
Topics in Theoretical Computer Science March 20, 2014

Lecture 5
Lecturer: Ola Svensson Scribes: Cijo Jose & James Newling

1 Last week
In the last lecture we were introduced to ideas underlying spectral graph theory. In particular we saw
the close connection between the expansion properties of a d-regular graph (as introduced in Lecture
3) and the eigenvalues of a graph’s normalised adjacency matrix. Suppose that the n eigenvalues of a
d-regular graph G = (V,E) are,

λ1 ≥ λ2 ≥ . . . ≥ λn.
We saw that,

• λ1 = 1,

• λ2 = 1 if and only if G is disconnected, and

• λn = −1 if and only if G is bipartite.

We also proved the lower bound of Cheeger’s Inequality,

1− λ2

2 ≤ h(G) ≤
√

2(1− λ2),

where,

h(G) = min
S⊂V

h(S),

h(S) = E(S, S̄)
d ·min (S, S̄)

,

where E(S, S̄) is the number edges which connect a vertex in S to a vertex in S̄. Today we will prove
the upper bound (the “difficult” direction), which can be interpreted as saying that if the normalised
adjacency matrix M of G has a large second eigenvalue, then G can be split into two parts that are
poorly connected to each other, i.e. G is a poor expander.

2 Proving the Upper Bound of Cheeger’s Inequality
It will suffice to prove that there exists a set S ⊂ V such that h(S) ≤

√
2(1− λ2), as ∀S : h(G) ≤ h(S).

We will prove this by ‘averaging’1 over a particular set of subsets of V which we expect to have low
values of h, and show that this ‘average’ is bounded above by

√
2(1− λ2). Our choice for the set of

subsets will now be motivated informally,

2.1 Sets S for which we expect h(S) to be low.
Consider the second eigenvalue and a corresponding eigenvector of the normalised adjacency matrix M :
Mv2 = λ2v2. Initialise each vertex in V to its corresponding value in v2. The average value of the
neighbours of a vertex of value s is then λ2s. If λ2 is large (say 0.999) we then have that a vertex of
value s has a neighbour-average of 0.999s ≈ s, and thus we expect neighbour values to be around s.
Thus if we were to take S to be all vertices with v2 value less than some threshold t, we would expect
only vertices in S with a v2 value close to t to have an edge from S to S̄. This is illustrated in Figure 1,
where t is represented by the green line.

1meaning to be made precise in Section 2.2
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Figure 1: The vertices of G sorted by v2 value. Lines represent edges. When λ2 is close to 1 we expect
edges to mostly connect vertices close (in v2-value) to each other. Thus a cut which minimizes the
number of edges from S to S̄ (for a fixed size of S) should be of the form S = {v|v2(v) < t}. In this
figure, S contains only vertices to the left of the green line.
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2.2 An Algorithmic Proof
We present a simple algorithm which tries to return the best set of the form presented in 2.1. As we will
prove that the ‘average’ h value over such subsets is less than

√
2(1− λ2), the returned set must have

h less than
√

2(1− λ2) as well.

Algorithm: Spectral-Partitioning:

1. Input: graph G = (V,E) and vector x ∈ Rn

2. Sort the vertices of V in non-decreasing order of values in x, that is let V = {1, . . . , n} where
x1 ≤ x2 ≤ . . . ≤ xn.

3. Let i ∈ {1, . . . , n− 1} be such that h({1, . . . , i}) is minimum.

4. Output S = {1, . . . , i}.

Lemma 1 Let G = (V,E) be a d-regular graph, x ∈ Rn be a vector such that x ⊥ 1 and let M be the
normalized adjacency matrix of G. Define

δ :=
∑
ijMij(xi − xj)2

1
n

∑
i,j(xi − xj)2

and let S be the output of the algorithm on input G and x. Then

h(S) ≤
√

2δ.

Note that if we run the algorithm with the second eigenvector x = v2 then∑
ijMij(xi − xj)2

1
n

∑
ij(xi − xj)2 = 1− xTMx

xTx
= 1− λ2.

Therefore the above lemma implies the “difficult” direction of Cheeger’s Inequality. Note that our
algorithm does not necessarily return the optimal cut (call it OPT , that is the cut which minimises h
globally). Finding OPT is an NP-hard problem. Putting all this together we will finally have

1− λ2

2 ≤ OPT ≤ S ≤
√

2(1− λ2),

where S is the output of the algorithm on input G and v2.

2.2.1 Proof of Main Lemma

Our goal is to prove that there exists an i such that h({1, . . . , i}) ≤
√

2δ. We will do this by showing
that there exists a distribution D over sets S of the form {1, . . . , i} such that

ES∼D[ 1
dE(S, S̄)]

ES∼D[min{|S|, |S̄|}]
≤
√

2δ. (1)

We need to be careful since

ES∼D[ 1
dE(S, S̄)]

ES∼D[min{|S|, |S̄|}]
6= ES∼D

[
1
dE(S, S̄)

min{|S|, |S̄|}

]
, (2)

Moreover, it is certainly not true that the l.h.s. of (2) is a lower bound on the r.h.s. of (2). However,
we only need to show the existence of one set S for which
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1
dE(S, S̄)

min{|S|, |S̄|}
≤
√

2δ, (3)

and this can be done by rearranging (1) and using linearity of expectation to get

ES∼D
[

1
d
E(S, S̄)−

√
2δmin{|S|, |S̄|}

]
≤ 0,

from which will follow the existence of at least one S satisfying (3), which is all we need. Basically
we are using the fact that A+B

C+D ≥ min{A/C,B/D}. Let us now prove (1). From now on we will assume
(with motivation later) that

• xbn/2c = 0

• x2
1 + x2

n = 1.

These assumptions, while used exclusively to simplify the proof, can be seen as a preprocessing step of
the algorithm where first a constant is added such that the first assumption holds and then the vector is
scaled so that the second assumption holds.2 The output of the algorithm does not change under these
assumptions as the ordering of elements in x is unchanged. Also note that δ does not change.

We next define the distribution D over the sets of the form {1, . . . , i}, i ≤ n − 1 as the outcome of
the following random process:

• We pick a real value t in the range [x1, xn] with probability density function f(t) = 2|t|.

• We let S = {i : xi ≤ t}.

Claim 2 We have that ES∼D min{S, S̄} =
∑
x2
i .

Proof

• The probability that an element i ≤ n/2 belongs to the smallest set is exactly the probability that
t is in the range [xi, 0]. Note that this happens with probability

∫ 0
xi

2|t|dt = x2
i

• The probability that an element i > n/2 belongs to the smallest set is exactly the probability that
t is in the range [0, xi] which happens with probability x2

i .

• The claim now follows from linearity of expectation.

Claim 3 We have that ES∼D 1
dE(S, S̄) ≤

√
2δ
∑
i x

2
i

Note that this claim implies the Lemma as then

ES∼D[ 1
dE(S, S̄)]

ES∼D[min{|S|, |S̄|}]
≤
√

2δ
∑
i x

2
i∑

i x
2
i

≤
√

2δ

Proof Note that ES∼D[ 1
dE(S, S̄)] = 1

2
∑
ijMij Pr[(i, j) is cut by (S, S̄)]. What is Pr[(i, j) is cut]? It

is exactly the probability that t ∈ [xi, xj ]:
2This centering and scaling can be done assuming the input vector x is such that x ⊥ 1, but v2 ⊥ 1 so we’re safe. The

algorithm would fail if fed the vector v1, which makes sense as λ1 = 1 and we cannot have an upperbound h(G) ≤ 0.
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• If xi and xj are of the same sign this happens with probability |x2
1 − x2

2|

• If they are of different signs x2
1 + x2

2

• After some thinking, a good upper bound of both expressions is |xi − xj |(|xi|+ |xj |)

Therefore,

E
[

1
d
E(S, S̄)

]
≤ 1

2
∑
ij

Mij |xi − xj |(|xi|+ |xj |)

≤ 1
2

√∑
ij

Mij(xi − xj)2
√∑

ij

Mij(|xi|+ |xj |)2

where we have used the Cauchy-Schwarz Inequality to obtain the second line. We consider the two
rooted terms separately. We can use the definition of δ to introduce it into the first term,∑

ij

Mij(xi − xj)2 = δ
1
n

∑
ij

(xi − xj)2

= 2δ

∑
i

x2
i −

1
n

(∑
i

xi

)2


≤ 2δ
∑
i

x2
i .

For the second rooted term, we can upper bound (|xi|+ |xj |)2 by 2x2
i + 2x2

j (since 2a2 + 2b2− (a+ b)2 =
(a− b)2 ≥ 0). This gives us

E
(

1
d
E(S, S̄)

)
≤ 1

2

√∑
ij

Mij(xi − xj)2
√∑

ij

Mij(|xi|+ |xj |)2

≤ 1
2

√
2δ
∑
i

x2
i

√
4
∑
i

x2
i

=
√

2δ
∑
i

x2
i

where we have used the double-stochasticity of M to obtain the second line above.

3 Probabilistically Checkable Proofs(PCP)
In this section we will discuss probabilistically checkable proofs, an idea having huge implications in the
development of modern theoretical computer science. Before we jump into PCPs let us review some
fundamental concepts in computational complexity theory.

3.1 Preliminaries
Every decidable decision problem such as SAT can be represented as a language L, that is the set of all
inputs for which a verifier V gives the answer YES, when given the instance and an appropriate proof
as input. For example in the case of SAT the set of all satisfying assignments for a statement forms its
language.
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NP: A language L is in NP iff there exists a polynomial time verifier V which when given an x and
a proof Π of length poly(|x|) verifies whether x ∈ L, with the following properties:

• completeness: If x ∈ L then ∃ proof Π such that V Π(x) accepts.

• Soundness: If x 6∈ L then ∀ proofs Π, the verifier V Π(x) rejects.

In the definition of NP the deterministic verifier reads the entire proof and the completeness and
soundness hold with probability one. We now introduce the idea of a non-deterministic verifier, which
is complete in exactly the same sense as a deterministic verifier but with some probability accepts false
proofs.

This line of research was begun in the mid 80s by Goldwasser, Micali, and Rackoff [1, 2] and also
independently by Babai [3]. One important result in this area is the PCP theorem [4].

3.2 Probabilistically Checkable Proofs (PCPs)
PCP: A language L is in PCP(r, q) if there exists a probabilistic polynomial time verifier V which,
when given an instance x and a proof Π of length poly(|x|), proceeds as follows

1. Reads x and O(r) random bits.

2. Based on x and O(r) random bits, queries O(q) bits from Π.

3. Computes and either accepts or rejects with following properties,

• completeness: If x ∈ L then ∃ proof Π such that V Π(x) accepts with probability 1.
• Soundness: If x 6∈ L the ∀ proof Π, the verifier V Π(x) accepts with probability at most 1

2 .

Theorem 4 PCP Theorem: NP = PCP(log(n), 1)

We will not prove the PCP theorem in class (last year we did but it took 4 lectures), instead we will
prove (next week) a weaker result: NP = PCP(poly(n), 1).

Exercise 1 Prove that PCP(log(n), 1) ⊆ NP.

Solution Consider a language L ∈ PCP(log(n), 1), which by definition has a probabilistic polynomial
time verifier. The claim is that from this probabilistic verifier we can construct a deterministic verifier.
Given a proof Π and an input instance x, the deterministic verifier runs the probabilistic verifier for all
combinations of the clog(n) random bits, a total of 2clog(n) = nc runs, and accepts iff the PCP verifier
accepts for every bit strings. Since the probabilistic verifier runs in polynomial time and the number of
possible combinations is bounded by nc the deterministic verifier runs in polynomial time. Completeness
follows directly from the completeness of the probabilistic verifier. Soundness follows as for at least half
of the bit strings we have a rejection in the probabilistic verifier, and thus a rejection by the deterministic
verifier. In fact it suffices to use only nc/2 + 1 of the random bitstrings, as at least one of them will
reject.

Exercise 2 Given that GAP 3-SAT is NP-complete, prove that NP ⊆ PCP(logn, 1).

GAP 3-SAT instances are 3-SAT instances with the constraint that either they are satisfiable or no
more than 1− ε of the clauses can be satisfied simultaneously. Deciding whether a GAP 3-SAT instance
is satisfiable is in some sense easier than deciding if a general 3-SAT instance is satisfiable due to the
ε-gap separating the satisfiable instances from the non-satisfiable ones.
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Solution We will prove that GAP 3-SAT ∈ PCP(logn, 1). Then, as any problem in NP can be
reduced in polytime to GAP 3-SAT (GAP 3-SAT is NP-complete by assumption), we can construct a
probabilistic verifier for any problem in NP: First reduce it to GAP 3-SAT and use the verifier for that
problem (which we will now present).

We prove that GAP 3-SAT ∈ PCP(logn, 1). First consider reading logn random bits, and choosing
one of the n clauses accordingly (let the bits read be treated as the binary representation of the clause).
Read the 3 assignments in the proof which the clause uses. If the proof is correct, the clause is satisfied
(correctness). If the proof is incorrect there is a probability at most 1 − ε of accepting, since with
probability at least ε the randomly selected clause will be not satisfied. If ε < 0.5 this is not good
enough. To drive this probability down, we read d 1

ε e logn random bits from which we choose d 1
ε e

clauses. The resulting false acceptance rate is then (1− ε)d
1
ε e, which is strictly less than 1

2 . Thus GAP
3-SAT is in PCP(logn, 1) with constants Cr = d 1

ε e and Cq = 3d 1
ε e.
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