
that P = BPP.

• It is actually open to prove that BPTIME(n) (BPTIME(n100) and BPP (NEXP.

• Moreover, it is known that in order to prove P = BPP one also has to prove new interesting
circuit lower bounds.

• We are thus quite far from proving P = BPP but at least we could show that BPP has polynomial
size circuits.

• P/poly is a mysterious class. We know that NP 6⊆ P/poly would imply P 6= NP. However,
is that reasonable to expect as P/poly also contains undecidable languages? In the next lecture,
we will show that this is indeed reasonable to expect because otherwise something called the
polynomial hierarchy collapses (Karp-Lipton Theorem).

• This gives the hope that we can resolve the P vs NP question by studying circuits. However,
Razborov showed that such a proof would need to not be “natural”.

• We can then continue to discuss circuit lower bounds in restricted models or start with interactive
proofs. Any opinions?

9 Exercise

Exercise 4

1. Prove that a language L is in ZPP iff there exists a polynomial-time PTM M with outputs in
{0, 1, ?} such that for every x ∈ {0, 1}∗, with probability 1, M(x) ∈ {L(x), ?} and Pr[M(x) =?] ≤
1/2.

2. Show that ZPP = RP ∩ coRP.

6

