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1 Introduction

In the two last sessions, we saw the PCP-theorem, which states that NP= PCP(log(n), 1). The main
point of this lecture is to use this theorem to prove hardness of approximation results.

Indeed, thousands of problems have been proven to be NP-complete, which means that finding exact
solutions for them is very likely to be intractable. Therefore, when confronted which such problems, one
can use two different approaches. The first one would be to establish heuristics. That being the case
without any proven guarantees in general, and which behaves well on instances of the problem that are
encountered in practice. The second one is to use proven approximation algorithms.

We will give a definition of an approximation algorithm . We show as well that in some cases,
the PCP-theorem allows us to prove that there exists no such algorithms that perform well on a given
NP-hard problem, unless P=NP.

2 Approximation algorithms

Definition 1 An α-approximation algorithm for a given optimization problem is an algorithm which
can be run in polynomial time and which outputs a solution S such that:

• cost(S)
cost(Optimal solution) ≤ α if the problem is a minimization problem ;

• profit(S)
profit(Optimal solution) ≥ α if the problem is a maximization problem.

It is clear that we will have α > 1 for minimization problems and α < 1 for maximization problems.
It is possible to prove hardness of approximation results without using the PCP-theorem, as we are

going to see in the two following examples.

2.1 Hardness of travelling salesman problem (TSP)

An instance of TSP is a graph where each edge is labeled with a cost, that must be a positive or a null
real number. The expected output is a Hamiltonian path of minimal total cost in this graph.

What we are going to prove is that TSP falls into the worse category of approximation, that is:

Theorem 2 For any α ≥ 1, it is NP-hard to get an α-approximation of TSP.

Proof To prove this, we are going to introduce HAM, which is the problem of determining whether
a graph has an hamiltonian cycle. We will use the fact that HAM is NP-hard (we can notice that this
directly implies that TSP is NP-hard, since TSP asks for an Hamiltonian cycle in the graph). What
we need is a gap-introducing reduction from HAM to TSP, that is, a reduction from HAM to TSP.
Namely, from a graph G given as input to HAM, it builds a graph G′ such that:

• if G has an Hamiltonian cycle, then G′ has an Hamiltonian cycle with “low” cost.

• if G has non Hamiltonian cycle, then all Hamiltonian cycles of G′ have “high” cost.

The main idea is that knowing a sufficiently good approximation of the solution of TSP for an input
that we know to be in either the ”high cost” or ”low cost” category will enable us to determine in which
of the two categories it belongs. This means that a good approximation for TSP can be used to solve
HAM because it can distinguish between the two kind of outputs of our reduction.

To do this, we choose a constant M (that we will want to be very high) and we define our reduction
as follows:
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• The set of nodes of G′ is equal to the set of nodes of G.

• G′ is complete (all nodes are connected by an edge)

• The weight of an edge e of G′ is 1 if e is also an edge of G, and is M otherwise

We denote by n the number of nodes in G and G′. If there exists a Hamiltonian cycle in G, then the
same cycle has cost n in G′. Otherwise, any Hamiltonian cycles in G′ use at least one edge that does
not exist in G, thus it has a cost greater than M .

Now, suppose that we have an M
n -approximation of TSP. We denote by S the solution given by our

approximation with input G′. If G has a Hamiltonian cycle, then the optimal solution has cost n. As
such the cost of S is less than M . Otherwise, the optimal solution has cost greater than M , which means
that S also has a cost greater than M . Therefore, we can decide whether G had a Hamiltonian cycle by
looking at the cost of S, so our algorithm solves HAM. If M can be arbitrary, we can choose it as large
as we want, which proves our theorem.

Observation 3 Although we did not need the PCP-theorem to conclude, we were somehow “lucky” to be
able to manipulate the costs of the edges at will. This trick is not a general method since many NP-hard
problems, such as looking for the largest clique in a graph are purely combinatorial.

Observation 4 We can sometimes get positive results about existence of approximations. For instance,
consider the modified version of TSP where the costs along the edges are required to satisfy the triangular
inequality, i.e., for u, v, w ∈ V, cost(u,w) ≤ cost(u, v)+cost(v, w). The convention is that the cost between
two nodes is infinite if there are no edges between them. This problem remains NP-hard. However, a
well-known linear 2-approximation consists in performing a depth-first traversal of a minimum spanning
tree of the graph (a sub-graph of G, which is a tree and which contains all nodes of G, and for which the
sum of the costs of all edges is minimal among all spanning tree of G). A polynomial 1.5-approximation
have also been found, and the theoretical limit has not been reached yet.

2.2 Maximize accept probability

PCP verifiers, themselves, are a source of NP-hard problems. Given a PCP(log(n), 1) verifier V for
SAT, and an input ϕ, one can wonder which proof has a maximal probability of being accepted by V
along with input ϕ.

Theorem 5 It is NP-hard to approximate this problem within a factor of 1
2 .

Proof The proof of this assertion is very simple, because the gap we need has already been introduced
by the definition of a PCP verifier. Let’s assume that we have a 1

2 -approximation for this problem. Let
Π be the proof constructed by our algorithm with input ϕ, and p be the probability that Π is accepted
by V along with input ϕ. We can evaluate p in polynomial time by feeding V with all possible random
strings since it asks only for O(log(n)) random bits. If p ≥ 1

2 , then by the soundness property of V , ϕ
is satisfiable. Otherwise, we have p < 1

2 which means that the optimal proof cannot have a probability
greater than 2p of being accepted, and 2p < 1. By the completeness property of V , ϕ cannot be
satisfiable.

Therefore, running our approximation algorithm on ϕ, along with an additional polynomial compu-
tation tells us whether ϕ is satisfiable, which means that our verifier solves SAT.
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3 Hardness of Clique

Here we study the hardness of approximation of the maximum clique problem (or simply the clique
problem). The clique problem consists in finding a maximum cardinality clique (i.e., a subset of vertices
which forms a complete graph) given an undirected graph G(V,E). We show here that there exists a

constant ε > 0, such that it is NP-hard to approximate the clique problem within a factor of
1

N ε
. We

start by studying a gap introducing reduction from the SAT problem to a graph which is used to argue
on the hardness results.

Lemma 6 For fixed constants b and q, there is a gap introducing reduction that transforms, in polyno-
mial time, a SAT formula ϕ of size n to a graph G(V,E), where N=|V |=nb2q such that;

• Completeness: If ϕ is satisfiable, OPT (G) ≥ nb.

• Soundness: If ϕ is not satisfiable, OPT (G) <
nb

2
.

Proof Let F be a PCP(log n, 1) verifier for SAT that requires b log n random bits and reads q bits
from the proof.
We transform SAT instance ϕ into G1 as follows.

• Vertices: For each couple of random string r of b log n bits and truth assignment τ for q boolean
variable, there is a vertex Vr,τ in G.

• Edges: Let Q(r) represent the q positions in the proof that F queries given the “random string”
r. Now, two vertices Vr1,τ1 and Vr2,τ2 are consistent, if τ1, τ2 agree on the values of the proof where
Q(r1) and Q(r2) overlap. Further, we say that Vr,τ is accepting if F accepts, given a “random
string” r and read τ in the proof. If two vertices are both consistent and accepting, there is an
edge between them.

For example, consider the FGLSS graph defined for 2 random bits and 2 query strings illustrated in
Figure 1. Vertices in the graph are labeled as V (randombits)(querybits). Edges thus correspond to the
vertices which are both consistent and accepting.
We will argue on the completeness and soundness based on the FGLSS graph.

• Completeness: According to the definition, we know that if ϕ is satisfiable there exists a proof
Π such that F accepts with probability 1. Let S = {Vr,τ | τ consistent with Π}. By the definition
of the transformation, for every ”random string” r, there exists one vertex Vr,τ ∈ S. Therefore,
the cardinality of the set S becomes the number of random bits. nb. We can see that S forms a
clique since for each Vri,τi , Vrj ,τj ∈ S they are accepting vertices as well as consistent (due to the
definition of S).

• Soundness: Again by the definition of the verifier, if ϕ is not satisfiable, for all the proofs, F

accepts with probability <
1

2
.

Let C be a clique in G. Since all pairs of vertices in C are consistent, we know that C contains at
most one vertex associated with each random string. This also implies that it is possible to build a
proof Π that is consistent with every vertex of C: each vertex of C forces the value of up to k bits
in the proof but the fact that the vertices are consistent ensures that there will be no contradiction.
Some bits of Π might not be specified by any vertex, i.e., we can freely decide regardless of their
value. For instance, we can set them to 0.

1This graph is known as FGLSS graph
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Figure 1: FGLSS graph for b = 2 and q = 2 (only a subset of the vertices and edges are drawn).

Now, we can observe that Π is accepted with probability at least |C|
nb

, because each vertex in C
corresponds to a different random string that will make our verifier accept C. Because of the
soundness of the verifier, this proves that |C| < nb

2 .

Let’s consider the family PCP1,s(r, q) of problems that have a PCP(r, q) verifier with completeness
1 and soundness s. We know that NP=PCP1,s(log n, 1) for any constant s. Now if we assume
NP=PCP1, 1n

(log n, log n) then we would have 1
Nε hardness for the clique problem.

Let V be a PCP1, 1n
(log n, log n) verifier for SAT that reads b′ log n random bits and queries g′ log n

bits from the proof. This leads to a FGLSS graph of size |V | = 2b
′ log n.2q

′ log n = nb
′+q′

Now we can define the completeness and soundness of the verifier as follows.

• Completeness: If ϕ is satisfiable, G has a clique of size nb
′

(since completeness is 1).

• Soundness: If ϕ is unsatisfiable, G has no clique of size
nb

′

n
(since soundness is

1

n
).

Accordingly, we can claim that clique is NP-hard to approximate within a factor of
1

n
, where n = N b′+q′ .

Therefore, if we set ε = 1
q=b , we have the result that we exposed at the beginning of this section. Note

that the soundness is due to the same argument as in the proof of Lemma 6, that nb consistent vertices
with the proof forms a clique in FGLSS graph.

Now we are left with proving NP=PCP1, 1n
(log n, log n). We construct a PCP1, 1n

(log n, log n) verifier
V for SAT. Note that our aim here is to achieve the soundness without requiring more random bits.
By PCP theorem we know that there exists a PCP1, 12

(log n, 1) verifier F for SAT that reads b log n
random bits and querying q bits from the proof. Here we use a result from random walks on expander
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graphs (which is studied in Homework 2 Problem 1). Consider a constant degree expander graph H
with nb vertices corresponding to each random string, which are labeled by a bit string of b log n bits.

Verifier V will perform a k log n step random walk on H, where k is constant. Then we need O(log n)
random bits since graph is of constant degree. It will execute F on all random strings, that the vertices
in the path are labeled with. V accepts if and only if F has accepted on every run. The completeness
and soundness of verifier V can be concluded as:

• Completeness: If ϕ is satisfiable, there exists a proof τ1 so that F accepts with probability 1.
Consequently, it will also be accepted by V with probability 1. Hence the completeness is 1.

• Soundness: If ϕ is unsatisfiable; lets consider the set S of proofs F is going to accept. Due to
the soundness we know that |S| < nb

2 . Now we know that there exists a constant k such that
probability of a lazy random walk stays within S is at most 1

n , since it is on H which is a constant
degree expander graph. Therefore we achieve soundness without increasing the randomness.
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4 Exercises

We are going to solve two exercises. One aims at improving the proof that Clique is hard to approximate
within a factor 1

2 , and the other will give us an hardness of approximation result on MAX-k-FUNCTION
SAT.

Exercise 1: Show that it is NP-hard to approximate the Clique problem within any constant factor.

To prove that Clique cannot be approximated with a factor of 1
2 , we build a graph that somehow

modeled the behaviour of our verifier V for SAT, and use the gap of 1
2 introduced by the soundness

of V to conclude. We can observe that applying V several times with independent random strings as
input, amounts to using a verifier that has a better soundness. This, for us, amounts to a bigger gap,
and therefore a more precise result of hardness of approximation.

More formally, we define Vi as the verifier that queries i sequences of blog(n) random bytes, and
applies i times V with the given input, providing the kth instance of V with the kth sequence of random
bytes. Vi returns “yes” if all V returned “yes”, and “no” otherwise.

The completeness property is a direct consequence of the completeness of V , because for a correct
input ϕ, V accepts regardless of that the random string is.

The soundness is improved: for a bad input ϕ, the probability that V ′ answers “yes” is smaller that
1
2i . This is a result that each instance of V has an independent probability, greater than 1

2 , to detect
that ϕ is bad.

Now, we can build our graph for V ′ exactly as we did for V . If we replace every occurrence of the
soundness of V by 1

2i in the previous proof, we will show that it is NP-hard to approximate the Clique
problem within factor 1

2i .
As we can take arbitrary high values for i, we would have proven that the approximation is hard

within any constant factor.

Exercise 2: Consider the problem MAX k-FUNCTION SAT:

• Given n boolean variables x1 ,...,xn and m functions f1 ,...,fm, each of which is a function of k (a
constant) of the boolean variables,

• Find a truth assignment to x1 ,...,xn that maximizes the number of functions satisfied.

Show that it is NP-hard to approximate MAX k-FUNCTION SAT within a factor 1
2 .

We still consider our verifier V for SAT, which needs b log(n) random bytes and k other from the
proof, with an input ϕ. For any possible sequence r of b log(n) bytes and any sequence x of k bytes, we
define:

fr(x) is the output of V when reading ϕ and the sequence r as random bytes and receiving the bytes
x from the proof.

This defines nb functions of k variables, and the total number of variables is less than k2blog(n) = knb.
Each assignment of x1 ,...,xknb corresponds to a proof.

Let’s assume that we have a 1
2 -approximation for MAX k-FUNCTION SAT. If ϕ is satisfiable, all

functions can be satisfied simultaneously (because for at least one proof, V always outputs 1). As such
our verifier will generate an assignment that satisfies at least half of the functions. Otherwise, any
assignment of x1 ,...,xn cannot satisfy more than half of the functions (because V must return 0 for any
proof with probability at least 1

2 ), meaning that our verifier will not be able to generate an assignment
that satisfies half of the functions or more. We can thus tell whether ϕ is satisfiable by comparing the
output of our verifier to 1

2 , which amounts to solving SAT.
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As a bonus, we will show that this result can be used to prove that MAX-3SAT is hard to approximate.
Indeed, there exists a reduction of MAX k-FUNCTION SAT to MAX-3SAT such that if there are no
assignments that leave less than half of the functions unsatisfied in MAX k-FUNCTION SAT, then every
assignment leaves at least a fraction 1

2×k×2k of the clauses unsatisfied in the corresponding instance of
MAX-3SAT.

The reductions works as follow:

• Each function is converted to a conjunction of at most 2k disjunctions of literals. One way to do
this is to observe that a disjunction of k literals formed with the k variables that are arguments
of the function is always true, except for one particular assignment of the k variables. Therefore,
for each assignment of the variable of fi that makes fi false, we can create one disjunction that
negates it exactly. The conjunction of all these disjunctions will be a formula that is true if and
only if fi is true. It will also be composed of at most 2k disjunctions.

• Each of these disjunctions, of at most k elements, has to be converted into a conjunctions of
disjunctions of 3 elements. For each initial dis-junction l1∨ ... ∨lk, we introduce k − 2 auxiliary
variables y1, ..., yk−2 and we build the equivalent formula : (l1 ∨ l2 ∨ y1) ∧ (y1 ∨ l3 ∨ y2) ∧ ... ∧
(yk−2 ∨ lk−1 ∨ lk)

We end up with less than k 2k disjunctions of 3 literals, whose conjunction is equivalent to the
assertion that all fi are satisfied. Furthermore, for each fi that is not satisfied, at least one of these
disjunctions will be false, which gives us the desired proportion.

From this, we can conclude that it is NP-hard to approximate MAX-3SAT within a factor of 1− 1
2k2k

.
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