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Lecture 8
Lecturer: Hyung-Chan An Scribes: Kirtan Padh

These notes are partially based on [1] and [2].

1 Introduction

In the previous lectures, we have been studying about matroids. We saw that given a matroid M =
(E, I), we have a greedy algorithm to find a maximum weight independent set. We also gave a charac-
terization for the matroid polytope, which is defined as follows

Definition 1 (Matroid polytope) Given a matroid M = (E, I), its matroid polytope PM = conv({xs ∈
{0, 1}|E| : s ∈ I}) is the convex hull of the incidence vectors of the independent sets of M . We also showed
that the matroid polytope can be described as the set of inequalities PM = {R+

|E| :
∑
e∈S

xe ≤ r(S)∀S ⊆ E}.

In the previous lecture, we saw what is matroid intersection, which is defined as follows:

Definition 2 (Matroid intersection) Given two matroids M1 = (E, I1) and M2 = (E, I2) over the
same ground set E, the intersection of two matroids is defined as M1 ∩M2 = (E, I1 ∩ I2).

Note that a matroid intersection may not be a matroid in general. We also proved the matroid
intersection theorem, which says the following:

Theorem 3 (Matroid intersection theorem) For matroids M1 = (E, I1) and M2 = (E, I2)

max
I∈I1∩I2

|I| = min
U⊆E

(r1(U) + r2(E\U))

We proved this by giving a polynomial time algorithm to find an independent set of maximum cardinality
in I1 ∪ I2 by using ’Augmenting paths’.

The main aim of this lecture is to prove what is called the Matroid intersection polytope theorem.
This theorem says that the matroid intersection polytope of M1 ∩M2 is nothing but the intersection of
the matroid polytopes of M1 and M2.

1.1 Preliminaries

Before we go on to define the matroid intersection polytope and make the matroid intersection polytope
theorem formal, we summarize a few things about linear program polytopes that we will use in this
lecture and also give some definitions. We observe that we have the following for a bounded polytope P:

• If P is non-empty, it has extreme points.

• Suppose x ∈ P , then for any cost vector c, there exists an extreme point x∗ such that c(x∗) ≤ c(x).

• Every extreme point in P is an optimal solution to some cost function.

Tight constraints of an extreme point: In an n-dimensional linear program every extreme point is
a unique solution to a linear system given by n linearly independent tight constraints.
Finally we define two operations on matroids, namely deletion and contraction which give us a modified
matroid.
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Definition 4 (Deletion) Given a matroid M = (E, I) with e ∈ E, ’deleting’ e gives us

M\e = (E − e, I ′)

where
I ′ = {I ⊆ E − e : I ∈ I}

In a graphic matroid this is equivalent to deleting an edge.

Definition 5 (Contraction) Given a matroid M = (E, I) with e ∈ E, ’contracting’ e gives us

M/e = (E − e, I ′)

where
I ′ = {I ⊆ E − e : I + e ∈ I} if e ∈ I

If e /∈ I we have M/e =M\e. In a graphic matroid this is equivalent to contracting an edge.

Before moving on to the main part, we solve a few exercises to revise some concepts about matroids
learnt in the previous lectures.

Exercise 1 Let G = (VL ∪ VR, R) be a k-regular bipartite graph with edge weights w : E → R.
Prove that G has a perfect matching whose cost is no more than 1

k

∑
e∈E

w(e).

Proof We consider the perfect matching polytope P for the graph G. We prove the desired result
using the fact that if x ∈ P , then for any cost vector c, there exists an extreme point x∗ such that
c(x∗) ≤ c(x). For this, consider x ∈ R|E| such that xe = 1

k∀e ∈ E. It is easy to see that x is a feasible
solution to P , that is x ∈ P (we also used this fact in the solution to the last problem of homework
assignment 2). We consider the cost vector as the weight of a solution. For some y ∈ R|E|, its weight is
W (y) =

∑
e∈E:y∈R|E|

yew(e). Since x ∈ P we obtain the fact that there is an extreme point x∗ ∈ R|E| of P

such that W (x∗) ≤W (x) which gives us.

W (x∗) ≤
∑
e∈E

xew(e) =
1

k

∑
e∈E

w(e)

The inequality W (x∗) ≤ 1
k

∑
e∈E

w(e) combined with the observation that any extreme point in this case

is integral and therefore a perfect matching gives us the desired result.
Alternate solution: Note that we have an easier soultion for this if we assume the result of problem
4 of homework assignment 2 which tells us that the edges of this graph can be partitioned as k edge-
disjoint perfect matchings. Suppose that each of the k matchings has weight more than 1

k

∑
e∈E

w(e), then

the sum of weights of the matchings will be greater than
∑
e∈E

w(e). This is a contradiction to the fact

that the weight of the matchings should sum to be equal to the sum of edge weights. So we must have
at least one perfect matching with weight less than or equal to 1

k

∑
e∈E

w(e).

Exercise 2: Recall that the matching of a bipartite graph G = (VL ∪ VR, E) is a subset of edges
F ⊆ E such that every vertex is adjacent to at most one edge in F . Give an algorithm that finds a
subset of edges F ⊆ E of maximum cardinality such that every vertex is adjacent to at most two edges
in F .
Note: There is a slight modification in the question from that stated in the exercise sheet distributed
in class, which said ”subset of edges F ⊆ E such that...”. F = φ would work if F does not have to be
of maximum cardinality.
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Proof In the previous lecture, we formulated the bipartite matching problem as a matroid intersection.
We will formulate this problem as a matroid intersection in an analogous, almost identical manner. Only
difference being that degree constraints are now ≤ 2 instead of ≤ 1 as in the case of matchings. We
define M1 = (E, I1) and M2 = (E, I2), both having the base set as the set of edges of G with:

I1 = {S ⊆ E|∀v ∈ VL |S ∩ δ(v)| ≤ 2}

I2 = {S ⊆ E|∀v ∈ VR |S ∩ δ(v)| ≤ 2}

where δ(v) is the set of edges incident to v in G. Here I1 corresponds to all edge collections of G such
each vertex in VL has at most 2 incident edges from each such collection. Similarly for I2 and VR. We
verify that M1 is in fact a matroid. The proof for M2 is analogous.
Let S ∈ I1 and S′ ⊆ S. It is easy to see that ∀v ∈ VL, |S ∩ δ(v)| ≤ 2 =⇒ |S′ ∩ δ(v)| ≤ 2, i.e.
S ∈ I1 =⇒ S ∈ I1. This verifies the first axiom. Now suppose S1, S2 ∈ I1 with |S1| > |S2|. This
means that ∃v ∈ VL such that |S1 ∩ δ(v)| > |S2 ∩ δ(v)|. We consider e ∈ (S1 ∩ δ(v))\(S2 ∩ δ(v)), then
S2 + e ∈ I1. This proves the second axiom.
The maximum size independent set in M1∩M2 is exactly the set that we desire. We know from the result
proved in the previous lecture that we can find a maximum cardinality independent set in a matroid
intersection in polynomial time. We find F by this algorithm.

Exercise 3: Prove that M\e and M/e defined in definition 4 and 5 respectively are matroids.
Proof M\e: Directly follows from the fact that M is a matroid since the independent sets of M\e
are nothing but the independent sets of M which are subsets of E − e.
M/e: If e /∈ I, we are done as I ′ = I in this case.
If e ∈ I: Let S′ ⊆ S. S ∈ I ′ =⇒ S + e ∈ I by definition of M/e. Therefore, since S′ + e ⊆ S + e, we
get S′ + e ∈ I which in turn gives us S′ ∈ I ′. This proves the first axiom.
For the second axiom, let S1, S2 ∈ I ′ such that |S1| < |S2|.This implies S1 + e, S2 + e ∈ I. Observe that
|S1 + e| < |S2 + e|. Therefore ∃f ∈ (S2 + e)\(S1 + e) = S2\S1 such that A+ e+ f ∈ I =⇒ A+ f ∈ I ′.
This completes the proof.

2 Matroid Intersection Polytope

Definition 6 (Matroid Intersection Polytope) For two matroids M1 = (E, I1) and M2 = (E, I2),
define the matroid intersection polytope

P (M1 ∩M2) = conv{XI |I ∈ I1 ∩ I2}

What follows is the main result of this lecture.

Theorem 7 (Matroid Intersection Polytope Theorem) (Edmonds)

P (M1 ∩M2) = P (M1) ∩ P (M2)

This theorem says that the matroid intersection polytope of two matroids is the intersection of matroid
polytopes of both the individual matroids.
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Remark: This theorem seems intutive, but it is in fact a non-trivial result and not true in general.
We illustrate this by an example. We consider two polytopes, the red and the blue one, each of them
generated by a convex combination of a set of points. The polytope generated by their intersection is just
the line GC in this case, which is marked purple and not the whole region included in the intersection
of the polytopes.

So Theorem 7 states something quite strong and only holds because M1 and M2 are matroids. The
rest of the lecture will be devoted to proving Theorem 7. As always, one direction is easy.

P (M1 ∩M2) ⊆ P (M1) ∩ P (M2): This inclusion follows from the definition. For every I ∈ I1 ∩ I2,
XI is in both P (M1) and P (M2).

Observation: Recall the definition of the matroid intersection polytope we gave in the previous
lecture.

P (M1) ∩ P (M2) = {x ∈ R|E| | x(S) ≤ r1(S), x(S) ≤ r2(S) ∀S ⊆ E , xe ≥ 0 ∀e ∈ E}

We observe that any {0, 1} solution to this system is the characteristic vector of a set in I1 ∩ I2.

We need three lemmas before we can prove the other direction.

Definition 8 (Tight set) Given a matroid M with rank function r and x ∈ P (M) we say a set S ⊆ E
is a tight set of x with respect to r is x(S) = r(S).

Lemma 9 (Uncrossing operation) Let M = (E, I) be a matroid with rank function r. Let x ∈
P (M). If S and T are tight sets of x with respect to r, so are S ∪ T and S ∩ T .
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Proof Since x ∈ P (M), we have r(S ∪ T ) ≥ x(S ∪ T ) and r(S ∩ T ) ≥ x(S ∩ T ). Therefore,

r(S ∪ T ) + r(S ∩ T ) ≥ x(S ∪ T ) + x(S ∩ T )
(a)
= x(S) + x(T )

(b)
= r(S) + r(T )

(c)

≥ r(S ∪ T ) + r(S ∩ T )

where (a) is due to linearity of x(A) =
∑
e∈A

xe, (b) is due to the tightness of S and T , and (c) is because

r is submodular. Therefore, all inequalities must be equalities, which gives us r(S ∪ T ) = x(S ∪ T ) and
r(S ∩ T ) = x(S ∩ T ). This proves the result.

Lemma 10 Let M = (E, I) be a matroid with rank function r. Let x ∈ P (M). Let C = {C1, C2 . . . Ck}
with φ ⊂ C1 ⊂ C2 . . . ⊂ Ck be an inclusion-wise maximal chain of tight sets of x with respect to r. Then
every tight set T os x with respect to r must satisfy XT ∈ span{XC : C ∈ C}.

Proof Suppose ∃T such that XT /∈ span{XC : C ∈ C}
Case 1: T * Ck

Since both T and Ck are tight, T ∪ Ck is tight by Lemma 9. But this is a contradiction to C being
maximal.
Case 2: T ⊆ Ck

We consider ’Increment sets’ Cj\Cj−1, with C0 = φ by convention.
Claim: At least one of the incremental sets is cut by T , i.e. (Cj\Cj−1)∩ T 6= φ and (Cj\Cj−1)\T 6= φ.
Proof Suppose not. Then we can write T =

⋃
j∈J (Cj\Cj−1) for some J ⊆ {1, 2 . . . k}. This implies

XT =
∑
j∈J
X(Cj\Cj−1) =

∑
j∈J

(XCj −XCj−1)

But this contradicts the assumption that XT /∈ span{XC : C ∈ C}. This proves our claim.

Therefore T ∩ (Cj\Cj−1) is a proper subset of Cj\Cj−1 for some j and we must have the situation
illustrated in the figure below:

C∗ = (T ∩ Cj) ∪ Cj−1 is tight by Lemma 9. By construction Cj−1 ⊂ C∗ ⊂ Cj , which is a contradiction
to maximality of C.
We have thus shown that for any tight set T , if XT /∈ span{XC : C ∈ C} we can have neither T * Ck

nor T ⊆ Ck. This proves that XT ∈ span{XC : C ∈ C} which is the desired result.

Definition: supp(x) = {e ∈ E|xe > 0}
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Lemma 11 Let M1 and M2 be two matroids over the same ground set with rank functions r1 and r2.
If x is an extreme point solution of P (M1) ∩ P (M2), then there exist two chains

C = {C1, C2 . . . Ck} with φ ⊂ C1 ⊂ C2 . . . Ck

D = {D1, D2 . . . Dl} with φ ⊂ D1 ⊂ D2 . . . Dl

such that

1. x(Ci) = r1(Ci) ∀ Ci

x(Dj) = r2(Dj) ∀ Dj

2. {XC |C ∈ C ∪ D} contains at least —supp(x)— linearly independent vectors.

Proof We construct C and D as inclusion-wise maximal chains of tight sets of x with respect to r1
and r2 respectively. The first part of the lemma is therefore true by construction. Recall that

P (M1) ∩ P (M2) =

{
x ≥ 0 :

x(S) ≤ r1(S) ∀S ⊆ E
x(S) ≤ r2(S) ∀S ⊆ E

}
Since x is an extreme point of this polytope, it must have |E| linearly independent tight constraints.
Exactly |E| − |supp(x)| of them are the constraints xe = 0. So the tight constraints of the type
x(S) = r1(S) and x(S) = r2(S) have rank at least |supp(x)|. On the other hand by lemma 10 we
have that span{xC |C ∈ C} contains the characteristic vector XT of all tight sets T of x with respect to
r1. Likewise for D and r2. It follows that span{xC |C ∈ C ∪D} contains the characteristic vectors XT of
all tight sets T of x with respect to r1 and r2. Therefore the two chains span a subspace of dimension
at least |supp(x)|, which proves the second part of the lemma.

We now have all the tools necessary to prove the main theorem
Proof of theorem 7
Proof We prove P (M1 ∩M2) ⊇ P (M1)∩ P (M2) by induction on E. It is trivial for |E| = 0. Assume
that x is an extreme point of P (M1) ∩ P (M2) that is not in P (M1 ∩M2).

Case 1: xe = 0 for some e
Delete e from M1 and M2 to obtain M̃1 and M̃2. Restrict x to E − e to obtain x̃ ∈ RE−e. So we have
x̃ ∈ P (M̃1) and x̃ ∈ P (M̃2). By induction hypothesis x̃ ∈ P (M̃1)∩P (M̃2), which implies x ∈ P (M1∩M2).

Case 2: xe = 1 for some e
Contract e from M1 and M2 to obtain M̃1 and M̃2. Restrict x to E − e to obtain x̃ ∈ RE−e. We have
x̃ ∈ P (M̃1) since

∀S ⊆ E − e, rM̃1
(S) = r1(S + e)− 1 ≥ x(S + e)− 1 = x̃(S)

Likewise, x̃ ∈ P (M̃2). By induction hypothesis x̃ ∈ P (M̃1)∩P (M̃2). Therefore x̃ is a convex combination
of characteristic vectors of independent sets in Ĩ1 ∩ Ĩ2. Adding e to independent sets in M̃1 and M̃1

gives us independent sets in M1 and M2. Therefore x is a convex combination of characteristic vectors
of independent sets in I1 ∩ I2, which is the same as saying x ∈ P (M1 ∩M2).

Case 3: ∀e 0 < xe < 1
This is the most interesting case, because it does not occur! Consider C and D defined by Lemma 11.
Since x(Ci) = x(ri) ∈ Z and every xe is fractional, each increment set must contain at least two elements
to ensure integer sums x(Ci), as illustrated in the figure below
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Therefore C ≤ |E|/2 and D ≤ |E|/2. Lemma 11 states that {XC |C ∈ C ∪ D} contains supp(x) = |E|
linearly independent vectors. Therefore, we must have |C| = |D| = |E|/2. This implies that that the
maximal sets in the two chains must be Ck = Dl = E, i.e., C ∪ D contains at most |E| − 1 sets, a
contradiction. This completes the proof.

Remark: We note that Theorem 7 implies an algorithm for matroid intersection in the form os solving
a linear program. Namely, to maximize

∑
e
wexe under the constraints

x(S) ≤ r1(S) ∀S ⊆ E
x(S) ≤ r2(S) ∀S ⊆ E
xe ≥ 0 ∀e ∈ E

3 Matroid Union

Definition 12 Given matroids M1, . . .Mk = (Ek, Ik)

M1 ∨ . . . ∨Mk = (E1 ∪ . . . Ek, I) with I = {I1 ∪ . . . ∪ Ik|Ii ∈ Ii}

Remark: Note that E1, . . . Ek need not be disjoint and can be interecting. Matroid union and matroid
intersection are closely related in this case. Also, M1 ∨ . . . ∨Mk is a matroid.

Exercise 4: Let G1 = (V1, E1) and G2 = (V2, E2) be two disjoint graphs, i.e., V1 ∩ V2 = φ. Con-
sider their graphic matroids M1 = (E1, I1) and M2 = (E2, I2). It is easy to see that M = (E1 ∪ E2, I)
with

I = {I1 ∪ I2 : Ii ∈ Ii}

is a matroid: for any F1 ∪ F2 ⊆ E1 ∪ E2 with F1 ⊆ E1 and F2 ⊆ E2, (V1 ∪ V2, F1 ∪ F2) is acyclic if and
only if both (V1, E1) and (V2, E2) are acyclic.
Prove the following generalisation of this observation: let M1, . . .Mk = (Ek, Ik) be matroids defined on
mutually disjoint ground sets. Prove that M = (E1 ∪ . . . Ek, I) with

M1 ∨ . . . ∨Mk = (E1 ∪ . . . Ek, I) with I = {I1 ∪ . . . ∪ Ik|Ii ∈ Ii}

is also a matroid.
Proof Closedness is easy to see.
Let A,B ∈ I with |A| < |B|. This implies that ∃i such that |A ∩ Ei| < |B ∩ Ei|. Therefore ∃f ∈
(B ∩ Ei)\(A ∩ Ei) such that (A ∩ Ei) + f ∈ Ii and therefore A+ f ∈ I.

Theorem 13 M1 ∨ . . . ∨Mk is a matroid.

Proof We treat the duplicate elements as different and apply the result of Exercise 4. This gives a
matroid.
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Lemma 14 Given a matroid M ′ = (E′, I ′) with rank function r′, and a function f : E′ → E,

I = {f(I ′) : I ′ ∈ I ′}

defines a matroid.

Proof It is easy to see that I is closed under subsets. We will prove the extension axiom by induction.
Let A,B ∈ I, |A| < |B|. Choose A′, B′ ∈ I ′ such that f(A′) = A, f(B′) = B, |A′| = |A|, |B′| = |B|
and |A′ ∩ B′| as large as possible. Since M ′ is a matroid, ∃e′ ∈ B′\A′ such that A′ + e′ ∈ I ′. If
f(e′) = e ∈ A = f(A′) then e has another pre-image a in A′. Note that a /∈ B′ because f is a bijection
on B′. However, we could take A” = A − a + e′ instead of A′, thus increasing |A′ ∩ B′|, which is a
contradiction to having chosen a maximal such set. Therefore, e ∈ B\A, which proves the result.

[2] gives a proof of Theorem 13 using lemma 14.
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