Spectral Clustering Oracles in Sublinear Time

Grzegorz Gluch Michael Kapralov Silvio Lattanzi Aida Mousavifar
EPFL EPFL Google Research EPFL

Christian Sohler
University of Cologne *

Abstract

Given a graph G that can be partitioned into & disjoint expanders with outer conductance upper
bounded by € <« 1, can we efficiently construct a small space data structure that allows quickly
classifying vertices of G according to the expander (cluster) they belong to? Formally, we would
like an efficient local computation algorithm that misclassifies at most an O(e) fraction of vertices in
every expander. We refer to such a data structure as a spectral clustering oracle.

Our main result is a spectral clustering oracle with query time O*(nl/ 2+O(e)) and preprocessing
time 20(¢ k" 108%() p1/240() that provides misclassification error O(elogk) per cluster for any e <
1/log k. More generally, query time can be reduced at the expense of increasing the preprocessing
time appropriately (as long as the product is about nHO(e)) — this in particular gives a nearly linear
time spectral clustering primitive.

The main technical contribution is a sublinear time oracle that provides dot product access to the
spectral embedding of G by estimating distributions of short random walks from vertices in G. The
distributions themselves provide a poor approximation to the spectral embedding, but we show that
an appropriate linear transformation can be used to achieve high precision dot product access. We
give an estimator for this linear transformation and analyze it using spectral perturbation bounds
and a novel upper bound on the leverage scores of the spectral embedding matrix of a k-clusterable
graph. We then show that dot product access to the spectral embedding is sufficient to design a
clustering oracle. At a high level our approach amounts to hyperplane partitioning in the spectral
embedding of G, but crucially operates on a nested sequence of carefully defined subspaces in the
spectral embedding to achieve per cluster recovery guarantees.

*Work was partially done while author was visiting researcher at Google Research, Switzerland

Contents

(1__Introduction|
B Prolimimarics

B Tochnical Towl

3.1 Sublinear time dot product access to the spectral embedding]
3.2 Geometry of the spectral embedding|
13.2.1 Hard instance for natural hyperplane partitioningf.
13.2.2 Our hyperplane partitioning scheme|

[4 Properties of the spectral embedding of (k, ¢, ¢)-clusterable graphs|

4.1 Standard bounds on cluster means and directional variancel
4.2 Strong 'Tail Bounds on the Spectral Embedding|
4.3~ Centers are strongly orthogonall
4.4 Robustness property of (k, ¢, €)-clusterable graphs|

|5 A spectral dot product oracle|

5.1 e spectral dot product oracle - overview|.
b.2 Stability bounds for the low rank approximation|
.3 Stability bounds under sampling of vertices|
[5.4 Stability bounds under approximations of columns by random walks|

[6 The main algorithm and its analysis|

6.5 artitioning scheme works with approrimate cluster means & dot products|

6.1 The Algorithm (Partitioning Scheme, Algorithm [7)]
6.2 Bounding intersections of C, ¢ with true clusters Cf
6.3 Partitioning scheme works with ezact cluster means & dot products|
6.4 Finding the cluster means| Lo oo
[6.4.1 uality of cluster means approximation|
[6.4.2 pproximate Centers are strongly orthogonal

10
11
11

14
14
17
23
26

1 Introduction

As a central problem in unsupervised learning, graph clustering has been extensively studied in the past
decades. Several formalizations of the problem have been considered in the literature. In this paper, we
focus on the following (informal) variant of graph clustering: Given a graph G and an integer k, we are
interested in finding k£ nonoverlapping sets C1,C5,...,Cy that are internally well-connected and that
have a sparse cut to the outside. A popular approach to this problem is spectral clustering [KVV04,
NJW02, [SMO0Q, [VLO7]: One embeds vertices of the graph into k dimensional Euclidean space using
the bottom k eigenvectors of the Laplacian, and clusters the points in Euclidean space using the k-
means algorithm (in practice), or using a more careful space partitioning approach (in theory). Spectral
clustering has been applied in the context of a wide variety of problems, for example, image segmentation
[SMO0Q], speech separation [BJ0OG], clustering of protein sequences [PCS06], and predicting landslides in
geophysics [BMD™15|. Spectral clustering usually requires to process the graph in two steps. First
one computes the spectral embedding and then one clusters the resulting point set. This two stage
approach seems to be highly non-local and it seems to be hard to obtain faster methods, if one only
has to determine the cluster membership for a small subset of the vertices. However, such a sublinear
time access is desirable in some applications. As a basic step towards such a sublinear time clustering
algorithm, we need a way to quickly access the spectral embedding in some way. Therefore, we ask the
following question, where we use f, € R* to denote the spectral embedding of vertex a:

Is it possible to obtain dot product access to the spectral embedding of a graph in sublinear
time? In other words, given a pair of vertices =,y € V, can we quickly approximate the dot
product (fz, fy) in o(n) time?

If such access is possible, it appears plausible that one can design a sublinear spectral clustering oracle,
a small space data structure that provides fast query access to a good clustering of the graph. Our main
result in this paper is (a) a small space data structure that provides query access to dot products in
the spectral embedding, as above, and (b) a sublinear time spectral clustering oracle that uses this data
structure.

We study a popular version of the spectral clustering problem where one assumes the existence
of a planted solution, namely that the input graph can be partitioned into clusters C,...,C; whose
internal connectivity is nontrivially higher than the external connectivity. The goal is to recover the
clusters approximately. An average case version of this problem, where the clusters induce Erdés-Rényi
graphs (or random regular graphs), and the edges across clusters are similarly random, has been studied
extensively in the literature on the stochastic block model (SBM) [AbbIS]| for its close relationship to
the community detection problem. In this work we study a worst-case version of this problem:

Given a graph G = (V, E) that admits a partitioning into a disjoint union of k induced
expanders C, ..., C; with outer conductance bounded by € < 1, output an approximation
to C1,...,Cy that is correct up to a O(e) error on every cluster.

We define a spectral clustering oracle with per cluster error § € (0,1) as a small space data structure
that implicitly defines disjoint subsets 61, ceey ék of V' such that for some permutation 7 on k elements
one has |C;ACr;)| < d|C; for every i« = 1,..., k. The oracle must provide fast query access to such a
clustering. The focus of this paper is:

Design a sublinear time spectral clustering oracle with per cluster error &~ O(e).

Our main result is a spectral clustering oracle as above, with a slight loss in error parameter. Specif-
ically, our spectral clustering oracle is correct up to O(elog k) error on every cluster:

Theorem 1 (Informal). There exists a spectral clustering oracle that for every graph G = (V, E) that
admits a partitioning into a disjoint union of k induced expanders Ci,...,Cy with outer conductance

bounded by € K loék achieves error O(elogk) per cluster, query time =~ nt/2+00) preprocessing time

~ 20(%]@4 10g2(k))n1/2+0(e) and space ~ ’I’L1/2+O(€).

Query times can be made faster at the expense of increased space and prepropcessing time, as long
as the product of query time and preprocessing time is = n'TO) leading in particular to a nearly linear
time algorithm for spectral clustering.

As byproduct of our main result we also obtain new efficient clustering algorithms in the Local
Computation Algorithms (LCA) model (see [RTVXT11] for introduction of the model and [ARVX12) for
LCA with limited randomness).

A very important feature of the problem above is the fact that our algorithms recovers a 1 —O(elog k)
fraction of every cluster as opposed to just classifying a 1 — O(elogk) fraction of vertices of the
graph correctly (this latter question allows one to output fewer than k clusters, and is much easier to
solve). To put this in perspective, it is instructive to apply multiway Cheeger inequalities (e.g., [LGT14],
ICKCLL™13]) to our setting, noting that the k-th eigenvalue Aj of the normalized Laplacian of a graph
that can be partitioned into k clusters as above is bounded by O(e). This means that multiway Cheeger
inequalities can be used to recover k clusters with outer conductance k2y/e (see [LGT14]), which becomes
trivial unless € < 1/k? (we note that our problem admits a much simpler solution when ¢ < 1/k). One
may note that multiway Cheeger inequalities can also recover 0.9k clusters with outer conductance
log@W k+/€ in our setting (e.q. [LRITV12]), but, as mentioned above, recovering most clusters is much
easier that recovering each cluster to 1+ O(e) multiplicative error, and does not solve our problem. The
most relevant prior result is due to Sinop [Sinl6], where the author achieves error O(v/€) per cluster
using spectral techniques. Sinop’s result improves up on previous work of [AS12], which achieved per
cluster error of O(ek) (or, rather, is somewhat incomparable to [AS12] due to the worst dependence on
¢, but a lack of dependence on k). As we argue below, Sinop’s techniques are hard to extend to the
sublinear time regime. At the same time, one should note that our result improves on [AST2] under the
assumption that cluster sizes are comparable while using only sublinear time in the size of the input
graph.

Main challenges and comparison to results on testing cluster structure. This problem is
related the well-studied expansion testing problem [KS08| [INS10,[GR11l[CS10, [KPS13], which corresponds
to the setting of one or two clusters, as well as to the problem of testing cluster structure of graphs,
where one essentially wants to determine k, the number of clusters in G. The problem of testing cluster
structure has recently been considered in the literature [CPSI5, ICKK™18]|: given access to a graph G as
above, compute the value of k (in fact, both results [CPS15] and [CKK™ 18| apply to the harder property
testing problem of distinguishing between graphs that are k-clusterable according to the definition above
and graphs that are e-far from k-clusterable, but a procedure for computing k is the centerpiece of both
results). It is interesting to note that the work of [CPS15| also yields an algorithm for our problem, but
only under very strong assumptions on the outer conductance of the clusters (one needs € < m).
The recent work of Peng [Pen20] considers a robust version of testing cluster structure, but requires
¢ < sortiymgn» Just like the work of [CPSTS).

The recent work of [CKK™ 18| on testing cluster structure yields an optimal tester, which works for any
€ smaller than a constant and achieves essentially optimal runtime, but unfortunately their techniques do
no extend to the ‘learning’ version of the problem. The reason is very simple: the algorithm of [CKK™18§|
needs to distinguish between the graph G being a union of k clusters and k+1 clusters, and their approach
amounts to verifying whether a graph can be partitioned into k clusters. To do so it suffices to check
whether the spectral embedding is effectively k-dimensional, i.e. whether it spans a nontrivial (k + 1)-
dimensional volume. In order to certify this, however, it suffices to exhibit k + 1 vertices that span a
nontrivial (k+ 1)-dimensional volume. For that, one essentially only needs to locate at least one ‘typical’
point in every cluster, which is much easier than our task of correctly recovering almost all, i.e. a 1—O(e)
fraction of vertices in every cluster. In other words, testing graph cluster structure requires only a rather
basic access to and control of the spectral embedding. The main technical contribution of our paper is a
set of tools for getting precise dot product access to this embedding, together with several new structural
claims about it that enable our clustering algorithm.

Comparison to the work of Sinop [Sin16]. The work of Sinop [Sinl6] gives a nearly linear time
algorithm for recovering every cluster up to error of 1+ O(+/€) using spectral techniquesﬂ for sufficiently

LOne must note that the work of [Sin16] does not require the bounded degree assumption, and can handle clusters of
significantly different size.

small e. The algorithm would be very hard to implement in sublinear time, since one of its central
tools (the ROUND procedure, which controls propagation of error i.e., Lemma 5.4 of [Sinl6]) heavily
relies on the ability to have explicit access to the eigendecomposition of the Laplacian. Specifically,
Sinop’s algorithm first finds a crude approximation S to a cluster to be recovered, and then improves
the approximation by explicitly constructing the corresponding submatrix of the spectral embedding and
performing an SVD. One could plausibly envision implementing this using random walks, but that would
be challenging, since one would need to consider a random walk induced on a rather unstructured subset
of vertices of the graph.

Our contributions: sublinear time access to the spectral embedding. Let G = (V,E) be a
d-regular graph with n = |V|. Without loss of generality we assume that V' = {1,...,n}. We assume
that n and d are given to the algorithm and that we have oracle access to G: We can specify a vertex
x € V and a number i,1 < ¢ < d, and we will be given in constant time the i-th neighbor of x. This is
also called the bounded degree graph model.

In this paper we will consider d-regular graphs that have a certain cluster structure. We parameterize
this cluster structure using the internal and external conductance parameters.

Definition 1 (Internal and external conductance). Let G = (V, E) be a graph. For a set S C
C C V, let E(S,C\ S) be the set of edges with one endpoint in S and the other in C'\ S. The
conductance of a set S within C is ¢&(S) = W. The external-conductance of set C'is defined to

be ¢$(C) = %. The internal-conductance of set C C V, denoted by ¢%(C), is

min ¢3(S)

sceo,o<|s|< <l

if |C] > 1 and one otherwise.

Remark 1. For simplicity we present all the proofs for d-reqular graphs, even though all the proofs
also work for d-bounded graphs, with the same definition of conductance as in Definition (1| (i.e., with
normalization by d|S| as opposed to the volume of S; the two notions of conductance can in the worst
case differ by a factor of d). Note that this is equivalent to converting a d-bounded degree graph G to a
d-regular graph G™9 by adding d — deg(v) self-loops to each vertex v with degree deg(v). Let L™ be the
normalized Laplacian of G™9. Then the random walk on graph G is exactly same as a lazy random walk
on graph G and the definition of conductance is consistent.

Based on the conductance, clusterability of graphs is defined as follows.

Definition 2 ((k, ¢, €)-clustering). Let G = (V, E) be a d-regular graph. A (k, ¢, €)-clustering of G
is a partition of vertices V into disjoint subsets C; U ... U Cj such that for all i € [k], ¢ (C;) > ¢,

¢S (C;) < € and for all i,j € [k] one has |‘(C;J\ € O(1). G is called (k,p,¢€)-clusterable if there exists a

(k, ¢, €)-clustering for G.
We also need for formally define spectral embedding.

Definition 3 (Spectral embedding). For a d-regular graph G = (V, E) and integer 2 < k < n we define
the spectral embedding of G as follows. Let U € R**™ denote the matrix of the bottom k eigenvectors of
the normalized Laplacian of G (this choice is not unique; fix any such matrix U). Then for every x € V
the spectral embedding f, € R¥ of z is the z-th column of the matrix U, which we write as U = (fy)yev-

Remark 2. We note that the spectral embedding f,,x € V is not uniquely defined. However, in this
paper we are only interested in obtaining dot product access to this embedding, i.e. in fast algorithms
for computing (fy, fy) for x,y € V. Such dot products are in fact uniquely defined for any G that is
(k, o, €)-clusterable with €/p? smaller than an absolute constant — see Remark below.

Our first algorithmic result is a sublinear time spectral dot product oracle:

Theorem 2. [Spectral Dot Product Oracle] Let €, € (0,1) with € < %, Let G = (V, E) be a d-regular
graph that admits a (k, p,€)-clustering Cq,...,Cy. Let 1 > & > n—ls Then INITIALIZEORACLE(G, 1/2,€)
(Algorithm computes in time O(kOW . nl/2+0(/e%) . (1og n)3 - é/ﬁlg) a sublinear space data structure
D of size O(k°M) - pl/240(e/¢%) . (logn)3/€12) such that with probability at least 1 — n=1% the following
property is satisfied:

For every pair of vertices x,y € V, SPECTRALDOTPRODUCT(G, z,y,1/2,£, D) (Algorithm @ com-
putes an output value (fy, fy). such that with probability at least 1 — n 100

apx

3 |

<fwvfy>am - <f17fy> S

The running time of SPECTRALDOTPRODUCT(G,x,y,1/2,£,D) is O(kOM) . pl/2+0(/%") . (1ogn)? -
1 /12
L/€12).

Furthermore, for any 0 < 6 < 1/2, one can obtain the following trade-offs between preprocessing
time and query time: Algorithm SPECTRALDOTPRODUCT(G, z,%,6,&, D) requires O(k°M) - p8F+O(e/¢%) .
(logn)? - #/{12) per query when the prepressing time of Algorithm INITIALIZEORACLE(G,6,&) is in-

creased to O(KOW) . pl=93+0(/¢%) . (1og n)3 - é/gg).

Our results: a spectral clustering oracle. Our goal is to compute a data structure that provides
sublinear time access to a (k, ¢, €)-clustering of G. Such a data structure is called a (k, ¢, €)-clustering
oracle. We now formally define a spectral clustering oracle in the Local Computation (LCA) model:

Definition 4 (Spectral clustering oracle). A randomized algorithm O is a (k, ¢, €)-clustering oracle if,
when given query access to a d-regular graph G = (V, E) that admits a (k, ¢, €)-clustering Ci, ..., Cj,
the algorithm O provides consistent query access to a partition P = (61, ceey ék) of V. The partition
P is determined solely by G and the algorithm’s random seed. Moreover, with probability at least 9/10
over the random bits of O the partition P has the following property: for some permutation 7 on k
elements one has for every i € [k]:

~ € - log(k
|CiACiy| <O <3()) |Cil.
¥
Remark 3. Note that it is crucial that O provides consistent answers, i.e. classifies a given x € V in
the same way every time it is queried (for a fixing of its random seed).

We are interested in clustering oracles that perform few probes per query. Our main contribution is:

Theorem 3. For every integer k > 2, every ¢ € (0,1), every e € %, every 0 € (0,1/2] there exists a
(k, @, €)-clustering oracle that:

~ 02,4, 2
e has O, (2O(i k" log (k)) .n1—5+0(€/5"2)> preprocessing time,

e has 64, ((%)O(l) ~n5+0(5/“”2)) query time,
e uses 6¢ ((%)O(l) ~n1_5+0(€/(‘92)) space,
e uses 5¢ ((%)O(l) - no(‘/wz)) random bits,

where O, suppresses dependence on ¢ and O hides all polylog(n) factors.

To the best of our knowledge, our algorithm is the first sublinear spectral clustering algorithm in
literature. We hope that our main technique for providing sublinear time access to the spectral embed-
ding will have further applications in sublinear time spectral graph theory. Our simple algorithm for
recovering clusters using hyperplane partitioning in a carefully defined sequence of subspaces may also be
of independent interest in spectral partitioning problems. We provide a detailed overview of the analysis
and the main ideas are involved in Section

Other related work. Besides the work on property testing and the work on clustering with labelled,
data another closely related area is local clustering. In local clustering one is interested of finding the
entire cluster around a node v in time proportional to the size of the cluster. Several algorithms are known
for this problem [ACLOS| [AGPT16l [OA14] [ST14l [ALMI3] but unfortunately they cannot be applied to
solve our problem because when the clusters have linear size they take linear time (in addition, the output
clusters may overlap). In this paper instead we focus on solving the problem using strictly sublinear
time.

2 Preliminaries

In this paper we mostly use the matrix notation to represent graphs. For a vertex x € V, we say that
1, € R™ is the indicator of z, that is, the vector which is 1 at index x and 0 elsewhere. For a (multi) set
Is ={x1,...,xs} of vertices from V we abuse notation and also denote by S the n X s matrix whose i**
column is 1,,. For i € N we use [i] to denote the set {1,2,...,i}.

For a symmetric matrix A, we write v;(A) (resp. Vmax(A), Vmin(A)) to denote the i" largest (resp.
maximum, minimum) eigenvalue of A.

Let m < n be integers. For any matrix A € R™"*™ with singular value decomposition (SVD) A =
YTZT we assume Y € R T' € R" " is a diagonal matrix of singular values and Z € R™*" (this is
a slightly non-standard definition of the SVD, but having I" be a square matrix will be convenient). Y
has orthonormal columns, the first m columns of Z are orthonormal, and the rest of the columns of Z
are zero. For any integer ¢ € [m] we denote Y € R"*? as the first ¢ columns of Y and Y_; to denote
the matrix of the remaining columns of Y. We also denote by Zj,; € R™*? as the first ¢ columns of Z
and Z_, to denote the matrix of the remaining n — ¢ columns of Z. Finally we denote by I';; € R?*4
the submatrix of I' corresponding to the first ¢ rows and columns of T" and we use I'_[; to denote the
submatrix corresponding to the last n — ¢ rows and n — ¢ columus of T'. So for any ¢ € [m] the span of
Y_ |4 is the orthogonal complement of the span of Y}, in R", also the span of the columns of Z_, is the
orthogonal complement of the span of Z}; in R™. Thus we can write A = Y|T'y Z[Z] +Y_ gl [g Zf[q].

We also denote with Ag the adjacency matrix of G and with L the normalized Laplacian of G where
L=1-— ‘%. For L we denote its eigenvalues with 0 < A\ < ... < A, < 2 and we write A to refer to the
diagonal matrix of these eigenvalues in ascending order. We also denote with (ug, ..., u,) an orthonormal
basis of eigenvectors of L and with U € R™*™ the matrix whose columns are the orthonormal eigenvectors
of L arranged in increasing order of eigenvalues. Therefore the eigendecomposition of L is L = UAUT.
We write Upy,) € R™*¥ for the matrix whose columns are the first & columns of U and also define F = U, [£ .
For every vertex x we denote the spectral embedding of vertex x on the bottom k eigenvectors of L wit
fr € R* ie. f, = F1,. For pairs of vertices =,y € V we use the notation

(fos fy) = 2 fy
to denote the dot product in the embedded domain.

Remark 4. We note that if G is a (k,p,€)-clusterable graph with €/p? smaller than a constant, the
space spanned by the bottom k eigenvectors of the normalized Laplacian of G is uniquely defined, i.e. the
choice of Uy, is unique up to multiplication by an orthonormal matriz R € R*** on the right. Indeed,
by Lemma |9 below one has Ny < 2¢ and by Lemma [1| below one has A\py1 > ©2/2. Thus, since we
assume that €/¢? is smaller than an absolute constant, we have 2¢ < ¢?/2, and therefore the subspace
spanned by the bottom k eigenvectors of the Laplacian, i.e. the space of Uy, is uniquely defined, as
required. We note that while the choice of f, for x € V is not unique, but the dot product between the
spectral embedding of x € V and y € V is well defined, since for every orthonormal R € R¥** one has

(Rfs, Rfy) = (Rfa)T(Rfy) = [T (RTR)fy = fi fy.

In this paper we also consider the transition matrix of the random walk associated with G M =
% . (I + %). From any vertex v, this random walk takes every edge incident to v with probability 2—1(1,
and stays on v with the remaining probability which is at least % Note that this random walk is exactly
same as a lazy random walk on G and that M =T — % Observe that Vi u; is also an eigenvector of M,
with eigenvalue 1 —)‘7 We denote with ¥ the diagonal matrix of the eigenvalues of M in descending
order. Therefore the eigendecomposition of M is M = UXUT. We write Y € REXE for the matrix
whose columns are the first k rows and columns of 3. Furthermore, for any ¢, M? is a transition matrix
of random walks of length ¢. For any vertex x, we denote the probability distribution of a t-step random
walk starting from z by m, = M'1,. For a (multi) set Is = {1,...,25} of vertices from V, let
matrix M!S € R™**® is a matrix whose columns are probability distributions of ¢-step random walks
starting from vertices in Ig. More formally the ith column of M'S is m,,. For any vertex z € V let
N(z):{y € V:{x,y} € E} denote the set of vertices that are adjacent to the vertex .

Definition 5 (Cluster Centers). Let G = (V, E) be a d-regular graph. Let Cy,...,Cy be a (k, ¢, €)-
clustering of G. We define the spectral center of cluster C; as

1
Hi = @ wgc: fa-

For vertex x € V, we define p, as the cluster center of the cluster which x belongs to.

In our analysis we use the following standard results on eigenvalues and matrix norms. Recall that
for any m x n matrix A, the multi-sets of nonzero eigenvalues of AAT and AT A are equal.

Lemma 1 (|JCKK™18]). Let G be any graph which is composed of k components C1,...Cy such that
#%(Cy) > ¢ for any i € [k]. Let L be the normalized Laplacian matriz of G, and \ry1 be the (k + 1)st
smallest eigenvalue of L. Then A1 > %2.

For a d-regular graph G, let pe(k) denote the minimum value of the maximum conductance over any
possible k disjoint nonempty subsets. That is
pa(k) < min _ max dg(5;)

~ disjoint Si,...,Sk i@

Lemma 2 ([LGT14]). For any d-regular graph G and any k > 2, it holds that
A < 2pa(k).

Lemma 3. Let G = (V, E) be a d regular graph that admits a (k,p,€)-clustering C1,...,Cy. Let L be
2

the normalized Laplacian matriz of G. Let A\ < ... < X\, be eigenvalues of L, then we have A1 > %

and A\, < 2e.

Proof. Note that G is composed of k& components C, ... Cy, such that for all 1 < i < k we have ¢%(C;) >

. Hence, by Lemma [1| we get Ag11 > %2. Moreover for all 1 < i < k, we have ¢€(Ci) < e. Thus by
Lemma 2] we have A\x < 2e. O

Since we assume that the maximum ratio of cluster sizes is bounded by a constant, we have

Proposition 1. Let G = (V, E) be a d regular graph that admits a (k, p, €)-clustering C1,...,Cy. Then

n

we have mine gy, xy |Ci| = Q2 (E) and max;cqq,.. 1y |Ci] = O (%)

A symmetric n X n matrix is positive semi-definite, if and only if all its eigenvalues are non-negative.

The spectral norm of matrix A € R™*" is defined as maxyern z-£0 “\ﬁc T“lz that equals the square root of

the largest eigenvalue of the matrix A7 A. The Frobenius norm of a matrix A is defined as />, (Ai)%

For matrices A, A€ R™ " we write A < Z, if Vo € R" we have 2T Az < 2T Az.

3 Technical overview

In this section we give an overview of the analysis and the main technical contributions of the paper.
Recall that we denote the matrix of bottom k eigenvectors of the normalized Laplacian of G by Up.
The spectral embedding of a vertex 2 € V, denoted by f, € RF, is simply the z-th column of U 5;]. The
main intuition behind spectral clustering is that the points f, € R* are well-concentrated around cluster
means ; € R¥, defined for every i = 1,...,k by

1

zeC;

See Fig. [1] for an illustration.

The contributions of our paper are twofold. Our first contribution is a primitive that provides dot
product access to the spectral embedding of a graph in sublinear time: we show in Theorem |2/ how, given
any pair of vertices z,y € V one can compute

<ff£7fy>ap.r ~ <f77fy>7 (2)

in time ~ n!/2+9(9) per evaluation (see Algorithm |5|in Section [5[for the formal definition of (-,)4y, and
its analysis).

Our second contribution is to show how dot product access as in above allows one to solve the
cluster recovery problem. Both of these contributions are based on a new property of the spectral
embedding that we establish. This property allows us to quantify the intuitive statement that vertices
in the embedding concentrate around cluster means defined in above in a very strong formal sense.

In the rest of this section we first present our sublinear time dot product oracle (in Section and
then outline how access to such an oracle can be used to design a simple spectral clustering algorithm
(in Section . We assume that the inner conductance of the clusters ¢ is constant for the purposes of
this overview to simplify notation.

Cs

%

Cy H2 Ch

Figure 1: Example of a spectral embedding where points are concentrated around means.

3.1 Sublinear time dot product access to the spectral embedding

We start with a description of the main underlying ideas underlying the proof of Theorem Our
starting point from earlier work is the observation that collision statistics of random walks can be used
to exhibit the structure of a (k, ¢, €)-clusterable graph. In particular, in (k, o, ¢)-clusterable graphs,
there is a gap between A\ and A1, and the behavior of random walks is essentially determined by the
bottom k eigenvectors of the Laplacian and the corresponding eigenvalues. This suggests that we can
potentially use random walks to determine the spectral embedding. The spectral embedding is of course
not necessarily unique (for example, if not all of the bottom & eigenvalues are unique). However, the dot
product of the embedded vertices is still well-defined as a function of the subspace spanned by the bottom
k eigenvectors of the Laplacian, as the subspace itself is uniquely defined because of the aforementioned
gap between A\, and Agy1. See Remark [4] for more details. We now give an overview of our approach.
Fix two vertices x,y € V. We would like to compute

<f1afy> = (F]II)T(F]ly) = 1£U[k]U£]1y'

The direct approach to this would amount to computing an eigendecomposition of M to obtain U,
but that would take at least 2(n) time and is too expensive for our purposes. On the other hand, it is
well-known that we are able to estimate, in about n'/2 time, the dot product

(M1,)" (M'1,) = 1T M1,

Note that 13 M*1, = 17UX*U"1,. Thus to get UpyUp, from 13 M?'1,, we need to remove the matrix

¥2¢ from the middle. Specifically, we can estimate the quantity above as follows. For some precision
parameter £ € (0,1) we first run &~ n!/2T0(/%”) /¢2 random walks from z, letting M, € R" denote a
vector whose a’th component is the fraction of random walks from z that end up at a. Similarly, we run
& n1/2+o(6/“"2)/§2 random walks from y, letting m, € R™ denote a vector whose a’th component is the
fraction of random walks from y that end up at a. One can showﬂ that with high (constant) probability
we have

x

BN 1
|y — 1 M1, [<€ . (3)

2This calculation is mostly amounts to a rather standard collision counting calculation that relies on the birthday
paradox if one wants to establish the claim for most vertices z,y € V (this was done in [CPS15] and |[CKK™18] for
example). Our new moment bounds for the spectral embedding (see Lemmas [4] and [5|in Section [4)) allow us to establish
such a claim for all vertices z,y € V — see Lemma

While is not directly useful, a primitive for constructing empirical distributions m, and m, as above
is a central part of our approach. We formalize it as Algorithm [1| (RUNRANDOMWALKS) below:

Algorithm 1 RUNRANDOMWALKS(G, R, t, x)
1: Run R random walks of length ¢ starting from x
2: Let m,(y) be the fraction of random walks that ends at y > vector m, has support at most R
3: return i,

Even if we cannot apply directly, it lets us compute a seemingly related to quantity 17 M 2lt]ly
quickly by invoking Algorithm [1f and computing one dot product. In order to get from 1M 2t]ly to
]IIU[k] U[i]]ly, we need to somehow apply a linear transformation on the random walk distributions
before computing the dot product between them, i.e. we need a different dot product operation. It is
easy to see that the correct linear transformation is given by the matrix Uy E[k] U (k> Where M t=pyUxtuT

is the eigendecomposition of M and Uy stands for the matrix of bottom k eigenvectors of the Laplac1anﬂ
Specifically, we have

(M) " (US55 Uig) (ML) = 15U Uy Ly = (fa, f),

which is exactly the quantity we are interested in. Of course, there is a major problem with this approach,
since U[k]EfztU[j,;] is an n x n matrix! To get around this issue, we approximate U[k]E[;]QtUT by a sparse
low rank matrix, as we describe below. Specifically, we let Is be a multiset of s < n vertices selected
uniformly at random. Let S be the n x s matrix whose j-th column equals 1;; and let WE2WT denote
the eigendecomposition of 2 - (M*S YI(MLS)El We show that with an approprlate choice of the sampling
parameter s < n one has

27T . arte. G . T gt
where n

I . s =4t T

U= = Wi Wiy ()
is an sx s matrix that can be computed explicitly. The corresponding primitive to compute (M*S)T (M*S)
is presented as Algorithm [2| (ESTIMATECOLLISIONPROBABILITIES) below. It basically estimates the
Gram matrix of random walk distributions out of I (denoted by G) by counting collisions, and taking
medians of estimates to reduce failure probablhty approprlately After computing the approximate Gram
matrix, we derive from it the matrix ¥ = = - W[}E[k] W[,C]7 where G = WEWT is the eigendecomposition
of G (see line and line of Algorithm {4 note that G is a symmetric matrix, and hence an
eigendecomposition exists).

Algorithm 2 ESTIMATECOLLISIONPROBABILITIES(G, Is, R, 1)

1: for i =1 to O(logn) do

2 @Z := ESTIMATETRANSITIONMATRIX(G, Is, R, t)

3: P, = ESTIMATETRANSITIONMATRIX(G, Is, R, t)

4 g, := % (ﬁlTél + @fﬁ) > G; is symmetric
5: Let G be a matrix obtained by taking the entrywise median of G;’s > G is symmetric
6: return G > G € RS¥S

Algorithm [2] uses an auxiliary primitive presented as

Algorithm 3 ESTIMATETRANSITIONMATRIX(G, Ig, R, t)

1: for each sample z € Ig do
2: m, := RUNRANDOMWALKS(G, R, t, x)

3: Let CAQ be the matrix whose columns are my for x € Ig R
4: return @ > @ has at most Rs non-zeros

3Note that this matrix is not well defined in the presence of repeated eigenvectors, but any fixed choice of this matrix
suffices for our purposes. It is also interesting to note that while we use a canonical choice of the eigendecomposition of
M throughout the paper, all our bounds are oblivious to the choice of this basis, and hold for the subspace of bottom k
eigenvectors, which is well defined since there is a gap between the k-th and (k + 1)-th eigenvalues in k-clusterable graphs.

4We abuse notation somewhat by writing S to denote the n x s matrix whose (a, j)-th entry equals 1 if the j-th sampled
vertex equals a and 0 otherwise.

The proof of relies on matrix perturbation bounds (the Davis-Kahan sinf theorem) as well as
spectral concentration inequalities, crucially coupled with our tail bounds on the spectral embedding (see
Lemma |4 and Lemma . In particular Lemma 4| and it’s consequence - Lemma |5 can be used to bound
the leverage scores of Uy (i.e. ||fz||3 for & € V). This part of the analysis is presented in Section

Lemma 4. [Tail-bound] Let ¢ € (0,1) and € < %, and let G = (V, E) be a d-regular graph that admits

(k, @, €)-clustering C1, ..., Cy. Let L be the normalized Laplacian of G. Let u be a normalized eigenvector
of L with ||ul|lz = 1 and with eigenvalue at most 2¢. Then for any 8 > 1 we have

1 10 By
- : =P\ e (152 .
- ’{xEV u(a)| = B minie[k]|ci|} ‘_ (2>

Lemma 5. Let ¢ € (0,1) and € < 2 ond let G = (V, E) be a d-regular graph that admits (k,,€)-

100
clustering C1,...,C. Let u be a normalized eigenvector of L with ||u|l2 = 1 and with eigenvalue at most
2¢e. Then we have
160
ulloo < n?0/#" -y [,
min;ey, |C;l

We note that the number of samples s is chosen as s ~ EOM) 5 0(e/#%) (see Algorithm [4)) , where the
second factor is due to our upper bound on the ¢, norm of the bottom k eigenvectors of the Laplacian
of a (k, p, €)-clusterable graph proved in Section

Once we establish in Section (see Lemma , we get for every x,y € V

(M'1,)"M'S - U - STM (M) = 1] Uy U1y, (6)

which is what we would like to compute. One issue remains at this point, which is that we cannot compute
M*'1, or M*1, explicitly, and neither can we store and compute our approximation M*S - ¥ - ST M?,
since it is a dense, albeit low rank, matrix. We resolve this problem by running an appropriate number
of random walks out of the sampled nodes Ig, as well as the queried nodes x,y € V. Specifically, we run
~ n'/?+0(9) random walks from every sampled node in Ig, defining an n x s matrix Q whose (a,b)-th
entry is the fraction of walks from a that ended at b and using the matrix @ as a proxy for M*S (note
that the expectation of @ is exactly M'S). Such a matrix @ is computed as per line and line
of Algorithm 2| (ESTIMATECOLLISIONPROBABILITIES). We note that Algorithm |4 (INITIALIZEORACLE)
performs O(logn) independent estimates that we ultimately use to boost confidence (by the median
trick). The entire preprocessing is summarized in Algorithm 4| (INITIALIZEORACLE) below:

Algorithm 4 INITIALIZEORACLE(G, 6, £) > Need: €/¢? < 155
1. 1= 2()-1(;gn
%)
2 Rigie = O(n!~0t5107 e/ ;35 /¢6)
3 5:= 0(711500'5/“"2 -logn - k16/£6)
4: Let Ig be the multiset of s indices chosen independently and uniformly at random from {1,...,n}
5: for i =1 to O(logn) do
6: @Z := ESTIMATETRANSITIONMATRIX(G, Ig, Rinit, t) > @Z has at most R, - $ non-zeros
7: G :=ESTIMATECOLLISIONPROBABILITIES(G, I, Rinit, t)
8: Let % -G = WE/VVT be the eigendecomposition of % -g > G e Rs*s
9: if 1 exists then
10: U= % . W[k]i[;?ﬁf:[g] ~ > U e R#*®
11 return D := {V,Q1,...,Qo(ogn)}

Equipped with the primitives presented above, we can now state our final dot product estimate:

where m, and 7, are empirical distributions of ~ n1/2+0(/4*) out of and y respectively, @) is an
n x s matrix with ~ nl/2+0(/#*) nonzeros per column, and V¥ is a possibly dense s X s matrix, where

the number of sampled vertices s is ultimately chosen to be kM nOe/ %), The analysis of the error
incurred in replacing with @ is presented in Section It relies on a birthday paradox style
variance computation similar to previous sublinear time algorithms for testing graph cluster structure.
The actual query procedure that implements is given by Algorithm |5 below.

Algorithm 5 SPECTRALDOTPRODUCTORACLE(G, z, ¥, 6,&, D) > Need: €/¢? < 1(1)5

> D= {\P7@17"'5Q\O(10gn)}

L Rquery 1= O(n6+500.é/tp2 ’ k9/€2)

2: for i =1 to O(logn) do

3: m}, := RUNRANDOMWALKS(G, Rquery, t,)
4: m;, := RUNRANDOMWALKS(G, Rquery, t,)
5
6
7

) over all runs

K2

. Let a, be a vector obtained by taking the entrywise median of (Q;)7(¢
Q)" (my,

: Let a, be a vector obtained by taking the entrywise median of (Q;)7(
: return (fy, fy), = alVa,

m
mt) over all runs

Trading off preprocessing time for query time. Finally, we note that one can reduce query time
(i.e., runtime of SPECTRALDOTPRODUCTORACLE) at the expense of increased preprocessing time and
size of data structure. Specifically, one can run ~ n®+o(¢/ *) random walks from nodes x,y whose dot
product is being estimated by SPECTRALDOTPRODUCTORACLE at the expense of increasing the number
of random walks run to generate the matrix) in INITIALIZEORACLE to ~ n1—5+0(e/¢2)’ for any 6 < 1/2.
This in particular leads to a nearly linear time spectral clustering algorithm.

3.2 Geometry of the spectral embedding

We now describe our spectral clustering algorithm. Since we only have dot product access to the spectral
embedding, the algorithm must be very simple. Indeed, our algorithm amounts to performing hyper-
plane partitioning in a sequence of carefully crafted subspaces of the embedding space, using (a good
approximation to) cluster means ;.

We first present a simple hyperplane partitioning, then we give an example embedding to show why
it might be hard to prove that this scheme works. After that we design a modification of the hyperplane
partitioning scheme that, through the course of carving, carefully projects out some directions of the
embedding. This modification is an idealized version of our final algorithm for which we can prove per
cluster recovery guarantees.

First we assume that the cluster means are known. In that case we define, for every i = 1,... k,
the sets B

Cii={w €V (fospi) = 0.9 s}

of points that are nontrivially correlated with the i-th cluster mean p;. Note that C~'Z = C), 0.9 in terms
of Definition [8] but since u;’s are fixed in this overview, we use the simpler notation. We next define,
for every i =1,...,k,

i—1
j=1

In other words, this is a natural ‘hyperplane-carving’ approach: points that belong to the first hyperplane
C are taken as the first cluster, points in the second hyperplane C5 that were not captured by the first
hyperplane are taken as the second cluster, etc. This is a natural high dimensional analog of the Cheeger
cut that has been used in many results on spectral partitioning. The hope here would be to show that
there exists a permutation 7 on [k] such that

\@AC}(M < O(e) - |Cray 9)

for every ¢ = 1,...,k, where we assume that the inner conductance ¢ of the clusters is constant. Here
A stands for the symmetric difference operation.

One natural approach to establishing @ would be to prove that for every ¢ = 1, ..., k vertices = € C;
concentrate well around cluster means p; (see Fig. . This would seem to suggest that C,’s are close to
the C;’s, and so are the @’s. This property of the spectral embedding is quite natural to expect, and

10

versions of this property have been used in the literature. For example, one can show that for every
a €R¥ |lalls =1,

2:2) — i, @) < O(e). (10)

i=1xeC;

The bound in follows using rather standard techniques — see Section for this and related claims.
One can check that suffices to show that C;’s are very close to C;’s, namely that for every i =1,... k
there exists j € [k] such that

ICAC] = 0(e) - G (1)

T\ he formal proof is given in Section The result in is encouraging and suggests that the clusters
C; defined by the simple hyperplane partitioning process approximate the C;’s, but this is not the case!
The problem lies in the fact that while @’SNapproximate the C;’s well as per , the bound in
does not preclude nontrivial overlaps in the C;’s — we give an example in below.

3.2.1 Hard instance for natural hyperplane partitioning

We now give an example configuration of vertices in Euclidean space such that (a) the configuration does
not contradict and (b) the natural hyperplane partitioning algorithm fails for this configuration.
This shows why we develop a different algorithm that can deal with configurations like the one presented
in this subsection.

Consider the following configuration of C;’s and j;’s. Suppose that all cluster sizes are equal 7, and

let k= 1. Let p,’s form an orthogonal system and for each i € [k] let |[u;]2 = \/g Foralli <k =1/e

for all z € C; we set f, = p;, that is points from all clusters except for 1/€’th one are tightly concentrated
around cluster means — see Fig. [2| for an illustration with & = 3. Then for cluster C,. we distribute
points as follows. For every i = 1,...,1/e—1 we move ¢/2 fraction of its points to ji; /c + 15, and another
€/2 fraction of the points to ju; /e — ;. The remaining e fraction of Cy /. stays at p;,.. Now observe that
all cluster means are where they should be, since we applied symmetric perturbations. Secondly notice
that is satisfied for every direction «. Intuitively it is the case because we moved 1/e — 1 disjoint
subsets of C /. of size eZ in 1/e — 1 orthogonal directions. Lastly observe what happens to Cy’s. For

alli=1,...,1/e—1 set C; contains C; and €/2 fraction of C /. that was moved in direction y;. One can
verify that thls is perfectly consistent with (., and in particular with . The problem is that many
clusters have large overlap with one particular cluster, namely C /.. Indeed notice that the ball carving

process returns 61/6 such that \61/6 N Cijel = (45€)%. That means that constant (almost 1/2) fraction
of cluster C /. is not recovered!

3.2.2 Our hyperplane partitioning scheme

The example in Section suggests that we need to develop a diffferent algorithm. Our main contribu-
tion here is an algorithm that more carefully deals with the overlaps of C;’s. The high level idea for the
algorithm is to recover clusters in stages and after every stage project out the directions corresponding
to recovered clusters.

First we observe the following property of (k, ¢, €)-clusterable graphs (see Lemma . Any collection
of pairwise disjoint sets with small outer-conductance matches the original clusters well. More precisely
for every collection {C1,...,C}} of pairwise disjoint sets satistying for every i € [k] ¢(C;) < O(elog(k))
there exists a permutation 7 on [k] such that

|5iAC7r(i)| < O(elog(k)) - |Criyl, (12)

In the algorithm we will test many candidate clusters and the property above allows us to test if a
particular candidate C' is good by only computing its outer-conductance.

Now we describe our algorithm more formally The algorlthm proceeds in O(log(k)) stages. In the
first stage it considers k candidate clusters CZ, where x € C’ if it has big correlation with p; but small
correlation with all other p;’s. More formally

@ = 61\ Uéj’ (13)

JFi

7

c, M2 Ch

Figure 2: Example of a spectral embedding that is consistent with and but for which the
natural hyperplane partitioning would not work.

which is equivalent to:

(fospi) = 0.9]|p;|1? and for all j # i (fu, p;) < 0.9/

Note that by definition all these clusters are disjoint. At this point we return all candidate clusters d
for which ¢(C;) < O(e), remove the corresponding vertices from the graph, remove the corresponding
w’s from the set {p1, ..., ur} of centers and proceed to the next stage.

In the next stage we restrict our attention to a lower dimensional subspace II of R*. Intuitively we
want to project out all the directions corresponding to the removed cluster centers. Formally we define
IT to be the subspace orthogonal to all p’s removed up to this point (we overload notation by also using
II for the orthogonal projection onto this subspace). We will see that u’s are close to being orthogonal
(see Lemma [7)). This fact means that II =~ span({u1,...,us}), where {1, ..., up} is the set of u’s that
were not removed in the first step. Now the algorithm considers b candidate clusters where the condition
for x being in a cluster ¢ changes to:

(o Tlpzs) = 09| T2 and for all j € [b],j # i (fo Tlpts) < 0.9] Ty
Now we return all candidate clusters that satisfy ¢(C;) < O(e) but this time the constant hidden in the
O notation is bigger than in the first stage. In general at any stage ¢ we change the test to O(e-t). At the
end of the stage we proceed in a similar fashion by returning the clusters, removing the corresponding
vertices and p’s and considering a lower dimensional subspace of II in the next stage. R
The algorithm continues in such a fashion for O(log(k)) stages. Thus for all returned clusters C; it
is true that there exists j such thatP}

ICiAC| < O (elog(k)) - |Cy].

Let’s analyze how this algorithm works for the configuration presented in Section In the first

stage we have that, for all ¢ # %, C; = C; and moreover |51/6 NCiye| = (136)% So all candidate cluster

5Note that this algorithm may not return a partition of the graph but only a collection of disjoint clusters. Later, in
Section in Proposition [3] we present a simple reduction that shows that an algorithm that guarantees is enough
to construct a clustering oracle that, as required by Definition @, returns a partition. The high level idea is to assign the
remaining vertices to clusters randomly.

12

@- for i # 1/e are returned but crucially this time (in contrast with the natural hyperplane partitioning)
cluster C . is left untouched. Then directions {j1,..., 11,1} are projected out. In the second stage
the algorithm considers only vertices from C' /. projected onto one dimensional subspace span(;,.) and
recovers this cluster up to O(e) error.

Because of the robustness property , to show that this algorithm works we only need to argue
that at the end of O(log(k)) stages k sets are returned. We do that by showing that in every stage
at least half of the remaining clusters is recovered. It is done in Lemma [37] and crucially relies on the
following fact. When the algorithm considers a subspace II then the number of points in the union of
sets:

{o € Vi (o Tl = 09|l 2} 0 {z € V & (fu, Thay) = 0.9] T2},

for all 4, j € [b],7 # j is bounded by O(e-b- %) (see Lemma [36{and Remark . To prove that we observe
that every point x in this intersections has big projection onto some two p;, pt; from {p1,..., up}. Then
using the fact that p’s are close to being orthogonal we deduce that II ~ span({g1,...,us}) this in
particular means that IIy; =~ p;, Ilp; = p;. Because of that f, is abnormally far (further by a factor of
1/e with respect to the average) from it’s center u,. Now applying for an orthonormal basis of II
and summing the inequalities we get that that the number of points in the intersections is bounded by
O(e-b- %). Having this bound we can argue that at least half of the remaining clusters is recovered as
on average only O(e -) points from each cluster belong to the intersections. The formal argument is
given in Section [6.3]

The use of subspaces is crucial for our approach. If we relied solely on the bounds on norms (i.e.
bounds on ||fz||) we could only claim a recovery guarantee of O(ek) per cluster. One of the reasons is
that there can be O(en) vertices of abnormally big norm and all of them can belong to one cluster (as
it happens in the example from Section . The use of carefully crafted sequence of subspaces solves
this issue as it allows to derive better bounds for the number of abnormal vertices in each stage. It is
possible as we can show that the ”variance of the distribution” of f,’s cannot concentrate on subspaces.
This leads to an O(elog(k)) error guarantee per cluster.

What remains is to remove the assumption that the cluster means p; are known to the algorithm.
We show, using our tail bounds from Lemma [4} that a random sample of O(1/e - k3logk) points in
every cluster is likely to concentrate around the mean. This allows us to take a O(1/e - k*logk) size
sample of points, guess in exponential (in 1/e - k*log? k) time which points belong to which cluster, and
ultimately find surrogates fi; that are sufficiently close to the actual u;’s for the analysis to go through.
This part of the analysis is presented in Section [6.4.1l We also need a mechanism for testing if a set
of approximate [i’s induces (via our partitioning algorithm) a good clustering. We accomplish this goal
by designing a simple sampling based tester that determines whether or not the clusters induced by a
particular collection of candidate cluster means have the right size and outer conductance properties.
See Section for this part of the analysis.

?
To design our spectral clustering algorithm we need to perform tests like (f,, Iu) > 0.9|TIu||3 for
a given vertex x, a candidate cluster mean u, and the projection matrix II. Hence, we need tools to
approximate (f,,ITu) and |[TIu||3. As explained above, instead of exact cluster means i.e. u we will
perform the test for approximate cluster means i.e, i = ﬁ Zye g fy, where S is a small subset S of

sampled nodes. First observe that for any vertex x one can estimate (fy, 1), as follows:

px

(B, = ‘%ﬂ S (e)

yeSs

where ([, fy>am can be computed using (SPECTRALDOTPRODUCTORACLE) Algorithm [5| Next we will

explain how to compute < Sz I fy> for z,y € V. Recall that I is the subspace orthogonal to all i’s

.
removed so far. Let {fi1,..., /i, } denote the set of removed cluster means, and let X € R¥*" denote a
matrix whose columns are fi;’s. Therefore the projection matrix onto the span of {fi1,..., i} is given

by X(XTX)~'X. Hence, we have Il = I — X(X7X)~!X and we can compute <fx, ﬁfy> as follows:

px

(FoTlfy) =i dy),, — FTXOXTX)THXY,).

px

Note that the i-th column of matrix X is fi;, thus fZ'X € R" is a vector whose i-th entry can be
computed by (f., ;) . Moreover notice that X7 X € R" " is matrix such that its (i, j)-th entry can be

apx

13

computed by (7, fi;),, .. Therefore (fFX), (Xf,) and (XTX)~! all can be computed explicitly which

let us compute < fm,ﬁ fy>
apx
(o TU(p)) and |[TL(u) 13 as follows:

(1) o= S0 (Faligy)

px yeB apx

2 1 .
= 18] : E <fx,H,u>
ope z€B .

This part of the analysis is presented in Section [5.6

Given the primitive to compute < fw,ﬁ fy> we are able to estimate
apx

|1

px

4 Properties of the spectral embedding of (k,p,¢)-clusterable
graphs

In this section we study the spectral embedding of (k, ¢, €)-clusterable graphs. Recall that the spectral
embedding maps every vertex x € V to a k-dimensional vector f,. We are interested in understanding
the geometric properties of this embedding. We start by recalling some standard properties of the
embedding: We show that the cluster means

1
12 e

Hi =
|Cl zeC;

are almost orthogonal and of length roughly 1/4/|C;| (Lemma [7| below). Then we give a bound on the
directional variance, by which we mean the sum of squared distances of points f, to their corresponding
cluster centers when projected on direction o. We show in LemmalG] below that the directional variance is
bounded by O(e/?) for every direction o € R, ||| = 1. This in particular implies (see Lemma@below)
that ‘rounding’ the spectral embedding by mapping each vertex to its corresponding cluster center results
in a matrix U that spectrally approximates the matrix of bottom k eigenvectors of the Laplacian. These
bounds are rather standard, and their proofs are provided for completeness. The main shortcoming of
the standard bounds is that they can only allow us to apply averaging arguments, and are thus unable
to rule out that some of the embedded points are quite far away from their corresponding cluster center.
For example, they do not rule out the possibility of an Q(1/k) fraction of the points being ~ v/k further
away from their corresponding centers. Since we would like to recover every cluster to up an O(e) error,
such bounds are not sufficient on their own.

For this reason we consider the distribution of the projection of the embedded points on the direction
of any of the first k eigenvectors and we give stronger tail bounds for these distributions (in Lemma [4)
than what follows from variance calculations only. Basically, we give a strong bound on the O(p?/e)-th
moment of the spectral embedding as opposed to just on the second moment, as above. These higher
moment bounds are then crucially used to achieve sublinear time access to dot products in the embedded
space in Section [5| (we need them to establish spectral concentration of a small number of random samples
in Section as well as to argue that a small sample of vertices contains a good approximation to the
true cluster means y;,i = 1,..., k& in its span in Section [6.41]

4.1 Standard bounds on cluster means and directional variance
The lemma below bounds the variance of the spectral embedding in any direction.

Lemma 6. (Variance bounds) Let k > 2 be an integer, ¢ € (0,1), and € € (0,1). Let G = (V,E) be a
d-regular graph that admits (k, ¢, €)-clustering C1,...,Cy. Then for all a € R¥, with ||a|| = 1 we have

k
Yo e mna)’ < %.

i=1 z€C;

Proof. For each i € [k], and any vertex x € C;, let d;(z) denote the degree of vertex z in the subgraph
C;. Let H; be a graph obtained by adding d — d;(x) self-loops to each vertex z € C;. Let L denote the
normalized Laplacian of graph G. For each ¢ € [k] and let L; denote the normalized Laplacian of Hj,
and let \o(H;) be the second smallest eigenvalue of L;.

14

Let z = Upa. Note that ||z||2 = 1. By Lemmawe have \; < ... < A < 2¢, where)\; is the i*®
smallest eigenvalue of of L. Therefore we have

(z,Lz) < X\ < 2¢ (14)

Fix some i € [k], let 2’ € R™ be a vector such that z/(z) := z(x) — (u;,). For any S C V, we define
Zg € R™ to be a vector such that for all x € V z5(x) = 2/(z) if x € S and 24(z) = 0 otherwise. Note
that z(x) = (fz, «), thus we have

Sat@) =3 Z@) = 3 2@) — () = 3 (f — pisa) =0
zeV zeC; xeC; zeC;
Thus we have z’ci 1 1, so by properties of Rayleigh quotient we get
<Z/01,LZZ/Cl> - 1 Zm,yECi,(m,y)EE(Z/(x) - Zl(y))2 N l Zm,yECi,(w,y)EE(Z(x) - Z(y))Q
(0,26, d Y vec,(#(2))? d Yaec,(2(x) = (ni a))?

> X (H;) (15)

Furthermore, by Cheeger’s inequality for any ¢ € [k] we have A\o(H;) > %2. Hence, for any i € [k] we
have

Zw,yeci,(w,y)EE(Z(x) —2(y))? No(H;) > tﬁ
a3 pec, (2(x) = (pi @))? YT 2
Now observe the following:
2¢ > (z,Lz) By (|14)
1
o DR CORE),
(z,y)EE
k

(2(z) = 2(y))?

I\
]

=1 z,yeCy,(z,y)EE
k
4
> > () = (i)’ By (15)

Recall that for all z € V, 2(z) = (f, @). Therefore for for any a € R¥ with ||a|| = 1 we have

k
Z Z<fm_/1'iaa>2 S %

i=1z€C;
L]

The following lemma shows that the length of the cluster mean of cluster C; is roughly 1/4/|C;| and
that cluster means are almost orthogonal.

Lemma 7. (Cluster means) Let k > 2 be an integer, ¢ € (0,1), and € € (0,1). Let G = (V, E) be a
d-regular graph that admits (k, p, €)-clustering C1,...,Cx. Then we have

1

4
el — | < 252

1. for alli € [K], < T

2. Wi e k], [,)] < 2 ———
for alli # j € [k], [(pi,)| < v ICic;

To prove Lemma [7] we need Lemma [9]in which we will use the following result from [HJ90] (Theorem
1.3.20 on page 53).

Lemma 8 ([HJ90]). Let h,m,n be integers such that 1 < h < m < n. For any matric A € R™*™ and
matriz B € R™"*™ the multisets of nonzero eigenvalues of AB and BA are equal. In particular, if one
of AB and BA is positive semidefinite, then vy,(AB) = vy, (BA).

Lemma 9. Let k > 2 be an integer, ¢ € (0,1), and € € (0,1). Let G = (V, E) be a d-regular graph that
admits (k, @, €)-clustering C1, ..., Ck. Let H € R¥** be a matriz whose i-th column is ;. Let W € RF¥F
be a diagonal matriz such that W (i,i) = \/|C;|. Then for any o € R¥, ||| = 1, we have

15

5

1. | (HW)HW)T = 1) a| <

%ﬂ

2. o (HW)T(HW) = 1I) a| < %

Proof. Proof of item : Let Y € RFX™ denote a matrix whose z-th column is p, for any « € V. Note
that

k
= |Cilpipd = (HW)(HW)".
i=1
We define z := YT, and z := Uprja. Note that U[Tlg] Upr) = I. Therefore we have
" (HW)YHW)" = T)a| = [o" (YY" = UgyUpy)

Y @) = 2(2)?

From definition of z(z) and z(z)

zeV
=D (a(@) = Z()) (2(x) + 5(33))‘
zeV
< Z(z(x) —2z(x))? Z (Z(z) + z(x))? By Cauchy-Schwarz inequality
zeV eV
(16)
Note that for any z € V, we have z(z) = (fs, @) and Z(z) = (us, a). Therefore by Lemma [6] we have
2¢/€
S (o(a) - 2 S (e pra)? < 2Y6 an
zeV zeV ¥
To complete the proof it suffices to show that >\ (2(z) 4 z(x))* < 4. Note that
Do) = fap)?
eV zeV
_ Z |C | < zEC fl’>
Aa, fz) ?
_ Cz (zeC;)
; e |Ci
< Z Z (o, fm>2 By Jensen’s inequality
i xzeC;
= @)
zeV
Thus we have
> (@) 7<) 2z)<242) i (18)
zeV zeV eV

In the first inequality we used the fact that (2(x) — 2(x))? > 0 and for the second inequality we used the
fact that ||2]|3 = [|Upjal|3 = 1. Putting (I8), (17), and together we get

o (W) (W)~ 1)a < 2

Proof of item (2)): Note that by item for any vector o with ||o<|\2 = 1 we have

4 4

Ave <ol (HW)HW)) a <1+ ave
P 14

Thus by Lemma we have that the set of eigenvalues of (HW)(HW)T and (HW)T(HW) are the same,
and all of the eigenvalues lie in the interval [1 — %‘{E, 1+ 4f]. Thus for any vector a with ||a]a =1 we

have
B <o (W) w) a < 1 2

1—

1—

16

Now we are able to prove Lemma

Lemma 7. (Cluster means) Let k > 2 be an integer, ¢ € (0,1), and € € (0,1). Let G = (V,E) be a
d-regular graph that admits (k, @, €)-clustering C1,...,Ck. Then we have

4

1. for alli € [K],

113 —

il

1

2. Wi j € k], i)] < 25—t
for alli # j € [k, (i ns)] < =5 —rete

Proof. Proof of item (I): Let H € R¥** be a matrix whose i-th column is z;. Let W € R*** be
a diagonal matrix whose such that W(i,7) = 1/|C;|. Thus by Lemma |§| item for any a € R* with
ler]| = 1, we have

o (HW)T(HW) — I) o] < 4;(

Let a = 1;. Thus we have
((HW)T(HW)) (i) — 1] < 4“ 19)

Note that (HW)T(HW))(i,i) = (WHTHW)(i,i) = ||ui||§|Ci|.Theref0re we get

4[1
¥ |Ci|

1, + 1;). Note that ||a||s = 1. Thus by Lemma@item we have

4\f

\| 2 -

Proof of item : Let o = %(
" (HW)T(HW) —1I)a| <
Note that

o (W) (EW) - 1) o] =

N =

(um 1l + Nl |12 |c|+2<m,uj>\/|ci||cj|—z>]

8\/€
2 2 /

willz|Ci| 4+ 1151121C5 | 4+ 2 (s C; 0,2‘<
‘| 21C5] =+ (151 21651 (i)\ |Gl G5l o

Therefore we get

Thus
1 NG
s fiCHIC] < |3 (= lBICi) + 5 (1= i) |+ 4
Loave 1 oave 4y |
<. . I T By item (/1)
2 2 @ @
_ 8V
%)
Therefore we get
8y/€ 1

pis 1)) < —— - ———=.
’ v VGG

4.2 Strong Tail Bounds on the Spectral Embedding

The main results of this section are the following two lemmas. The first lemma gives an upper bound on
the length of the projection of any point f, on an arbitrary direction o € R¥. The second lemma considers
the distribution of the lengths of projected f, and we get tail bounds that show that the fraction of points
whose projected length exceeds the ‘expectation’ (which is about 1/4/|C;| for the smallest cluster C;) by
a factor of g is bounded by 5_502/106. In other words, we bound the O(¢?/¢)-th moment as opposed to
the second moment, which gives us tight control over the embedding when €/¢? < 1/ log k.

17

Lemma 5. Let ¢ € (0,1) and € < 2 and let G = (V,E) be a d-regular graph that admits (k,,€)-

100’
clustering C1, . ..,Ck. Let u be a normalized eigenvector of L with ||ulla = 1 and with eigenvalue at most
2e. Then we have
160
Ulloo < n20</¢ . —_ .
oo min;ey, |Ci

Lemma 4. [Tail-bound] Let ¢ € (0,1) and € < %, and let G = (V, E) be a d-regular graph that admits
(k, @, €)-clustering C1, . ..,Cy. Let L be the normalized Laplacian of G. Let u be a normalized eigenvector

of L with ||ull2 = 1 and with eigenvalue at most 2e. Then for any B > 1 we have

1 T 6 —Lp2/20'5
. : =P et (152 .
y Hx eV :luz)>28 min;c g |C4] } ‘_ <2>

We are interested in deriving moment bounds for the distribution of the entries of the first & eigen-
vectors u of L (i.e., eigenvectors with eigenvalue smaller than 2¢), and specifically in the distribution of
the absolute values of the entries of u. In order to be able to analyze this distribution, we define the sets
of all entries in u that are bigger than a threshold 6:

Definition 6 (Threshold sets). Let G = (V, E) be a graph with normalized Laplacian L. Let u be a
normalized eigenvector of L with ||u||2 = 1. Then for the vector u and a threshold § € RT we define the
threshold set S(6) with respect to the eigenvector u and threshold 6 as

SO):={x eV :u(zx) >0}

Our arguments will use that for every vertex z, we have u(z) ~ 3 3 (zy}eP u(y). So nodes neighboring
other nodes with large u(-) values are likely to have large u(-) values as well. This motivates the following
definition of the potential of a threshold set.

Definition 7 (Potential of a threshold set). Let G = (V, E) be a graph with normalized Laplacian L.
Let u be a normalized eigenvector of L with ||u|lz = 1. Then for vector u and a threshold § € RT we
define the potential of a threshold set S(#) as

z€S(0)

We start by proving a core bound on the threshold sets (Lemma [10| below) that forms the basis of
our approach: the main technical results of this section (Lemma [5| and Lemma []) essentially follow by
repeated application of Lemma, Specifically, we now argue that if a threshold set S(6) expands in
the graph G and the relative potential of the set (i.e., p(6)/]S(0)]) is at most 26, then we can slightly
decrease 6 to obtain a new 6’ such that the corresponding threshold set is a constant factor larger that
S(#) and the relative potential is bounded by 26’

Lemma 10 (Threshold shift for expanding threshold sets). Let G = (V, E) be a d-regular graph with
normalized Laplacian L. Let u be a normalized eigenvector of L with ||ull2 = 1 and with eigenvalue
A < 2. Let § € RY be a threshold. Suppose that S(6) is the threshold set with respect to u and 0 such

that S(6) is non-empty, ¢ (S(0)) > ¢ and |g((g))‘ < 260. Then the following holds for 8/ =0 (1 — %):

1. |S(9)] = (1 4+ ¢/2)|S(0)|, and

p(0") /
2. SO < 2¢'.

Proof. Proof of item (I): Note that \u = Lu = (I — 4)u. Thus for any 2 € V we have (Lu) (z) =
u(w) — 4 > (wyyer Wy). Thus we have,

u(z) — = Z u(y) = A u(x).
{z,y}eE

We write the above as

> (u(@) —uly) =d-\-u(x), (20)

yeEN ()

18

where N(z) = {y € V : I{x,y} € E}. Summing over all z € S(0) we get

S0 () —uy) = Y A-d-ul@)=X-d-p), (21)
z€S(0) yeN () z€S(0)
and note that
o> @) —u) = D (u@) —uly)). (22)
z€S(0) yeN () {z,y}€E

z€S(0),y€S5(0)
For any edge e = {z,y} € E, we define A(e) = |u(z) — u(y)|. Note that for any e = {x,y} such that
x € S(0) and y € S(0) we have u(x) > 6 > u(y), hence A(e) = u(x) — u(y). Therefore, putting and
together we get
> Ale) =X-d-p(d).

ecE(S(0),V\S(0))
By an averaging argument there exists a set E;, C F(Sy, V' \ Sp) such that |Ep| > W and
all edges e € Ey, satisfy A(e) < m We define V7, as a subset of vertices of V'\ S() that are

connected to vertices of S(6) by edges in Er, i.e.

Vi ={yeV\S0):3{x,y} € B,z € S(H)}.

ot that Bl E(S0).V\ 50)
L)
> > . 2
Vil > Bl > (0.2 (23)
Using the assumption of the lemma that ¢%(S()) > ¢ we obtain
[E(S(0),V\SO)]=¢-d-[S0)] (24)
Putting and together we get
S(6
ARSI (25)
Recall that for ail ede gEL we have A(e) < M%‘f\@(@))\' We have \ < 2¢, therefore for all e € E, we
have A(e) < W Thus for all y € V, we get
4-¢-d-p(0)
u(y) > 6 — . 26)
W =0 s\ s@) (
By the assumption of the lemma we have % < 26, hence, by inequality we get
4-e-d-p(h) 4-¢-d-p(f) 4e p(9) (86)
60— >0—— L =0—— - ——>01——). (27)
[E(S(0),V\5(6))] @-d-]S(8)| ¢ [S(0)] @

Putting and together we get for all y € Vi, u(y) > 0 (1 - %). Let ¢ :=6(1 — %). Thus

S(O) UV, C S(0).

By definition of Vi, we have V;, NS(0) = 0. Therefore, |S(0')| > [S(0)| + |VL|. Thus by inequality
we get

S@) =IO (1+)- (28)

This concludes the proof of the first part of the lemma.
Proof of item (2): Now using that for all z ¢ S(#) we have u(z) < 6 and that p(6) < 26|S(6)| by
assumption of the lemma we obtain

ueS(0)

= Z u(zx) + Z u(x)

2€S(6) 2€S(8)\S(6)

< p(0) +0[S(0")\ S(9)]
< 20|S(0)| + 0S(0') \ S(0)]. Since p(6) < 260|S(0)|

19

By we have |S(0') \ S(0)] > £]S(0)|. Therefore, using ¢ < % we get

5@ N\S()]
p(0) _ 201S(0)[+01SO)\SO) _, 2+ "jsw 2+

SO = ISOI+ISENSOI 7 14 BEORSOI =T 1+

6 o6
A
S
[N}
N
—_
|
| @
(@)
N———
AN
[\>}
<

We would like to apply Lemma iteratively, but there is one hurdle: while the first condition on
the threshold set S(¢) naturally follows as long as S(6) is not too large (by Proposition [2), the second
condition needs to be established at the beginning of the iterative process. Lemma accomplishes
exactly that: we prove that for any value 6; with threshold set S(6;) not empty or not too large, there
exists a close value 6 that meets the conditions of previous lemma.

Proposition 2. Let G = (V, E) be a d-regular graph that admits a (k, ¢, €)-clustering Cy,...,Cy. For
any set S CV with size |S| < § - min;ey, |C;| we have ¢©(S) > ¢.

Proof. For any 1 <i < k we define S; = SN C;. Note that

1 . |Cl|
|S:] < 1S] < 5 m161]£1|C'1| <5

Therefore since ¢“(C;) > ¢ we have E(S;,C; \ S;) > ¢d|S;|. Thus we get

k k
E(S,V\S) =Y E(Si,Ci\Si) > @d > [Si| = gdlS|.

i=1 i=1

Hence, ¢ (S) > ¢. O

Lemma 11. Let ¢ € (0,1) and € < %, and let G = (V,E) be a d-regular graph that admits (k,,¢€)-
clustering Cq, . ..,Cy. Let L denote the normalized Laplacian of G. Let u be a normalized eigenvector of
L with ||ull2 = 1 and with eigenvalue A < 2¢. Let 61 € R be a threshold. Let S(01) be the threshold set
with respect to u and 1. Suppose that 1 < |S(61)] < % -mingeqy,.. ky |Cil. Then there exists a threshold

02 such that the following holds:

yeeey

1. 6, (1—%) <0, <0,, and

9, 202) < 99,

[5(02)]
Proof. Let
6* := min {9 > 0, | $(0) £ 0 ana 20 < 29} .
1S(0)]
We can conclude that 6* exists, as by the assumption of the lemma we have |S(6;)] > 1 and for
Omax = max;cy u(z) we have ‘g(((;‘“:;))l = Omax- We also have [S(0%)] < min;eqr, 4y |Cil/2 as 6% > 6,
and by the assumption of the lemma. So Proposition [2 implies

¢ (S(67) = ¢. (29)

Now Lemma [TI0] implies

So we can set 0y := 6* (17 %). O

We are now ready to prove our tail bound. The main idea behind the proof is to use Lemma [10| and
Lemma [11] to show that if a vertex has a large entry along one of the bottom k eigenvectors this implies
that many other vertices also have a relatively large value along the same eigenvector. Thus, not too
many f, can have such a large value.

20

Lemma 4. [Tail-bound] Let ¢ € (0,1) and € < %, and let G = (V, E) be a d-regular graph that admits

(k, @, €)-clustering C1, ..., Cy. Let L be the normalized Laplacian of G. Let u be a normalized eigenvector
of L with ||ul|lz2 =1 and with eigenvalue at most 2¢. Then for any 8 > 1 we have

1 10 By
- : =0\ i1l (152 '
- ‘{xGV ()] = B minie[k]|ci|} ‘_ <2>

Proof. Let symin = mingeqy,.. 5y |Ci|. We define

S+{$€V:u(m)25~ 10},

Smin

and

S‘z{er:—u(x)Zﬁ~ 10}

Smin
Note that —wu is also an eigenvector of L with the same eigenvalue as u, hence, without loss of generality
suppose that |[ST| > [S™|. Let T = {x eV u(x)? > A} . Since, 1 = [Jul3 = > oy u(z)?, an

— Smin

averaging argument implies |7 < %min. Let

Smin

T+—{xev:u(x)z 10 }

Note that 8 > 1, hence, ST C T+ C T, and so we have [S*| < |TF]| < |T'| < *mix. We may assume that
ST is non-empty as otherwise the lemma follows immediately. Let 6y = 3- 4/ 51—9. Note that ST = S(6y).
Hence, 1 < [S(60p)| < *#i». Therefore by Lemma there exists a threshold 6; such that

1 1
(1—86)5- 0 <b <B4 O,and (30)
¥ Smin Smin

p(61)
< 26;.
1S(01)]
For any t > 1 we define ;1 = 6;(1 — %). For some t' > 0 we must have 6,1 < Sl(_) < 6. Thus by
we have
8e\ e\’ 10
@:(1—6) 912<1—6> 8- : (31)
¥ 2 Smin
and

10
0 1 Smin
t'+ <

Oy < < (32)
RN
¢ ¢
Putting and together we get
8 —t'—1
5 < <1 -) (33)
¥
Recall that for all ¢ > 1 we have 0,11 = 6,(1 — %), thus
ST =8(6p) CS(0;) CSB)C...CSOy)CTT.
Therefore for all 0 < ¢t < ¢’ we have
S <IS@)] < |TH| < =2 (34)
Since |S(6;)| < min"e“i‘d”"'} Gl _ Swmin Ty Lemma for all 1 <t <t we have
1S(0cs1)] = 150 (1+5). (35)

21

Therefore

T+
¢ <tons () By (39
Smin
S 10g1+§ <1O|S+|) By "
Smin . _
<logy ¢ <5|S+US—|) By the assumption [ST| > |S~| (36)

Putting and together we get

Se —t'—1
B < (1 - <,0) By "
“1-log £<r Smin)
8 1+ 5.|STuU |
< (1 - ;) P By (36)
. _10g1+5‘1(1_875) 1
S 2 €
<2 —= Si — < 37
= (5~|S+US|> 12 = 100 (37)

Note that for any € R we have 1 + 2 < e, and for any < 0.01 we have 1 — x > e~ 1'2%_ thus given
i < 0.01 we have

_ 8e 10e
8€>_1n(‘P)>77 >_2O'6 (38)

10 <p1— =
oos (1-3) g 27 e

Putting and together we get

B
2

IA

s (20¢/¢)
(s

1St US| < sy .<5>—(<p2/20»e) o <ﬁ>_(9"2/20'6)
_ min 2 < 2 -

Therefore we have

O

As a consequence of our tail bound we can prove a bound on £,-norm on any unit vector in the
eigenspace spanned by the bottom k eigenvectors of L, i.e. Up.

Lemma 5. Let ¢ € (0,1) and € < 2" and let G = (V,E) be a d-regular graph that admits (k,,€)-

100
clustering C1, . ..,Ck. Let u be a normalized eigenvector of L with ||u|la = 1 and with eigenvalue at most
2¢. Then we have
[l loe < n20-¢/9% &
min;ey, |[Cj
Proof. We define
160
S=qzeV:|u(z) > p20e/e% 2
mingey, |C;

Let B=4- n20¢/¢” By Lemma 4| we have

—?/20-€ —p2/20-
|S|Sn<§) Sn-(2-n206/“"2) ’ <1

Therefore S = @), hence
160

n < n20€/¢2 g
lullee < min;ey, |

22

4.3 Centers are strongly orthogonal

The main result of this section is Lemma [I2] which generalizes Lemma [7] to the orthogonal projection of
cluster centers into the subspace spanned by some of the centers. To prove Lemma [I2] we first need to
prove Lemma [13] Lemma [14 and Lemma

Lemma 12. Let k > 2, ¢ € (0,1) and Z be smaller than an absolute positive constant. Let G = (V, E)
be a d-regular graph that admits (k, g, €)-clustering Cy,...,Cy. Let S C {p1,..., pr} denote a subset of
cluster means. Let I1 € RFXF denote the orthogonal projection matriz onto span(S)*. Then the following
holds:

L. For all p; € {jur, ...} \ S we have ||Tysel3 — [Jpl 3] < 2 - [l 3.

2. For all pu; € ey S we have |(Tp;, M, <d0ve 1
pi 7 g € {pas - e\ (M, Mg < =57 - —mmey
Matrix A € R” is poitive definite if 7 Az > 0 for all # 0, and it is positive semidefinite if 27 Az > 0
for all z € R™. We write A > 0 to indicate that A is positive definite, and A %= 0 to indicate that it

is positive semidefinite. We use the semidefinite ordering on matrices, writing A > B if and only if
A—B>0.

Theorem 4 ([Todll]). Let A,B € R™*™ be invertible, positive definite matrices. Then A > B —>
B~lx= AL

Proof. By symmetry, we only need to show A = B => B! = A~!. Since B > 0 for any z,y € R" we
obtain
0<(y—B'z,B(y— B 'z))
= <yuBy> - <y7x> - <B_1$7By> + <£E7B_1.’E>
= (y, By) — 2(w,y) + (z,B'x)

o)
2 (z,y) — (y, By) < (z,B"'z) (39)
Since A = B it follows from that
2 <l’,y> - <y7Ay> < 2 <I7y> - <y7Ay> < <xaBilx> (40)

Letting y = A~ 'z in the leftmost expression of we obtain

<x,A_1m> < <x,B_1x>
Since x € R" is is arbitrary, we get B~ = A71. O
Lemma 13. Let H,ﬁ € R™ ™ be invertible, positive definite matrices. Let § < 1. Suppose that for any

vector € R™ with ||z||z = 1 we have (1 —8)aTHa < 2T Ha < (14-8)aT Hz. Then for any vector y € R"
with |[ylla =1 we have Z5y"H 'y <y"H 'y < 159" H 'y,

Proof. Note that we have (1 —6)H < H < (1 + 6)H therefore, by Theorem [4| we have

—1 1

= "H™!
(1+9)

"H 'wH

(1-9)
O

Lemma 14. Let k > 2, ¢ € (0,1) and ﬁ be smaller than an absolute positive constant. Let G =
(V,E) be a d-regular graph that admits (k, g, €)-clustering Cy,...,Cy. Let S = {p1, ..., ux} \ {p:}. Let
H = [p1, 12,y fhiz1, fit1,- - - 4x] denote a matriz such that its columns are the vectors in S. Let
W € RE=DxE=1) denote a diagonal matriz such that for all j < i we have W (j,7) = V|C;| and for all
j > i we have W(j,j) = \/|Cj+1|. Let Z=HW. Then ZT Z is invertible, and for any vector x € R¥~1
with ||z||2 = 1 we have

2T(zT2)r = Dz| < 5‘@@

23

Proof. Let Y € R*** be a matrix, whose i-th column is equal to /Cj - 4;. By Lemma@ item for any
vector z € RF with ||a||z = 1 we have

T (YTY — Ia| < ave
@

Let © € R*~! be a vector with ||z||2 = 1, and let a € R be a vector defined as follows:

T 7<1

a; =40 j=i

Tjp1 J>i

Thus we have ||a||2 = ||z|]2 = 1 and Yo = Zz. Hence, we get

12277 — Dx| = [T (Y'Y = T)a| < ave
@

Thus for any vector x € R*~! with ||z||s = 1 we have

4 4
1—£§xT(ZTZ)x§1+£
¥ ¥

Note that Z7 Z is symmetric and positive semidefinit. Also note that Z7 Z is spectrally close to I, hence,
ZT 7 is invertible. Thus by Lemma for any vector € R*~1 we have

1-— % < xT(ZTZ)_lx <1+ Lﬁ
¥

Therefore we get

leT(zT2)™t — Da| < ‘r’f.

O

Lemma 15. Let k > 2 be an integer, v € (0,1), and € € (0,1). Let G = (V, E) be a d-reqular graph that

admits (k, @, €)-clustering C1,...,Ck. Let S = {p1, ..., ux) \{ps}- Let H = [f1, fooy ooy hie1y i1y - - 5 [ok)
denote a matriz such that its columns are the vectors in S. Let W € RE=DX(E=1) denote o diagonal
matriz such that for all j < i we have W (j,7) = \/|C;| and for all j > i we have W (j,j) = \/|Cj+1].
Let Z = HW. Then we have

8y/e

pi 22" i < I |12l 13-

Proof. Note that ZZT = (Z?Zl Cjlpjul) — |Cilpip . Thus we have

k
pi 22" = pf D10y g | = 1Cal - [l 5 (41)
j=1

By Lemma [J]item (T)) for any vector = with ||z||; = 1 we have

k
NG
R D) PR
= ¥
Hence we can write
k k
ING
pd D IC T | i = nd [DG wnd =T | i+ nd pi < (1 + (p) [|al13
j=1 j=1

24

Therefore by we get

k
A AT Z |Cj|MjMJT i — |Cil - [|ill3
4\f
< (1 25— 10) sl
By Lemmawe have |Cy| - [|pil|3 > (1 - %f). Thus we get
4y/e
w1227 < (1+ 2 -Gl) sl
NG NG
<1+ 1+) il 5
¥ ¥
8v/e
4

IN

IN

il 3

Now we prove the main result of the subsection (Lemma .

Lemma 12. Let k > 2, ¢ € (0,1) and Z be smaller than an absolute positive constant. Let G = (V, E)

be a d-regular graph that admits (k,p, €) clustermg Cy,...,Cx. Let S C {p1,...,pr} denote a subset of
cluster means. Let I1 € RFXF denote the orthogonal projection matriz onto span(S)*. Then the following
holds:

L. For all p; € {jur, ...} \ S we have ||Tsel3 — [lpal 3] < 2 - [l I3

B

. .) . 40ve 1
2. For all pi # pij € {pa, .-, e} \ S we have [(Hpg, Ip)| < =3 [N

Proof. Proof of item : Since II is a orthogonal projection matrix we have ||II||]s = 1. Hence, we
have [[Tl][3 < [|wil|2 < (1+ %) l|il|3. Thus it’s left to prove |[Tu|3 > (1— %) |l |3 Note
that by Pythagoras’ theorem |[Tjzs|[3 = ||i|1§ — [[(I — Th)ei] 3. We will prove [|(I — el B < 225 |3

which implies
Ve
R (11% a2

Let " = {u1,...,pur} \ {§:}. Let II' denote the orthogonal projection matrix onto span(S’)*. Note
that S C S, hence span(S) is a subspace of span(S’), therefore we have ||(I — I)u;|[3 < [|(1 — IT') 4] |3

Thus it suffices to prove ||(I — IT') ;|3 < 16f||ui||§. Let H = [j1, f2, - -« fli—1s hit1,- - -5 fk] denote a

matrix such that its columns are the vectors in S’. Let W € R(F=1Dx(*=1) denote a diagonal matrix such

that for all j < i we have W(j,7) = 1/|C;| and for all j > i we have W(j,j) = /|Cj+1|. Let Z = HW.
The orthogonal projection matrix onto the span of S’ is defined as (I —II') = Z(Z7Z)~1Z7T, and using
Lemma [T4] we get

(I =T)sll5 = i 2(Z272) 7 27
=i 2027 2) = DZ pi+ pi 227

By Lemma [14] (Z7 Z)~1 is spectrally close to I, therefore we have
_ 5./€
WFz((Z272)7 = 1) 2w < o 127 il 13

Thus we get
/ 2 5\[T 2 T 2
(I =)il < % 1 127 willz < 2/127 il 3
By Lemma [I5] we have

8\/E
NZ7 will3 = ! 227 s - Nl I3

25

Therefore we get

164/€
(I =)l 5 < ||(1 =) pal 5 < 21127 il |3 < ” ill3 (42)
Hence,
Ve
It (1165) sl
¥
Proof of item : Note that
(pis i) = (I = g + Wpg, (1 — gy + Tpg) = (I — Mg, (I — M)pg) + (g,)
Thus by triangle inequality we have
[(Wpi, Ty)| < [peas p) | 4+ (I = T s, (1 —))| (43)

By Cauchy Schwarz we have

(L = T, (I = M| < |1 = T il | (T = T i |2

16+/€
< 2 alalls By
32/ 1 ¢
< . By Lemma [7] for small enough — (44)
¢ VGG ©?
Also by Lemma [7] we have
8/€ 1
[(pis i)l < —— + ————= (45)
v VGG
Therefore by , and we get
40 /e 1
Wpei, Tpg) | < (i i) | + (1 = gy (1 = W pg)| < : :
I(Il < i i)+ I())is)] - AN

4.4 Robustness property of (k, ¢, €)-clusterable graphs

In this subsection we show a Lemma that establishes a robustness property of (k, ¢, €)-clusterable graphs.
That is we show that any collection {S7, Sa, ..., Sk} of pairwise disjoint subsets of vertices must match
clusters {C1,...,Cy} well.

Lemma 16. Let G = (V, E) be a d-regular graph that admits a (k, g, €)-clustering Cy,...,Cy. Let k > 2,
v €(0,1) and ﬁ be smaller than an absolute positive constant. If S1,S2,...,S5y CV are k disjoint sets
such that for all i € [K]

€
$(S:) <O (@2 -log(k)>
then there exists a permutation w on k elements so that for all i € [k]:

€
|Cﬂ(i)ASi| <0 ((pp, 'log(k)) |C7T(i)|

Proof. Fix ¢ € [k] and let J; = {j : |S;NC;| < |C;]/2}. Then observe that because the inner conductance
of every C; is at least ¢ we get:

Y1500 20 (5 08 Is: (46)

JjEJ:

Using and the assumption ﬁ is sufficiently small we get that

€
S 1516 <0 (%5 1osth)) 15 < i (47)

JEJ:

26

and 3 oy [S: N Cj| = || gives us that
For all i € [k], J; # [k] (48)

We will show that for each i: |[k]\ J;| = 1 and that a function ¢ — 7 (i) € [k]\ J; (that is 7(¢) is the only
element of [k] \ J;) is a permutation and that it satisfies the claim of the Lemma.

Assume that there exist i1 # iz € [k] and j € ([k] \ Ji,) N ([k] \ Ji,). By definition of J;’s we get that
|Si, NC51, 185, NCj| > |C;/2 but S;’s are disjoint so it’s impossible that two of them intersect more than
half of the same C;. That means that sets ([k] \ J;) are pairwise disjoint for all i’s. But we also know
from that for all 4 ([k] \ J;) # 0. So we have k nonempty, pairwise disjoint subsets of [k], which
means that every set contains one element and all elements are different. That in turn means that we
can define 7 as a function i — 7 (i) € [k] \ J; and 7 is a permutation.

Now we show that 7 satisfies the claim of the Lemma. Observe that because for all i € [k] the set
[k] \ J; contains only one element we get for all i € [k].

1SN Gyl =190\ Cra) (49)

J€J;

Note that because of and for all ¢ € [k]:

1S:\ Criy] < O (;3 : logk) 1S,]. (50)

Moreover because inner conductance of every C; is at least ¢ and |Cr(;) \ Si| < [Cr(iy|/2 we get that for
all i € [k]

€
- |Coi \ Sil < O (w -1og<k>) 54 (51)

Finally combining and we get that:

€
CoiyASH| < O (g) -log<k>) Coto

27

5 A spectral dot product oracle

Our goal in this section is to develop what we call a spectral dot product oracle. The oracle is a sublinear
time and space data structure that has oracle access to a (k, ¢, €)-clusterable graph G and after a
preprocessing step can answer dot products queries for the spectral embedding. Specifically, if L = UAUT
is the normalized Laplacian of G and the z-th column of F = U, g] is called f, for x € V then our oracle
gets as input two vertices x,y and returns an approximation of (f;, f,). Both the preprocessing time
and the time to evaluate an oracle query are k©() . nl/2+0(e/e?) . (log n)o(l), that is, sublinear in n for
€ < ¢?. We now state the main theorem that we prove in this section. The algorithms mentioned in
Theorem [2] can be found later in this section.

Theorem 2. [Spectral Dot Product Oracle] Let e, ¢ € (0,1) wzth € < 755. Let G = (V, E) be a d-regular
graph that admits a (k, ¢, €)-clustering C1, ..., Cy. Let 1 > &> 5. Then INITIALIZEORACLE(G, 1/2,€)

(Algorithm computes in time O(k°™) .l/2+0(e/¢%) . (logn)3 - ﬁ/{ls) a sublinear space data structure
D of size O(k°M) - nl/2+0(e/@?) . (logn)3/€'2) such that with probability at least 1 —n=19 the following
property is satisfied:

For every pair of vertices x,y € V, SPECTRALDOTPRODUCT(G, z,y,1/2,£,D) (Algomthm@ com-
putes an output value (fy, fy). e such that with probability at least 1 — n =100

<8
<fatvfy>apw - <fzvfy> = ﬁ
The running time of SPECTRALDOTPRODUCT(G,z,v,1/2,&,D) is O(kOM . nl/2+0(e/¢%) . (logn)?
2/€%).

Furthermore, for any 0 < 6 < 1/2, one can obtain the following trade-offs between preprocessing
time and query time: Algorithm SPECTRALDOTPRODUCT(G, z,v, 6, &, D) requires O (kO™ - pd+O(e/¢%) .
(logn)? - é/fu) per query when the prepressing time of Algorithm INITIALIZEORACLE(G, §,&) is in-
creased to O(k°M) . pl=+0(e/¢?) . (logn)? - é/fls).

5.1 The spectral dot product oracle - overview

In the following sections we provide the proof of the spectral dot product oracle. Recall from the
technical overview that we are using the following algorithms (we restate them for convenience of the
reader). Our main tool for accessing the spectral embedding of the graph is a primitive that runs a few
short (logarithmic length) random walks from a given vertex.

Algorithm 1 RUNRANDOMWALKS(G, R, t, x)
1: Run R random walks of length ¢ starting from x
2: Let m,(y) be the fraction of random walks that ends at y > vector m, has support at most R
3: return m,

Another key primitive uses collision statistics to estimate the Gram matrix of random walk distribu-
tions started at vertices in a set S.

Algorithm 2 ESTIMATECOLLISIONPROBABILITIES(G, I, R, t)

1: for i =1 to O(logn) do

2: @l := ESTIMATETRANSITIONMATRIX(G, Is, R, t)

3: ﬁi := ESTIMATETRANSITIONMATRIX(G, Ig, R, t)

4 G, = % (ﬁiT@i + @?]31) > G; is symmetric
5: Let G be a matrix obtained by taking the entrywise median of G;’s > G is symmetric
6: return G

We also need the following procedure.

28

Algorithm 3 ESTIMATETRANSITIONMATRIX(G, Ig, R, t)

1: for each sample z € Is do

2 M, := RUNRANDOMWALKS(G, R, t, x)

3: Let @ be the matrix whose columns are my for © € Ig R

4: return > @ has at most Rs non-zeros

Then we can initialize the dot product oracle.

Algorithm 4 INITIALIZEORACLE(G, 6, £) > Need: €/¢? < 155
1 t:= 720;%“

Fiie i= Ot H910%¢/ . 3 /¢0)
§:= O(n1500~6/tp2 logn - k16/¢9)
Let Is be the multiset of s indices chosen independently and uniformly at random from {1,...,n}
for i =1 to O(logn) do

@i := ESTIMATETRANSITIONMATRIX(G, Ig, Rinit, t)
G :=ESTIMATECOLLISIONPROBABILITIES(G, I, Ripit, t)
Let % - g = WEJWT be the eigendecomposition of % - g > G e Rs%s
if 51 exists then

U= 2 WS Wi > W e RS

return D :={¥,Q4,..., @O(log n)}

> @Q; has at most Rj,j; - $ non-zeros

© 2 3 S g W

=
= O

Finally, we have the query algorithm.

Algorithm 5 SPECTRALDOTPRODUCTORACLE(G, z,y, 6, ¢, D) > Need: €/¢? < g
>D .= {‘P, Ql, ceey QO(logn)}

1. unery = O(n6+500~5/ap2 k9/§2)

2: for i =1 to O(logn) do

3: mt := RUNRANDOMWALKS (G, Rquery; t,)

4: My, = RUNRANDOMWALKS(G, Rquery, t,)

5: Let o, be a vector obtained by taking the entrywise median of (Q;)7 () over all runs
6: Let ay be a vector obtained by taking the entrywise median of (@Z)T(

7

: return (fy, fy), = alVa,

=i
mI
m;,) over all runs

Let Is = {i1,...,is} be a multiset of s indices chosen independently and uniformly at random from
{1,...,n}. Let S be the n x s matrix whose j-th column equals 1;,. As already explained in detail in
the technical overview, we first prove stability bounds for the pseudoinverse. Then we show that that
M is approximated by M?*S and finally we show that algorithm RUNRANDOMWALKS approximates the
M'1, sufficiently well. We conclude with the proof of Theorem

5.2 Stability bounds for the low rank approximation

The main result of this section is a bound on the stability of the pseudoinverse of the rank-k approximation
of two symmetric, positive semi-definite matrices A, A € R™*™ that are spectrally close and that have an
eigenvalue gap between the k-th and (k + 1)-st eigenvalue. In order to prove this result, we use Weyl’s
inequality, which gives bounds on the eigenvalues of the sum of a matrix A and a perturbation matrix P.
Recall that for a symmetric matrix A, we write ;(A) (resp. Vmax(A), Vmin(A)) to denote the i*" largest
(resp. maximum, minimum) eigenvalue of A.

Lemma 17 (Weyl’s Inequality). Let A, P € R™*™ be two symmetric matrices. Then we have for all
ie{l,...,n}:

VZ(A) + Vmin(P) é Vz(A + P) S VZ(A) + Vmax(P)»
where for a symmetric matric H € R™ ™ v;(H) denotes its ith largest eigenvalue and vimin(H) and
Umax(H) refer to the smallest and largest eigenvalues of H.

29

We will use the Davis-Kahan sin(f) Theorem [DK70] (the version given in the note [DK]).

Theorem 5 (Davis-Kahan sin(#)-Theorem [DK70]). . Let H = EgAoEl +E1A1EY and H= FoAoFE +
Fi A FE be symmetric real-valued matrices with Ey, By and Fy, Fy orthogonal. If the eigenvalues of A
are contained in an interval (a,b), and the eigenvalues of Ajare excluded from the interval (a—mn,b+n)for
some n > 0, then for any unitarily invariant norm |.||

FT(H — H)E,
n

Let m < n be integers. For any matrix A € R™"*™ with singular value decomposition (SVD) A =
YTZT we assume Y € R"™" ' € R"*" is a diagonal matrix of singular values and Z € R™*" (this is
a slightly non-standard definition of the SVD, but having I" be a square matrix will be convenient). Y
has orthonormal columns, the first m columns of Z are orthonormal, and the rest of the columns of Z
are zero. For any integer ¢ € [m] we denote Y € R"*? as the first ¢ columns of Y and Y_; to denote
the matrix of the remaining columns of Y. We also denote by Zj,; € R™*? as the first ¢ columns of Z
and Z_, to denote the matrix of the remaining n — ¢ columns of Z. Finally we denote by I'j;) € R?*4
the submatrix of I' corresponding to the first ¢ rows and columns of I and we use I'_[;} to denote the
submatrix corresponding to the last n — ¢ rows and n — ¢ columns of I'. So for any ¢ € [m] the span of
Y_|q is the orthogonal complement of the span of Y[, in R, also the span of the columns of Z_, is the
orthogonal complement of the span of Zj; in R™. Thus we can write A = Y|, Z[:g] +Y_ gl [g Zz[q].

Claim 1. For every symmetric matric E and every pair of orthogonal projection matrices P, P one has
|P-E-P—P-E-Plla <2|Ells-(|P-(I=P)a+[P-(I=P)l)
Proof. Since P + (I — P) = I we can write
P-E-P=({P+(I—-P)P-E-P-(P+(I—-P))
-=P.-E-P-(I-P)+P-P-E-P-P+(I-P)-P-E-P-P (52)
Since P + (I — P) = I we have

P.E-P=PP+I-P))-E-(P+(I—P))P|,
=P.-E-I-P)P+P-P-E-P-P+P-(I-P)-E-P-P (53)

Putting and together and by triangle inequality we get

|P-E-P—P-E-P||,

<|P-E-P-(I-P)a+|I~P)-P-E-P-Pla+|P-E-(I-P)P|y+|P-(I-P)-E-P-P|s
Thus by submultiplicativity of the operator norm we get
|P-E-P—P-E-P||,

<|IPll|El2|| P (I = P2 + (I = P) - Plla|| Ell2]| Pllz]| Pll2 + | Pllzl| Ell2l|(T = P)Pll2 + | Pll2l| Ell2l|(T = P)P]|2
<NBls (IP- (I = P)ll2 + (T = P)- Plla + (I = P)Pll2 + | P(I = P)]|2) Since [P =|P|l =1
=2-|[El2- (IP- (I = P)ll2+|P- (I = P)|l2),
where the last equality holds since ||P - (I — P)|lz = |(I = P)T - PT||y = |(I — P) - P|» and similarly
since ||[P- (I = P)l2 = (I = P)" - PT||z = |(I = P)- P|>. O

Recall that for matrices A,g € R™" we write A < g, if Vo € R" we have 27Azr < 27 Az and
we write A < A, if Yo € R" we have 27 Az < 27 Az. Now we can state the main technical result of
this section (Lemma , whose proof relies on matrix perturbation bounds Davis-Kahan sin # theorem

(Theorem [5).

30

Lemma 18. Let A, A € R™™ pe symmetric matrices with eigendecompositions A = YTYT and A=
YIYT. Let the eigenvalues of A be 1 > 4 > -+ > ~, > 0. Suppose that ||[A — Ally < 165 and
Vi+1 < Yi/4. Then we have

A A)Y
Yl YT - Vig TV, < (14 41:)
Y0 Ty Yo = Y g Yo ll2 < 72 :

Proof. We assume without loss of generality that ||A — Ay > 0, as otherwise the claim of the lemma,

follows since A = A. B B
Let n > 4||A — A||2 and ¢ € (2||A — Al|2/n,1/2]. Then we have A+ 7 - I is invertible since

Adn-IT=A+—||A=Aly) - I=A+(n/2)-I=0.
Note that
(1+8)(A+n-I)—A—n-IT=(A—A+(6/2n- 1)+ A+ (5/2)n-1
S (A— A+ |A—Ally-I)+6A+(6/2)n-I Since § > 2||A— Al|2/n
= 0A+(6/2)n- 1
= —b|A—Alp- T+ A—A|s-1 Since § > 2||A — A2/
> 0. Since § < 1 (54)
Also note that
Adn-IT—((1=8)(A+n-1)=(A—A+(5/2n 1)+ (SA+ (5/2)n-1)
S (A— A4 |A—Ally- 1)+ (8A+ (8/2)n-1) Since § > 2||A— A2/
= 0A+(6/2)n- 1
= —b|A—Alp- T+ A—As-1 Since § > 2||A — All2/n
=0 Since § < 1 (55)
Therefore, by and for every n > 4||A — Al|; and 6 € (2||A — Al|2/n,1/2] we have
(1=8)A+n-I)<A+n-I1<(1+0)(A+n-1), (56)

Note that since (A 47 -I) and (A + 7 - I) are symmetric, invertible and positive definite matrices, thus
by Lemmawe get from that 5 (A+n-1)"t = (A+n-I)"and (A+n-1)7! > 1+5(A—|—77 n-t
which implies that

Q=8 A+n- D < (A+n- D <1 +8)(A+n-I)~L (57)
At the same time note that if P = Y} Y[f] and P = }7[k] 17[5, we have, since n > 4[4 — /~1||27

Yiey Ty +nle) 'Yy = P-(A+n-1)"'P (58)
and

Vi (Cpig +771k)_157[£] =P-(A+n-1)7'P, (59)

where I} in (f[k] +nIx)~! stands for the k x k identity matrix. Indeed, the first equation above follows
by noting that

PA+n-I)'P=PYT +n-I)"'YTP
= PYjy(Dyg + - L)Y P+ PY_ g (D + 1 Lyy) " Y P
= PYjy(Tpy +n- 1) 'YiP Since PY_py = YV Yoy =0
= Yty Vi Yoy (Tin +n-Ik)*11f[{]Y[k]1f[;g
= Yy (Cpg + 1+ 1) ™ Y,

31

where we write I and I, above to denote identity matrices of dimension k and n — k respectively
(we omit the subscript on I in what follows to simplify notation). The argument for A is analogous.

Using and
YT Yo = Yin T i Yilgllz < 1Y (Cpf = (Cpg - Te) DY llo + 11V (T = Ty + -)™)Y ll2
[P (A+n-D)7'P=P-(A+n-1)7" Pl
(60)
The rest of the proof proceeds in three steps. We first prove an upper bound on the first two terms
on the rhs of , and then on the third term. Finally we put everything together and choose n > 0

and § > 0 appropriately to achieve the final bound.
Step 1. We now prove an upper bound on the first two terms in . One has

- - 1 1
”Y[k](r[k]1 = (L + - I) 1)Y[§5]H2 < max < — >

§ &+
TN+
n
Svﬁ

and similarly, since vy (A) > vp(A) — ||A - ZHg by Weyl’s inequality (Lemma ,

o s 11
T - Eg - 5Tl < max (- 1)

eq—A-A \& £+7
n

= max
2yl a- Al §(€+ 1)
4 ~

< —Z Since ||A — Al|2 < 7%/2 by assumption
Vi

Combining the two bounds, we get
_ _ ~ o ~_ ~ N o5n
1Ytk Ty = @y + 1 1) ™Y gllz + 1Y Ty — Ty +0- L) ™ HY g2 < 3 (61)

Step 2. One has

|P-(A+n-D)'"P=P-(A+n-D)'Pla < |P-(A+n-I)'P = P-(A+n-1)7" Pl

~ - o~ ~ - (62)
+||P-(Ad+n-I)*P—P-(A+n-I)"'P|>.
For the second term, we have by
IP-(A4n-D)T'P=P-(A+n-I)7'Pla=|[P(A+n-I)"' = (A+n-1)7")P|2
< (5“(A+77'I)_1“2 (63)
< é Since A >0
n

Here the transition from the first line to the second uses the fact that by one has

A4n- D '—(A+n- D' =A+n- D =A+8)A+n-D) +8A+n-1)
<5(A+n-I)*

and

A4+ D = (A+n- D +6(A+n-)"

32

We now bound the first term on the rhs of . Using Claim (1| we get for every n > 0
IP-(A+n-D)'P=P-(A+n-I) " Pla <2(A+n- 1) o (|IP-(I=P)ll2+ [P+ (I = P)||2)
) ~ ~
S;-WP%I—PNrHW'U—PWﬂ

In order to bound ||[P - (I — P)||5 and ||P - (I — P)||2, we first note that by Weyl’s inequality
Vi1 (A) < viegn(A) + (|4 = Alls < /4 + /100 < (3/4)

and vg(A) = v by assumptlon of the lemma. Hence we can apply Theorem [5) I by choice of H = A,
Ey=Yy, E1 =Y., Ao =Ty, Ay =T g, and H=A, Fy =Yy, Fy = Y_pg, Ao =Ty, Ay =T iy,
Let n = 2&. Note that the eigenvalues of Ay = I'|) are at least 4 and the eigenvalues of A; = r_ (k] are
at most (3/4)vk = v — 1. Therefore, by Theorem [f] we have

|FF (A= A)Eolls _ (14— Al

YT Yile = |FX Eylls <
1YZ (0 Yimll2 = [1FY Eoll2 < ; <

Thus we have ||Y[£] 377[1@] ll2 < %. Similarly, we have

ve+1(A) <y /4

and l/k(A) > v (A) — ||A — AVHQ > v — 7k/100. Hence we can apply Theorem |5 I by choice of H = A,
EO = [k] E Yv[k] AO =1 _[k] Al = F[k] and H = A FO =Y_ k] F1 }/[k] AO F [k]» A1 F[k]
Let n = 2. Note that the elgenvalues of Ag = I'_jy) are at most 41 and the eigenvalues of A; = F[k]
are at least Yk — /100 >~y — 1. Therefore, by Theorem |5 I 5| we have

|EF (A= A)B| _ A= A)

1YY ll2 = || P Eol| <

n T /4
Thus, we have ” [k] —[k] 2 < %. Putting these two bounds together, we get
A—A
IP(I = P)llo = [YigYEY ¥ Tyllz = VAV pglle < HMMJM

and similarly B

|A — All2
/4

Substituting the above bounds together with into , we get

|P(I—P)|2 <

5.2 8lA- Ay

HP«A+WU*P_ﬁ(A+n01PH<n+ . (64)
k

~N1/3
Putting it together. Substituting and into and setting n = (||A - A||2) and § =

~ \2/3 ~ ~ ~
4. (||A — A2) (which satisfies n > 4||A— Al|2 and ¢ € (2||A— Al|2/n, 1/2] as required since ||[A— Al|2 <
1(1)0) we get
~ 1= 5 6 2 8||A A||2
—1 19T
HY Y[k] [k]F[k] Y[k]||2 2 + - " + - " o~
1/3 ~ \2/3
5@A—Am) s 16(a—Al)
< > +a(la-Al) "+ (65)
Vi Yk
~ \1/3
32 (114 - Al2)
— ’yz)
as required. In the last transition we used the assumption that 0 <, < v < 1. O

33

5.3 Stability bounds under sampling of vertices

The main result of this section is Lemmal[T9] in which we give bounds for the stability of the pseudoinverse
of the rank-k-approximation when we are sampling columns of the k-step random walk matrix of a
(k, ¢, €)-clusterable graph.

Lemma 19. Let k > 2 be an integer, ¢ € (0,1) and e € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-

clusterable graph. Let M be the random walk transition matriz of G. Let 1/n®> < £ < 1, t > 201°g"
Let ¢ > 1 be a large enough constant and let s > ¢ - n(1280- c/e?) . logn - k*6/€5. Let Ig = {21,...,28}
be a multiset of s indices chosen independently and uniformly at random from {1,...,n}. Let S be the

n X s matriz whose j-th column equals 1;,. Let M! = UXUT be an eigendecomposition of M*. Let
VE-M'S =USWT be an SVD of \/Z - M'S where U € R™™, 5 € R W € R*". If 5 < ks then

—100

with probability at least 1 —n matric i[ﬁ erists and we have

&

n —_— ~_ —_—
UL, — (ML) (M) (2 - Wi S W) ()T (M°1,)| < =

To prove Lemma [19| we require the following matrix concentration bound, which is a generalization
of Bernstein’s inequality to matrices.

Lemma 20 (Matrix Bernstein [Trol2]). Consider a finite sequence X; of independent, random matrices
with dimensions dy X da. Assume that each random matriz satisfies E[X;] = 0 and || X;]l2 < b almost
surely. Define 0? = max{|| >, E[X; XT]||2, | >, E[X] X;]|l2}. Then for allt >0,

—t2/2
||ZX||2>t (di +d2) - exp | = | -

o2 4 bt/3
Equiped with the Matrix Bernstein bound, we can show that under certain spectral conditions we
can approximate a matrix AAT by (AS)(AS)T, i.e. by sampling rows of M. The idea is to write
AAT =" (AL;)(AL;)T as a sum over the outer products of its columns and make the sample size
depend on the spectral norm of the summands.

Lemma 21. Let A € R™" be a matriz. Let B = maxyeq1, oy [|(ALe)(ALy)T||2. Let 1 > & > 0. Let

s> 40"2?#. Let Is = {i1,...,1is} be a multiset of s indices chosen independently and uniformly at
random from {1,...,n}. Let S be the n x s matriz whose j-th column equals 1;;. Then we have

P [HAAT - %(AS)(AS)THQ > g} < 100,

Proof. Observe that

AAT = N (AL)(ALy)". (66)
re{l,...,n}
and
S(AS)(A8)T = = 37 (AL,)(AL)". (67)
ij€ls

For every j =1,2,...,s let X; = 2. (Al;,)(AL;,)". Thus we have

E[X;] = = - E[(41;,)(41,)"] = =

S (An)(A1,)T = L. aaT (65)
te{1,...,n} 5

S|

By equality (67) we have 2(AS)(AS)T =>° ;=1 Xj. Thus by equality ([68) we get

2(AS)(A8)T — 44T = |Z<Xj ~ElX;))| - (69)

Let Zj = Xj -]E[X]] We then have ||Z]||2 = HX] - E[XJ]HQ S ||XJ||2 + ||E[XJ]H2 Now let B =
maxge(i,.. n} |(ALg)(ALe)T 2. Furthermore, by our assumption we have

102 = | = - (An)(at)"| <28 (70)

n
S

34

By subadditivity of the spectral norm and we get

[E[X;]ll2 <

|3

.B (71)

Putting and together we get
n
1Z5ll2 = 11X = E[X;]ll2 < [|Xll2 + |E[Xs]2 < 2- — - B (72)

We now bound for the variance. Since Z; is symmetric, we have ZjTZj = ZjZJT = ij.

ZE[Zf] =5-|E[Z]]ll2 = s - |E[X}] — E[X;]*[l2 < 5- |[E[X7][l2 + 5 - [E[X;]?[|2
j=1)

By submultiplicativity of the spectral norm we get

2 TL2

52

S (AL (A1) <

2 —
Bl = | £
te{1,...,n} 9

S|

-B? (73)

2

||E[X]]H% < 2. B2, Putting

Moreover by submultiplicativity of spectral norm we have ||E[X;]?|2 ;

things together we obtain

IN

u 2n2B?
IS B2 < =5
j=1

Now we can apply Lemma and we get with b = 22 B and 02 < @ using s > %

S =¢
P> Zilla>¢| <2n-exp <a2ib€> < 100 (74)
Jj=1 3

The following lemma upper bounds the collision probability from every vertex in a (k, @, €)-clusterable
graph using our /., norm bounds on the bottom k eigenvectors of the Laplacian of such graphﬂ

Lemma 22. Let k > 2 be an integer, ¢ € (0,1) and € € (0,1). Let G = (V, E) be a d-regular and
that admits a (k,p, €)-clustering Cy,...,Cy. Let M be the random walk transition matriz of G. For any
t> 2030# and any x € V we have

M|y < Ok - n~1/2H(20e/¢%))
Proof. Let L be the normalized Laplacian of G. Recall that (uq,...,u,) are an orthonormal basis of
eigenvectors of L with corresponding eigenvalues 0 = A; < ... < \,. Observe that each u; is also an

eigenvector of M, with eigenvalue 1 —)‘7 We write 1, in the eigenbasis of L as 1, = Z;.l:l Bju; and
note that the 8; correspond to the row of = in the matrix U. We have

n n n /\ t
st —art () =3 ars =3 (1)
=1 =1 =1

Thus we get

g =302 (1- %)
j=1

61t is interesting to note that a weaker average case version of this lemma was used in two prior works on testing graph
cluster structure [CPS15] and |[CKK*18|. The stronger version of the lemma presented here is important for spectral
concentration bounds that we present, which are in turn crucial for sublinear time dot product access to the spectral
embedding.

k))\k;Jrl 2t n)
gZﬁj+(1— 5) - B (75)
j=1

j=k+1

35

Note that G is (k, ¢, €)-clusterable, therefore by Lemmawe have A1 > %2. Note that t > 20;#.

Hence, we have
A 2t
(1 - ’f;l) <n10 (76)

Moreover since G is (k, ¢, €)-clusterable and min; |C;| > Q(%) by Lemma [5| for all j € [k] we have
B < lluglloc < O(VE - n7H/2HE0/2D), (77)
Thus by , and we get
1
IMUL3 < Ok k- - 0'/%) .

Therefore we have ,
||Mt]le2 < O(k X n—1/2+(206/ga))

O

Combining the previous lemmas and Lemma (1§ we obtain Lemma We show that for (k, ¢, €)-
clusterable graphs, the outer products of the columns of the ¢t-step random walk transition matrix have
small spectral norm. This is because the matrix power is mostly determined by the first k eigenvectors
and by the fact that these eigenvectors have bounded infinity norm.

Lemma 23. Let k > 2 be an integer, ¢ € (0,1) and e € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-
clusterable graph. Let M be the random walk transition matriz of G. Let 1 > £ > 1/n%, t > 20;#.

Let ¢ > 1 be a large enough constant and let s > ¢ - k* - n(1040-¢/¢%) logn/&8. Let Is = {iy,...,is} be
a multiset of s indices chosen independently and uniformly at random from {1,... ,n}. Let S be the
n X s matriz whose j-th column equals 1;,. Let M! = US'UT be an eigendecomposition of M*. Let
VE-M'S =USWT be an SVD of \/Z - M'S where U € R™", 5 € R W € R*". If 5 < ks then

—100

with probability at least 1 —n matrix §~][7€]2 erists and we have

—2 77 S—277
HUU@E[k]tU@ = U 2y U[ZIQ]HQ <<
Proof. Let
A — (Mt)(Mt)T — UEQtUT,
and g_n t ta\T _ 72T
A:;(MS)(MS) =UXx“U".

Let 4% and 741 denote the k-th and (k 4 1)-th largest eigenvalues of A. Let U be an orthonormal basis
of eigenvectors of L with corresponding eigenvalues A\; < ... < \,. Observe that each u; is also an
eigenvector of M, with eigenvalue 1 — % Note that G is (k, @, €)-clusterable, therefore by Lemma 3| we

2
have A\ < 2¢ and Apy1 > %5-. Note that ¢ > 203@#. Hence, we have

)\k+1 2 —10
T =\l=-——) =n (78)
and
A\ ;
= (1 B 2) > p(~80¢/¢%). (79)

In order to apply Lemma we need to derive an upper bound on the spectral norm of (M*1,)(M*1,)T
for any column of A corresponding to vertex x. By Lemma [22] we have

B = (ML) (ML) l2 = [M*14]3 < Ok - 0~ +00/2Y).

Thus, with 1 > ¢ > 1/n® and for large enough ¢ we have s > ¢- fAn(1040-¢/¢) 1o n /&8 > 1/3‘8@%.
Thus by Lemma [21| we obtain that with probability at least 1 — n~1%° that

3
~ 1
|A— Ay < (32 .g.n—lﬁoe/w) . (80)

36

We observe that equation |80| together with our bound on v and the positive semi-definiteness of A
imply that the k largest eigenvalues of A are non-zero and so Z[k] is exists with high probability.

Now observe that A is positive semi-definite, we have 7;/4 > vp41 and ||A — A]| < 4/100, so the
preconditions of Lemma [18] are met and we have with probability 1 — n =190

A A"
(K] k] [k] [k] k] 72 <&

Now we are ready to prove Lemma

Lemma 19. Let k > 2 be an integer, ¢ € (0,1) and e € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-
clusterable graph. Let M be the random walk transition matriz of G. Let 1/n®> < € < 1, t > 20;#.

Let ¢ > 1 be a large enough constant and let s > ¢ - n(1280-¢/¢%) logn - k16/€5. Let Is = {i1,...,is}
be a multiset of s indices chosen independently and uniformly at random from {1,...,n}. Let S be the
n X s matriz whose j-th column equals 1;;. Let Mt = US'UT be an eigendecomposition of M*. Let
VE-M'S = USWT be an SVD of \/Z-M"'S where U e R " 3 € RV W € R9%7, If =< &5 then

—100

with probability at least 1 —n matric i[ﬁ exists and we have

n —_— ~_ —
ULy — (M'1,)" (M'S) (g : W[k]z[ﬁWﬁ;}) (M'S)T(M'1,)| <

<&

n
Proof. Let m; = M'l, and m, = Mt]ly; YVe {irSt prove mf(U[k]E[;]QtU[g])my 17
mI(M? S)(W[k]E[k] W[k])(MtS) my = mZU[k]E[;]ZU[E]my. Then we upper bound

2 Ul U[]]1 and

T —2ty T Trr =277
Mo Uy By Uiy my — 14 Uy B Uiy my | -

Step 1: Note that M = US!UT. Therefore we get M1, = UXUT1,, and M1, = US'UT1,. Thus
we have

mIUp S Um, =17 (Uz07) (U ko) (Us'uT)) 1, (81)

Note that UTU[k] is an n x k matrix such that the top k& x k matrix is Iy« and the rest is zero. Also

U[TI;]U is a k x n matrix such that the left k x k& matrix is I« and the rest is zero. Therefore we have

Uzt (UTUw) S (ViU) S'UT = vHUT,

where H is an n X n matrix such that the top left k x k matrix is Irx; and the rest is zero. Hence, we
have
UHU" = UpUpy-
Thus we have
mr (U[,C]Z[—,th[i])my = 1, UpUpy 1y (82)
Step 2: We have \/§ MtS = USWT where U € R™*m, 3 € R"X" and W € R¥¥7™, Therefore,

()" ('5) (2 - Wi S5 Wiy) (M1S)" (m,)

=l (|2 05WT) (4 WSt (/2 WSO) m,
=m? (OSWT) (WS Wiy) (WSO) m, (83)

Note that WTW[k] is an n X k matrix such that the top & x k matrix is Iy« and the rest is zero. Also
Wﬁ;}W is a k x n matrix such that the left k& x k matrix is I« and the rest is zero. Therefore we have

S (W Wi) S5 (WiW) = = 1,

37

where H is an n x n matrix such that the top left k x k matrix is 5[76]2 and the rest is zero. Hence, we
have

o~~~ n — ~_ — ~— o~ o~ ~ o~ o~ ~ = _ ~
(OSWT) (; : W[k]z[k?wgg]) (WEOT) = UHUT = Uy S3208, (84)
Putting and together we get
my (M*S) (Wi Sy Wi) (M) ' my, = m U S 2 Ufymy (85)

Put together: Let ¢’ > 1 be a large enough constant we will set later. Let £’ = W Let ¢1 be
a constant in front of s in Lemma Thus for large enough ¢ we have s > ¢- n(1280-¢/¢%) logn-k16/¢6 >
¢y - k- n(1040-¢/9%) 160 1y /¢/6 | hence, by Lemma [23 applied with ¢, with probability at least 1 —n=1%0 we
have
—2t7/T 77 S—277T
HU[k]E[k] Utty = Uiy 2y U[k]H2 <¢
Therefore by submultiplicativity of norm we have

i Ulymy =m0 St 0T my | < ||UsS53 Ul = O Zad O, ez

< lmel2lmy 12 (86)

Therefore we have

‘mf(MtS) (WS Wi) (M'S) my, — 170U,

= [_k] [k]my —my, U[k]E[_k]QtU[jlg]my By and
<& mallzllmyll2 By (87)

By Lemma [22] for any vertex « € V' we have
[mel3 = 1M1])3 < O - n=1+0/29), (88)

= we have

Therefore by choice of ¢’ as a large enough constant and choosing &' = W

0
mEatS) (% Wi S5 W) (M) Tm,, — 17U U T,

<€ k2. —1+(4Oe/ga2)) <§. (89)

n

5.4 Stability bounds under approximations of columns by random walks

The main result of this section is Lemma which shows that if a graph is (k, ¢, €)-clusterable, then the
pseudoinverseve of the low rank approximation of a random walk matrix are stable when it is empirically
approximated by running random walks from sample vertices.

Lemma 24. Let k > 2 be an integer, ¢ € (0,1) and e € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-
clusterable graph. Let 1/n® < ¢ <1 and t > 20;%. Let ¢c; > 1 and co > 1 be a large enough constants.

91/ e/e? . . . o
Let s > ¢1-n240</¢" Jogn-k* and R > € Knlt 2:2100) LetIg = {i1,...,is} be a multiset of s indices
chosen independently and uniformly at random from {1,...,n}. Let S be the n x s matriz whose j-th col-

umn equals 1;,. Let G € R**® be the output of ESTIMATECOLLISIONPROBABILITIES (G, I5, R, t) (Algorithm
@). Let M be the random walk transition matriz of G. Let \/é-MtS =USWT be an SVD of \/g MtS
where U € R"X”,i € RV W e RO, Let % g = Wiﬁ/\T be an eigendecomposition of 5-G. If

ﬁ < ﬁ then with probability at least 1 — 2 - ni 0 matrices E 2 and E 4 exist and we have

. S—277T _ 7. sS4 T
HW[k]E[k] Wiky = Wi 2 Wik ’ ’2 <¢

To prove Lemma [24] we need the following lemma.

38

Lemma 25. Let k > 2 be an integer, ¢ € (0,1) and e € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-
clusterable graph. Let L and M be the normalized Laplacian and transition matriz of G respectively. For
any t > 103@# and any r and any x € V we have

IMU, ||, < O (K2 - H1/rH 0/

Proof. Let L be the normalized Laplacian of G with eigenvectors uq, . . ., u, and corresponding eigenvalues
A1 < ... < \,. Observe that each u; is also an eigenvector of M, with eigenvalue 1 — /\7 Note that G is
(k, ¢, €)-clusterable. Therefore by Lemma [3[we have

2
Net1 > %. (90)

We write 1, in the eigenbasis of L as 1, = Z;.l:l Bju; where §; = u; - 1, = u;(x). Thus for any vertex
u we have

n n n s t
SRV D ST [SRR St (1
j=1 j=1 j=1
Let m, = M*1,. Therefore for any vertex y € V we have

y) =]ilﬂj (1 -)\;)tuj(y)

j=k+1
Therefore,
t k \
k+1
mmm<@—)§j o+ (1-22) 5 151w (o1)
=1 j=k+1
By we have Ay > %, > 8log
t
(1 - >\k+1> < 2
> <
Note that for any j € [n]
1Bil < (| Y B2 =|1a2 = 1. (92)
j=1
Morover for any j € [n] and any y € V
lui ()] < llujl2 =1 (93)

Putting , and together we get
k41
|+ Ju;(y (N) Z 1851 - Ju; (y

j=k+1

Ima (y

IA

[luj(y)| + 072 (94)

12
2

Note that G is (k, ¢, €)-clusterable and min; |C;| > Q(%). Therefore by Lemma for all j < k we have
B = (@) < lluslloo < O (Vi n1/2H@0/D),

Moreover

— € 2
uj(y) < ||tj]loe <O (\/En 1/24(20¢ /0))

39

Thus, we get
k
> 181 lus ()] < O (k- kot r 0/ (95)
j=1

Therefore by and we get
Im.(y)] <O (k2 -n‘1+<406/¢2>) +n7t

<0 (k2 : n*1+<406/<f’2>> . (96)

Therefore we have
Mzl < (n e (k2 . n—1+(406/so2))r> r —0 (k:2) n—1+1/r+(405/@2)> .

O

Lemma 26. Let k > 2 be an integer, ¢ € (0,1) and € € (0,1). Let G = (V, E) be a d-regular and
(k, @, €)-clusterable graph. Let M be the random walk transition matriz of G. Let oepr > 0. Let t, Ry
and Ra be integers. Let a,b € V. Suppose that we run Ry random walks of length t from vertex a and Ra
random walks of length t from vertex b. For any x € V, let mq(x) (resp. my(z)) be a random variable
which denotes the fraction out of the Ry (resp. Rs) random walks starting from a (resp. b), which end

i x. Let ¢ > 1 be a large enough constant. If
c- kb . p2+(100e/¢?) k2. 1H(40e/9%)

min(Ry, Ry) > , and RyRy > &

o2

err

o2

err

then with probability at least 0.99 we have
|maTﬁlb - (Mtﬂa)T(Mtlb)| S Terr.

Remark 5. The success probability of Lemma can be boosted up to 1 —n~1% ysing standard techniques
(taking the median of O(logn) independent runs).

Proof. Let my, = M1, and my = M'1,. Let X};J, be a random variable which is 1 if the r*® random
walk starting from a, ends at vertex i, and 0 otherwise. Let Ybfr be a random variable which is 1 if
the r*" random walk starting from b, ends at vertex i, and 0 otherwise. Thus, E[X]] = m,(i) and
]E[szr] = my(i). For any two vertices a,b € S, let Z, , = mLm, be a random variable given by

Ry Ro

1 i i
Za,b = R1R2 Z(Z Xa,r1>(z YE),Tz)'

i€V ri=1 ro=1

Thus,

R, R
ElZus] = g 0 BIXE DY BV

i€V ri=1 ro=1
1 . .
= "R Z (Ry - ma (1)) (Rz - mp(i))
ev
= Zma(i) mb(z) = (ma)T(mb). (97)
eV

We know that Var(Z,;) = E[Z] ;] — E[Z,]*. Let us first compute E[Z] ,].

Ry Ro Ry Ro

1 S
E[Z;,) =E WZZ Do D> Xean Vi XY

i€V jeV ri=lre=1r|=1 rh=1
Ri R: Ri Ro

B W Z Z Z Z Z Z E[X;’Tlnl,mX(]z,Tﬁnj,ré]

i€V jeV ri=1ry=1r)=1r,=1

To compute E[X ;MYZWX i - Yb{ T’z]’ we need to consider the following cases.

40

1. i #j: E[X! TIYbing o ijr,] < mg () - my () - ma(f) - mp(j). (This is an equality if 71 # r{ and
’ ’ 5Ty)
ro # 14. Otherwise, the expectation is zero.)

2. 0i=4j, rTi=rh ro=rh E[X! Y X;”%Yb{%] = Mg (i) - mp(i).

a,r1 " b,ra

3.i=j, ri=ri ro#rh E[X! Ybferj ,ij;ré] =mg (1) - mp(3) - -mp(3).

a,r1 a,ry

4. i=7j, r#ry, ro=rh EX!, Y}

a,r1 7 b,ry

X;,r,lY;f,r,Q] = mq (1) - mp(2) - ma(i).

boi=j, mAry, re#ry BXG, Y XD Y] = ma(i) - ma (i) - ma(i) - ma (i)

Thus we have,

Ry R: Ri Ro

BZ3) = G o 2 2 2 O O BN, X 1

i€V jeVri=lry=1lr/=1r,=1

SN i) mai) - my() - ma(G) + 3 ma)? - mi(i)?

i€V jeV\{i} pp=rh
1 , N . a2 L R
- R Ry Z.ezvma(l) mo (i) + Ry Z_szm“(l) my(i)” + R iezvma(z) my (i)
; . . . 1))
— Z ma(l) ~ma(j) ~mb(l) mb(j)+m2ma(z) 'mb(l)
L€V icV
! i N2 L N2)
+R7 4 ma(l) ~mb(l) +Ezma(l) 'mb(/L).
i€V iev

Therefore we get,

Var(Zap) = B[22] — E[Zas)?

1 1
< ——|m m —||m mpl|2 + — ||mg |2 ||m By Cauchy-Schwar
< gz Imallalmslle + g lmallllmoli + - lmal y Canchy-Schvarz

Since G = (V, E) is (k, ¢, €) clusterable by Lemma [25] we have
[malla <O (k;2 .n—3/4+(405/¢,2)> .

and by Lemma 22| we have
Hma”2 < O(k . n—1/2+(205/¢2))'

Thus we get
k2. n—1+(406/4p2) 1 1)
Var(Z,) <O | —MmMmM—— 4 =) gD 24+ (100e/0%) 99
ar(Zap) < (iRy +(R1+R2> n (99)
Then by Chebyshev’s inequality, we get,
Var|Z
Pr (| Zey — ElZas]| > o] < SrlZat]
1 k2 . n71+(405/902) 1 1 5
<O .) g 2 (100e/60%)
o (Uerr2 < RiRs + (R1 + R2> "
(100)
1
— 100

41

The last inequality holds by our choice of R; and Ry as follows where c¢ is a large enough constant that
cancels the constant hidden in O (+) in (100]).

min(Ry, Ry) > Km0
1,42) =

Ugrr
and (106/0)
k2. 1+ (40e/p
RiRy > < “

2
Ocrr

O

Lemma 27. Let k > 2 be an integer, ¢ € (0,1) and € € (0,1). Let G = (V, E) be a d-regular and
(k, p, €)-clusterable graph. Let oerr > 0 and let s >0, R > 0, t > 0 be integers. Let Is = {i1,...,is} be
a multiset of s indices chosen from {1,...,n}. Let S be the n x s matriz whose j-th column equals 1.
E5.p—2+1006/0? L —1/2420¢/¢? Let G € RS%5 be

o2 ’ Torr
the output of Algorithm ESTIMATECOLLISIONPROBABILITIES(G, Is, R,t) (Algorithm @) Let M be the
random walk transition matriz of G. then with probability at least 1 — n=19 we have

Let ¢ > 1 be a large enough constant. Let R > max{c‘

||g - (MtS)T(MtS)HQ <S8 Oepr

Proof. Note that as per line (2)) and of Algorithm [2| we first construct matrices ﬁz € R™*s and
@i € R™** using Algorithm as per line of Algorithm (3| matrix 2 (or @l) has s columns each
corresponds to a vertex x € S. The column corresponding to vertex x is m;. as per line [2] of Algorithm
m, is defined as the empirical probability distribution of running R random walks of length ¢ starting
from vertex z. Thus for any z,y € S we have the entry corresponding to the 2™ row and y*" column of
QI P; (or PTQ;) is (M, my,). Since

2 9
Uel’!’ O-err

c- k5 _n—2+1ooe/¢2 c- k- n—1/2+206/¢2
R > max

then by Lemma [26] with probability at least 0.99 we have

|ﬁlzmy - (Mt]lz)T(Mt]lyN S Oerr-

Note that as per line [4| of Algorithm [2| we define G; := % (ﬁf@z + @fﬁ» Thus for any z,y € Ig we

have the entry corresponding to the " row and y** column of G; (i.e., G;(z,y)) with probability 0.99
satisfies the following;:
|gz(l'7y) - (Mt]lw)T(Mt]ly)‘ < Oerr-

Note that as Line [5] of Algorithm [2] we define G as a matrix obtained by taking the entrywises median of
Gi’s over O(logn) runs. Thus with probability at least 1 — n 1% we have for all x,y € Ig

G(z,y) — (M'1,)" (M'1)| < Oers-
which implies
||g - (MtS)T(MtS)T”F <s- Oerr-

Since the Frobenius norm of a matrix bounds its maximum eigenvalue from above we get
Hg - (MtS)T(MtS)THQ é S Oerr-
O

Recall that for a symmetric matrix A, we write v;(A) (resp. Vmax(A), Vmin(4)) to denote the it
largest (resp. maximum, minimum) eigenvalue of A.

Lemma 28. Let k > 2 be an integer, ¢ € (0,1) and e € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-
t> 20102gn 240-¢/¢” logn k2.
Let Is = {i1,...,is} be a multiset of s indices chosen independently and uniformly at random from
{1,...,n}. Let S be the n x s matriz whose j-th column equals 1;,. Let M be the random walk transition

matriz of G. If ﬁ < # then with probability at least 1 — n=190 we have

clusterable graph. Let . Let ¢ > 1 be a large enough constant and s > c¢-n

42

80e/ 2

1oy (2 (M'S)(M!S)T) > —
2. Vg (2 - (MIS)(M'S)T) <n™°.

Proof. Let (ui,...,u,) be an orthonormal basis of eigenvectors of L with corresponding eigenvalues
0 <A1 <...<)\, Observe that each u; is also an eigenvector of M, with eigenvalue 1-— —’. Note that

Gis (k,p,€) clusterable, therefore by Lemmalwe have A\ < 2¢ and A1 > &-. We have

\ 2t
Uyt (M2 = (1 — k;l) <n ' and (101)
) >
vp(M?) = <1 - 2’“) > n 80/ (102)
Proof of item ()): Let A = (M") (MH", and A = oL (M'S) (M'S)". By Lemma [22| we have

B = [[(M"1,)(M'1,)" 2 < [M'1,[§ < O (K2 -0~ 1#40/47))

Let € = n—80¢/¥” /2. Therefore for large enough constant ¢ and by choice of s = ¢ - k*n 240¢/¢ logn we

have s > %. Thus Lemma [21] yields that with probability at least 1 — 100 we have

_ —80¢/ >
14— A, < X —— T (103)

Hence, by Weyl’s Inequality (see Lemma we have
Vi (A) > 1 (A) + Vinin(A — A) = 4 (A) = Vimax (A — A) = v (A) — || A = A2
By (102) we have v (A) = vy (M2!) > n=10¢/¢" and so

_ - —80¢/p? —80¢/¢>
ve(A) > v (A) — |[A = Al > 080" _ L i

Proof of item : By Lemma we have
~. n n n
vt (A) = 2 v (M) (MUS)T) = 2 vy (MES)T(M'S)) = 2 vy (STMPS),

Recall that 1 — ’\71 > >1-— 2” are the eigenvalues of M, and ¥ is the diagonal matrix of these
eigenvalues in descending order, and U is the matrix whose columns are orthonormal eigenvectors of M
arranged in descending order of their eigenvalues We have M? = US?UT. Recall that Y is k x k
diagonal matrix with entries 1 — 2L > -+ > 1— 2k and ¥_p is a (n — k) x (n — k) diagonal matrix with

entries 1 —)"“—2“ >..->1-)‘7" We can write UEQtU = U[k]E[k}U[k] + U_[k]EQ_t[k]UT[k], thus we get

Vi1 (A) = % Vi (STM2S)
= = v (ST(UEUT)S)
== v (7 (UmZH U + V-2 U7 S)
< % Vg1 (S U[k]Z[k]U[k]S) n * Vmax (S U_ k]Z [k]U [k]S) By Weyl’s inequality (Lemina

Here v 1 (ST Uk Ezt S) = 0, because the rank of E[k] is k. We then need to bound I/max(STU_[k]EQ_t[k] Uf[k] S).

We have,

Vinax (STU_ g 239U 118) = thnax (U- =207y SST) By Lemma[§

< Vinax (U_[k]E_t[k] U’ [k]> Vimax (SST) By submultiplicativity of norm
— Vmax (Ez—t[ki ULyU ,[k]) Vimax (357) By Lemma §
= Vmax (Z%ﬁ[k]) * Vmax (SST) Since UT[IC]U*UC] =1

43

Next, observe that SST € R™*" is a diagonal matrix whose (a,a)™ entry is the multiplicity of vertex

a is sampled in S. Thus, Vax(SST) is the maximum multiplicity over all vertices, which is at most s.

2t
Also note that vyax (2 [k]) (1 - @) . Thus by (T01) we get,

3

Vi1 (A) <

w |3

)\k 2t
T 2 T +1 —10 -9
Vinax (STU_ =0T S) < = s (1 -) <n-n 0 =pno

Now we are ready to prove the main result of this section (Lemma .

Lemma 24. Let k > 2 be an integer, ¢ € (0,1) and e € (0,1). Let G = (V, E) be a d-regular and (k, ¢, €)-
clusterable graph. Let 1/n® < £ <1 and t > 2030#. Let ¢y > 1 and co > 1 be a large enough constants.

0.1/ /e? . . . L
Let s > ¢ -n240¢/#° logn-k* and R > & K2l 222100 ") Let Is ={i1,...,is} be a multiset of s indices
chosen independently and uniformly at random from {1,...,n}. Let S be the n x s matriz whose j-th col-

umn equals 1;;. Let G € R*** be the output of ESTIMATECOLLISIONPROBABILITIES (G, I, R, t) (Algorithm
@) Let M be the random walk transition matriz of G. Let \/7 M!S = USWT be an SVD of f MtS
where U € R”X”,E € R"X”,W € R¥*". Let X2 .G = WEWT be an ezgendecomposztwn of = -G. If

—100

é < % then with probability at least 1 —2-n matrices Z[k] and E[k] exist and we have

g =
[P S5 Wik — Wi S5 Wi |, < €
Proof. Let A =2 . (M'S)T (M'S) = WS2W7 and A = 2 . G. Thus we have

A= (2

= (') (Mts))2 — WAwT

and

(" -g)2 _ WS,

Recall that for a symmetric matrix A, we write ;(A) to denote the i*® largest eigenvalue of A. We want
to apply Lemma[Ig| to get

o -)"

Vk(ZQ)Q

. s—41 T T —2717
HWWEM Wik = Wi S5 Wi]HQ =

Hence, we first need to verify the prerequisites of Lemma Let ¢3 > 1 be a large enough constant
(—1-10%-¢/?)
8, (~1-10%¢/¢ h By the

that we will define soon, and let o¢ = e . Let ¢ be a constant from Lemma
assumption of the lemma for large enough constant co > 1 we have

o kO n1/2+2100~e/¢2 c k5. —2+1005/g;2 c k- n—1/2+205/¢2
R> > max , .
&b 02 Oerr
Thus we can apply Lemma Hence, with probability at least 1 — n1%0 we have
G — (M*S)T(M*S)||2 < 5 Terr- (104)

Therefore we have
167 — ((M*S)T(M*S))* |12 = |G (G —(tS)T(MtS)) + (G — (M'S)T(M'S)) (M'S)T (M*S)]|2
<G — (M*S)" (M)||2(|\Q||2+H(Mt)T (M'S)]2)

<5 O (8- Oere + [[(M'S)T(M'S)||2) + [|(M*S)T (M*S)]|2)
= (5 Oerr)> 4+ 25 Oere|(MPS)T (M!S |2 (105)

44

Note that

I(MES)T(MES) |2 < [[(M*S)T(M*S)]|

> (MH,)T (ML)
T,yeS
> M, |3 M, |3 By Cauchy Schwarz
z,yeS
<0 (\/32 . (kQ . n—1+(406/¢2))2> By Lemma@
~0 (5 k2 -n*1+<406/¢2>) . (106)
(—1-103.¢/¢2)

Puuting (106)) and (105) and by choice of oep = EB"T we get

" 2 6 ., —2-10%¢/p? 3. ., —960¢/p? 3 .., —960¢/p?
13222 = (%) |g2—(<Mﬂs*>T<JWS>)2||2so(g - P >=0<5”>

c3)? -kt s 3
(107)

By Lemma [§] for any i € [s] we have
vi(A) = v; (% - (M!S) (Mts)T) s (S (MtS)T (Mts))

Let ¢; be the constant from Lemma Since s > ¢; - n249/¢” . logn - k* therefore by Lemma with

probability at least 1 — n %0 we have
2
~ 2 —80¢/¢? —160€/ >
uk(A2> :Vk<(z.(Mts)T (MtS))) > (" .) >n - (108)
and
- 2
ukH(AQ) = V,M((Z (M'S)T (MtS)) > <n '8 (109)

By the bound on the Vk(AQ) and the inequality on HA2 A2||,, we know that v(A2) is non-zero and so
E[k] exist. Recall that A = WE2WT. Observing that A is positive semi-definite, Vi1 (A2) < 1 (A2)/4,

and || A2 — A2||2 55 Vk (A2) we can apply Lemma [18 and we get

(-

Wi S5 — WSt W || <

Vk(gz)z
§~n73205/“°2
cgl/?
<O | e By (107) and (108)

<¢

The last inequality holds by setting c3 to a large enough constant to cancel the constant hidden in
0(5)- O

5.5 Proof of Theorem [2

Theorem 2. [Spectral Dot Product Oracle] Let e, € (0,1) wzth e< 2 105 Let G = (V, E) be a d-regular
graph that admits a (k, @, €)-clustering Cy,...,Cj. Let 1 > & > n—. Then INITIALIZEORACLE(G, 1/2,€)

5

(Algorithm computes in time O(k°™) -l/2+0(c/0%) . (logn)? - é/flg) a sublinear space data structure

D of size O(k°™) - pl/2H0(e/e%) . (logn)3/€'2) such that with probability at least 1 —n=19 the following
property is satisfied:

45

For every pair of vertices x,y € V, SPECTRALDOTPRODUCT(G, z,y,1/2,£, D) (Algorithm @ com-
putes an output value {fy, fy>aw such that with probability at least 1 — n =100

<fz7fy>apz - <fzafy> S

SW"'*

The running time of SPECTRALDOTPRODUCT(G,x,y,1/2,€,D) is O(KOW . nl/2+0(/e*) . (1ogn)?
1/612)

Furthermore, for any 0 < 6 < 1/2, one can obtain the following trade-offs between preprocessing
time and query time: Algorithm SPECTRALDOTPRODUCT(G, z,v, 6, &, D) requires O (kO - +0(e/@?) .
(logn)? - é/gm) per query when the prepressing time of Algorithm INITIALIZEORACLE(G, §,&) is in-

creased to O(k°CM) . pl=8+0(e/¥”) . (logn)? - ﬁ/gw).
To prove Theorem [2] we need to combine Lemma [T9] from Section [5.3 with the following lemma.

Lemma 29. Let G = (V, E) be a d-reqular and (k, p, €)-clusterable graph. Let 0 < 6 < 1/2, and 1/n® <
& < 1. Let D denote the data structure constructed by Algorithm INITIALIZEORACLE(G, 4, &) (Algorithm
. Letz,y € V. Let (fs, fy),,. € R denote the value returned by SPECTRALDOTPRODUCTORACLE(G, 2, Y, 6,§, D)

(Algorithm|5). Let t > 20;#. Let ¢ > 1 be a large enough constant and let s > ¢ - n?40</9"* .logn - k*.

Let Is = {i1,...,is} be a multiset of s indices chosen independently and uniformly at random from

1,...,n}. Let S be the n x s matriz whose j-th column equals 1;.. Let M be the random walk transition
J

matric ofG Let \/%-M'S = USWT be an SVD of V- M'S where U € R Y € R IV € ReX™,
If é < 105 , and Algomthml J| succeeds, then with probability at least 1 —n~1°0 matriz f][_kjl erists and we
have

£

(s fiboy = I (MTS) (2 WS W) (M) (M1, < .

Proof. Note that as per line [7| of Algorithm [5((fz, fy), . is defined as

(fas fy>apz = O‘E\Pay'

where as per line [3] of Algorithm [4] we define matrix ¥ € R*** as

n —
U= WS Wi,

and a,,a, € R* are vectors obtained by taking entrywise median over all (Q;)7 (7%) and (@1)T(ﬁ1;)
(See line |5| and |§| of Algorithm . For any vertex a € V recall that m, denote m, = M'1,. We then
define N o~

a, =ml(M'S), A= S W[k]Z[;?W[P;C], a, = (M'S)"m,, and
e,=al —a,, E=V-A, ey, = oy —ay,

Thus by triangle inequality we have

‘ 14
= [[(az +e;) (A+ E) (ay +e) — ayAay |2

< llezl2l|Allzllayll2 + llaz (2] Ellzllay[l2 + [laz]l2]All2]ley 2
+llezl2llEllzllayll2 + llaz 2] Ell2lleyll2 + llexll2l|Allzlley[l2 + lexll2[Ell2]ley 2

ol Wa, —mI(M'S) (W[;,C W[k) (M"S) myH

Therefore we need to bound ||ez|l2, |leyll2, |E|l2, l|azll2, lay|lz and ||A]l2. Let ¢ > 1 be a constant
we will define soon, and let £ = Let ¢; be a constant in front of s and let co be a

240€/ p>

of Jod.p80e/ 92 "
constant in front of R in Lemma Thus for large enough ¢ we have s > ¢ - n

1— 103 € /02 k0. 1/2+2100-¢/ o3
Rinit = @(TL 0+3-10%-¢/¢ 'k‘33/§6) > c2 n 7

applied with ¢’ we have with probability at least 1 — n =190, W[g} — and f][_k? exist and we have

-logn - k* and

as per line [2[of Algorithm hence, by Lemma

£

c k4. n80e/p? . g

=

1Bz = H‘/Vlc]E W[k] = Wi [k} W[]H < (110)

n
S

46

Recall that for a symmetric matrix A, we write v;(A) (resp. Vmax(A), Vmin(4)) to denote the i*" largest
(resp. maximum, minimum) eigenvalue of A. We have

1
Vg (W[k]i[]W[k]>

Note that 2 - (M*S)T(M*'S) = WE2W7T. Thus by Lemmaitem we have

n o g n ~ ~_u=
14ll2 = = - Wi S Wik ll2 = 5 - Vi (W[k]z[k?w[il) =

e 2 —160e/ >
i (Wi St W) = v (WEWT) = (@ (Mis)T (')) >
Therefore we have e
4. 1+160¢/¢
|All2 < 4- n .711606/802 _xn . (111)
S 5
Since G is (k, ¢, €)-clusterable by Lemma [22| for any vertex z € V' we have
||mz||§ < O (kQ . n—1+(40€/992)) . (112)
Then we get
laz]l2 = [|(me) " (M*S)]2
= Z mm a 2
aclgs
< Z lme|13]ma |3 By Cauchy Schwarz
acls
<0 (\/s . (k2 .n—1+(40e/w2))2> By (112)
=0 (\/g k2 .n—1+(40€/w2)) (113)
By the same analysis we get
layll <O (x/E k2 n_1+(405/‘/’2)> (114)

Now we left to bound |le;||2 and |e,||2. Recall that e, = a, — (M'1,)7 (MtS) where ay, o, € R® are

vectors obtained by taking entrywises median over all (@Z)T(ﬁz;) and (QZ) (). (See line [5{ and |§| of
Algorithm ' Also note that as per line [3| and line || of Algorithm [5] m! and m" are defined as the
empirical probablhty distribution of running Ryyery random walks of length t startlng from vertex x and

y. Also note that st are generated by Algorlthm 3| which runs Rin;; random walks from vertices in [g.
For any z € I any i € {1,...,0(logn)} let g’ denote the column corresponding to vertex z in Qz
Let ¢3 be a constant in front of R; and Ry in Lemmaﬁ Let ooy = . Thus by choice

of Ringy = O(n!=0+3 10%-¢/¢? k33 /€%) as per hneof Algorlthmland unery = O (nd*+500 e/ ¢? k2/€%) as
per line [T] of Algorithm [5] the prerequisites of Lemma [26] are satisfied:

5 . p—2+(100¢/¢?) 2,y —14(40¢/9?)
. C3 -+ k C3 k
mln(Rinih unery) > B}) and, Rinig - unery > 2
Uerr Uerr

Thus we can apply Lemma [26] Hence, for any z € Ig with probability at least 0.99 we have

|(rfﬁr)Tqu - (mz)T(m2)| S Oerr

Note that as per line [5| and line |§| of Algorithm |5 I we take entrywise median over all (Q;)7 (M%) and

Q)T (M »). Since we are running O(logn) copies of the same algorithm with success probability at least
0.99, thus by simple Chernoff bound with probability at least 1 — n~'% for all z € Iy we have

| (2) = (M) (m2)] < Tenr

47

; — ¢
Therefore by choice of oo = iz eT we get

Valts

o - k2 . p(1+200¢/02) "

||eﬂfH2 = ”aaf - (mx)T(MtS)HQ S \/g * Oerr — (115)

By the same analysis we get
VeR:

c - k2. n(1+200¢/p2) "

Putting (T10), (TT1), ([12), (TT3), (). (II5), and (TI6) and for large enough n we get:

leyll2 < (116)

N
(s £, — T (rt8) (2 - Wiy Sty) (188)Tm, || <

lez sl All2layll2 + Nae Lol Ellallagll2 + a2l Alls ey 2+

lex s Bl llaylz + las 2 Ellolleyll2 + lleall2l llsley 2 + ez 2 Ell2lley 2

Vs-€ 4 . pl+160e/¢? s o

/5 - n(80e/@*) 2 £-n ¢
2 n (c’ k4 . n80e/9? .) (c’ /s n(1+205/¢2))
4 . pl+160€/9>
+< /L k2. n(1+2006/¢
2
2, —1+(40e/ga)
+0 (\[K) (kA nSOe/ga)

+ (Cl k2. n(1+2006/g0)) (k4 nSOe/zp)
£
cd-n

The last inequality holds by setting ¢’ to a large enough constant to cancel the hidden constant of
o). O

Now we are able to complete the proof of Theorem [2]

IN

INA
Slm QO

Theorem 2. [Spectral Dot Product Oracle] Let €, ¢ € (0,1) wzth e< £ 105 Let G = (V, E) be a d-regular
graph that admits a (k, p,€)-clustering Cq,...,Cy. Let 1 > & > n5' Then INITIALIZEORACLE(G, 1/2,¢)
(Algorz'thm computes in time O(kC) .n1/2+0(c/@*) . (Jogn)3 . é/gls) a sublinear space data structure
D of size O(k°™") - pl/2+0(e/¢%) . (logn)3/€'2) such that with probability at least 1 — n=19 the following
property is satisfied:

For every pair of vertices x,y € V, SPECTRALDOTPRODUCT(G, = y, 1/2,¢,D) (Algomthm@ com-
putes an output value (fz, fy) such that with probability at least 1 — —100

apx

(ForFobe — U F)] < &

The running time of SPECTRALDOTPRODUCT(G,x,y,1/2,€,D) is O(kOW) . nl/2+0(/€*) . (logn)?
L /¢12).

Furthermore, for any 0 < § < 1/2, one can obtain the following trade-offs between preprocessing
time and query time: Algorithm SPECTRALDOTPRODUCT(G, z,v, 6, &, D) requires O (kO - pdFO(/9%) .
(logn)? - #/512) per query when the prepressing time of Algorithm INITIALIZEORACLE(G,6,&) is in-
creased to O(kO™) - pl=0+0(e/9) . (logn)? - é/flg).

Proof of Theorem[3 Correctness: Note that as per lineof Algorithmwe set s = O(n1990</¢* . logn - k16 /£6).

Recall that Is = {i1,...,4s} is the multiset of s vertices each sampled uniformly at random (see line

48

of Algorithm . Let S be the n x s matrix whose j-th column equals 1;,. Recall that M is the random

walk transition matrix of G. Let \/Z - M'S = USWT be the eigendecomposition of VE-M'S. We
define
N o~ o~ e~
el = ’(Mt]1$>T(MtS) (; : WME[,C?W@) (M'S)T(M'1,) — llfU[k]U[i]]ly‘
and

n — ~_ —
€2 = |(fos£y),. = (M'L)T LS (2 - Wi S Wi) (M1S)7 (ML)
By triangle inequality we have

‘(fzvfy)am - <fa:afy>‘ = ‘<facvfy>aw -]lz;U[k]U[II;]ILy <e1+ea.

Let & = £/2. Let ¢ be a constant in front of s in Lemma[19|and ¢’ be a constant in front of s in Lemma

Note that as per line [3[of Algorithm |4 we set s = (9(n1500'6/*”2 -logn - k'6/£5). Since ﬁ < # and

s> c-nlP00/@ logn . k:16/§’6 by Lemma [19| with probability at least 1 — n 1% we have e; < %/ = %
Since s > ¢’ - n240¢/¢” . logn - k*, by Lemma [29| with probability at least 1 — 2 - n71% we have ey < %

Thus with probability at least 1 — 3 -n~1% we have

‘<fw7fy>am - <fwvfy>‘ Serter< o 4o <

Space and runtime of InitializeOracle: Algorithm INITIALIZEORACLE(G,J,¢) (Algorithm
samples a set Is. Then as per line [6] of Algorithm [4 it estimates the empirical probability distri-
bution of random walks starting from any vertex = € Ig for O(logn) times. To that end as per
line [2] of Algorithm [3] it runs Rj,;; random walks of length ¢ from each vertex x € Ig. So it takes
O(logn - s - Rinit - t) time and requires O(logn - s - Rinit) space to store endpoints of random walks.
Then as per line [7] of Algorithm [| it estimates matrix G such that the entry corresponding to the z*"
row and y™ column of G is an estimation of pairwise collision probability of random walks starting
from z,y € Is. To compute G we call Algorithm ESTIMATECOLLISIONPROBABILITIES(G, Is, Rinit, t)
(Algorithm for O(logn) times. Algorithm [2| runs Rj,;; random walks of length ¢ from each ver-
tex * € Ig, hence, It takes O(s - Rini - t - logn) time and it requires O(s? - logn) space to store
matrix G. Then as per line [§] of Algorithm W we compute the SVD of matrix G in time O(s3).
Thus overall Algorithm {f runs in time O (1ogn - S Ripie -t + 83). Thus, by choice of t = © (low#) ,
Rinie = @(n1_5+3'103'e/“’ - k33/€%) and s = 9(711500'6/“”2 logn - k16/£%) as in Algorithm [4] we get that
Algorithm {4 runs in time O (logn R A 33) =0 (k:o(l) . (%)18 - plm+0(e/9%) log®n - Jz) and

returns a data structure of size O (82 +logn-s- Rinit) =0 (k:o(l) . (%)12 . pl=0+0(e/e?) . log2 nj.
Space and runtime of SpectralDotProductOracle: Algorithm SPECTRALDOTPRODUCTOR-
ACLE(G, z,y, 6,&, D) (Algorithm [5)) repeats O(logn) copies of the following proiedure: it runs Rguery
random walks of lenght ¢ from vertex x and vertex y, then it computes Mm, - Q; and Mm, - ;. Since
@i € R™ ¥ has s columns and since 7, has at most Rquery non-zero entries, thus one can com-

pute my - @Z in time Rguery - 5. Finally Algorithm |5| take entrywises median of computed vectors
(see line [5 and line |§| of Algorithm 7 and returns value a,Va, (see line 7| of Algorithm . Since
o,y € R® and U € R*** one can compute a,Va, in time O(s?). Thus overall Algorithm [5| takes
O (t Ryuery - logn + s - Rquery - logn + s%) time and O (Rquery - 10g 1 + 5 - Ryuery - logn + s?) space. Thus,

by choice of t = © (lc:fgn s Rquery = O(nS+500-¢/0 k9 /¢2) and s = O(n500¢/%" Jog n-k6 /¢5) as in Algo-

rithmand Algorithmwe get that the Algorithmruns in time O (ko(l) (52 nd+O(e/¢?) . log®n - ﬁ)

P

and returns a data structure of size O (k‘o(l) . (%)12 - ndHO(/9%) L 1og? n) .
O

5.6 Computing approximate norms and spectral dot products (Proof of The-
orem

To design the clustering algorithm in Section [since we cannot evaluate the dot-product of the spectral
embedding exactly in sublinear time, we prove that it is enough to have access to approximate dot-product
of the spectral embedding. In Algorithm [7, Algorithm [9] and throughout the analysis of in Section [6]

49

we will use (-,-), to denote approximate spectral dot products and [|-||, . to denote the approximate

norm of a vector. Let r € [k] and B, By,..., B, C V. Let [i,fi1,..., [, € R¥ where fi = % and
1 = % All dot products we will try to approximate in Section |6{ will be of the form < Sz ﬁ(ﬁ)>

, where z € V and I is defined as a

apx

and all the norms that we approximate are of the form Hﬁ(ﬁ)

orthogonal projection onto span({fi1,...,%,})*. To compute such dot products we call Algorithm |§| in
the following way (see Corollary :

(£ B7) o= 0 (gaflsy) (117)

px veB px

’ :‘|13|'§<f”’ﬁﬁ>a . (118)

apx px

g

Algorithm 6 DOTPRODUCTORACLEONSUBSPACE(G, ,v,6,&, D, By, ..., B,) > Need: €/¢? < #
>D = {\Ilv Qh ce. 7QO(logn)}

1: Let X e R™*" hy € R", by € R".

2: Let & 1= O(¢ - n(~80¢/¥") . ;=6)

3: for ¢,7 in [r] do

4: X(i,7) = m “Y..eB, Ezjij SPECTRALDOTPRODUCT(G, z;, 24, 0,&', D)

5: > X (i,7) = (B, 15),,.,
6: for i in [r] do

7 ha(2) := |Bli| -ZZiEBi SPECTRALDOTPRODUCT(G, z;, x, 8, &', D) > hy(i) = (ﬁi,ng}m
8 hy(i):= |Bli| -3, e, SPECTRALDOTPRODUCT(G, 21, ,6,¢', D) > hy (i) = (s fy) o,

9: return <fx, ﬁfy> := SPECTRALDOTPRODUCT(G, 2,9, 6,¢, D) — hI X~ 1h,

px

The following Lemma is a generalization of Lemma to the approximation of the cluster means
(i.e, fi1, ..., Mx), where [i; € R¥ is a vector that approximates the center of cluster C; (i.e., y1;) such that
||ﬂz — /,Li”g is small.

Lemma 30. Let k > 2 be an integer, ¢ € (0,1), and € € (0,1). Let G = (V, E) be a d-regular graph
that admits a (k,, €)-clustering Cy,...,Ck. Let u1,...,u, denote the cluster means of Cy,...,Ck. Let

0< (< 20%590. Let [iy, ..., lix. € R¥ denote an approximation of the cluster means such that for each

i€ [k, | — fallz < Cllwilla- Let S C {fir,....fix}. Let |S| = r and H € RF*" denote a matriz
whose columns are the vectors in S. Let o : [r] — [k] denote a mapping from the the columns of H
to the corresponding cluster. Let W € R™" be a diagonal matriz such that W (i,i) = /|Cy(;)|. Let

Z = HW .Then for any vector x € R" with llz||2 = 1 we have
1. 127277 — Da| < 2L
©
2. |2T(Z72)7 - Da| < 2L

Proof. Proof of item Let Y € R¥** be a matrix, whose i-th column is equal to v/Cj - j1;. By Lemma
|§| item (2)) for any vector a € R* with ||a||2 = 1 we have

2T (YTY — I)a| < 4f (119)

Let Y € RF*F be a matrix, whose i-th column is equal to v/C; - [i;. Note that for any i,j € [k] we have

50

(YTY)(i,5) = \/ICil|Cj] (i, p1j) and (YTY)(i,5) = V|Cil|Cj] (1ti, i) Therefore for any i € [k] we have
(YTY)(iyi) = (P79, i) = Gl [l § = 1713

< |Gl - [(Mpill2 = Azl l2) (pall2 + (1] [2)]
< |Gl - [(Clpall2) (lpallz + U+ Ollpall2)] - Since ||z < (14 Ollpill2

<3-¢|C - [l Since ¢ < 1
2

<6-¢ By Lemma[7] ||| |3 < o
Also for any i # j € [k] we have
(YTY) () = (V7)) (120)
=\ IGillCyl - [, iy} — (i)]
= \VIGlC| - Ki + (i — pa), 1+ (5 — 1)) — (B 145)
S VIGHCG - (s — s 15— pg) |+ | — g pag) |+ (G — s) 1) By triangle inequality
< VGG (i = pall2llig — pllz + 7 = pall2llpgll2 + 1725 — pll2llpillz) - By Cauchy-Schwarz
< VIGIC)] - (€2 +2¢) (sl |2) Since ||z — pall2 < Cl|pill2 for all i

1 2
<A/IGiIC;| -6 ¢ ———— By Lemma [7]||p||3 < —— for all 4
VIS e aTe Allells = 1

<6-¢ (121)

Therefore we have

IYTY) = (YTY)]|2

IA
=
H
=
|
=
)ﬂ
=
5

IA
S -
]~
-
.-
~
S~
=
=
|
=
~
:S)
<
N’
[\

i=1 j=1
<6k-C
€) Ve
< = <
<2 Smce<720-k~<p

Thus for any a € R¥ with ||a||; = 1 we have
‘aT ((YTY) - (?T?)) a‘ < ;ﬁ (122)
Putting and together we get
‘aT (V79 ~1)a| < 4.5‘{0g

Let 2 € R be a vector with ||z||2 = 1, and let a € R be a vector that is z; = «; if [i; € S and otherwise
x; = 0. Thus we have ||af|2 = ||z||2 =1 and Yz = Zz. Hence, we get

PN PPN 4.
leT(ZTZ — Dz| = [T (YTY — I)a| < oVe
©

Proof of item (2)) For any vector x € R” with ||z||2 = 1 we have

45 s 45
o Aave (2T 2 <1+ Ve (123)
¢ @

51

Note that 7277 is symmetric and positive semidefinit. Also note that 7277 is spectrally close to I, hence,
ZT 7 is invertible. Thus by (123) and Lemma for any vector x € R" we have
5 ST 5 5
o Ve <aT(ZTZ) 'z <1+ bve
2 2

Therefore we get
12T (ZTZ)™ = Dz| < Ve
®
O

Theorem 6. Let G = (V, E) be a d-reqular graph that admits a (k, e, €)-clustering C1,...,Cy. Letk > 2
be an integer, ¢ € (0,1), # <€<1, and ﬁ be smaller than a positive absolute constant. Then there
exists an event £ such that € happens with probability 1 —n =48 and conditioned on £ the following holds.

Let r € [k]. Let § € (0,1). Let By,...,B, denote multisets of points. Let b = max;e, |B;|. Let
o : [r] — [k] denote a mapping from the set B to the cluster C = o(B). Suppose that for all i € [r],

B; C 0(B;) and for alli # j € [r], 0(B;) # o(Bj). Let [i; = \Tlil'zzeBi f=. Suppose that for each i € [r],

|12 — po@yll2 < %H/I@HQ. Let 11 is defined as a orthogonal projection onto then span({fi1, ..., i })*.
Then for all z,y € V we have

3
n?

‘<fx,ﬁfy>a (£, 111,)| <

px

where <ng7 ﬁfy>
apa

:= DOTPRODUCTORACLEONSUBSPACE(G, z,4,0,¢,D, By, ..., B,). Algorithm H
runs in time O(b% - kOW . pd+0(e/¢*) . (logn)? - ﬁ/fm).

Proof. Runtime: Note that Algorithm@ first computes matrix X € R™ ", and vectors hy, h, € R*. To
compute X (7, j) for any 4, j € [r], as per lineof Algorithm@, we run SPECTRALDOTPRODUCT(G, z;, 2j,6,§’, D)
for all z; € B; and z; € B;, where |B;| < b and |B;| < b.

Note that by Theorem |2, Algorithm SPECTRALDOTPRODUCT(G, 2;, 2;,6,&’, D) runs in time O(k°M.
nd+O0/9*) . (logn)? - #/5’12). Thus one can compute the matrix X' in time O(k® + k2 - b% - kO .
nd+O0/e*) . (logn)? - é/g’m). Also, to compute hy(i) (respectively, hy (7)) for any i € [r], as per line
and line [8] of Algorithm @ we run SPECTRALDOTPRODUCT(G, z, 2,0,&’, D) for all z € B; (respectively,
z € Bj). Thus one can compute h, and h, in time k- b - (kO - pdHOE/9*) . (logn)? - %/5’12). As per
line of Algorithm |§| we set & = O(¢ - n(=80¢/¢%) . k=6). Therefore the runtime of the algoritm is
O(kOM . pd+O0(e/¥?) (logn)? - X /£12),

@

Correctness: Let z,y € V. Let H € RFX" be a matrix whose columns are fiy, ..., [i,. Then we have
H (HTH)_1 HT is the orthogonal projection matrix onto span({fi1,...,fi,}). Let W € R™*" denote a
matrix such that for any i € [r], W(i,i) = \/|Cs(;)|. Note that

(HW) (HW)THW)) ™ (HW)T = 1w (W (BTH) " WY Wi = B (17H) ™ 1T

Thus we have (HW) (HW)T(HW)) - (HW)T is the orthogonal projection matrix onto span({fiy, - . . , fi, })
and we get

f=1-HW (WHTHW) 'WHT
Therefore, we have

<fz,ﬁfy> = (fur fy) — fLHW (WHTHW) " WHTf, (124)

Let (fa, fy>apm := SPECTRALDOTPRODUCT(G, x,y,d,&’, D). Then as per line |§| of Algorithm |§| we have

(ForTfy) = Afas fy),,, = WEX My, (125)
where as per line () of Algorithm |§| for any 4,7 € [r] we have X (i,7) = (@i, i;),,,, and as per line
and line of Algorithm@for any i € [r] we have h, (i) = (i, fz),,, and hy (i) = (fi, fy), .. Note that

ap

RIXth, = KWW X 'W 1 Wh, = RIW(WXW) " 'Wh,

52

Therefore by (125), (124) and triangle inequality we have

< farfo). = Ufos o) |+ |RKEW(WXW) ' Why — fTHW (WHTHW) ™

‘<ﬂ”ﬁh> (£ 118,)

ape
Note that by Theoremand by union bound over all pair of vertices with probability at least 1 —n~100.n2

for all a,b € V we have
é'/
n

| (far f6) ape — (far fo) | < = (126)

We define
=ffaw, A= WH'HW)™, a,=WHTf, and

e, =hW-—a,, E=WXW)'-A e, =Wh,—a
Thus by triangle inequality we have
|REW(WXW) ™ 'Why, — fTHWWH"HW)'"WH" f,| =
[(az +e:) (A+ E) (ay +ey) —azAay|ls <

lezll2llAll2llayll2 + llazllzll Ell2llayll2 + llaz 2l All2lleyll2+
lezll2l|Ell2llayll2 + laz(l2l| Ell2lleyllz + ezl Allzlleyll2 + ezl Ell2lleyl2 (127)

Thus we need to bound ||a,||s, ||ay||2, ||ex||2, |ley]]2, ||Al|2, || E||2- Note that ||a,||ls = ||fLHW||2, Thus
we have ||a,||2 < ||fL H||2|]|W]|2. Note that

W12 < max W (i,i) = max /|Ci] < v/n (128)
Then we bound ||fL H||>. Note that ||fI H||ls =1/> i, (f2,701)°. We first bound (fs, 7is).

forfit) = o 3 (fr £2)

|B1| 2€B;
1
< LS IR,
| Zl z€DB;
D DRVRITAIATAT
| | z€DB;
k. n30¢/¢
< |B | “|Bi| - k-0 <nn By Lemma [f] and since Ilrél]£1|02| >0 (%)

< O(k;2 . n71+40€/<,92)
Since, r < k, we get

r

HngHQ _ Z <fx,,t7i>2 < \/g O(kz _n—1+4oe/¢2) < O(k2'5 . n—1+406/<p2) (129)
=1
Thus we get
ol = LfFHW o < |LF7 Hl2 W llo < O (k271254007 (130)

By the same computation we also have
layllo < O (k2 n=1/2410/") (131)

Next we bound ||e;||2. We have e, = hIW — fTHW. Thus we get ||e;||2 < ||hT IEH||o||W]|2. By
we have a bound on ||W]|2. Note that for any i € r, we have h,(i) = |Bi| >en, (fu, f2),,. and

53

WHT fy‘

(fTH)(i) = + ZZGB (fz, f-). Therefore with probability at least 1 — n~% we have

| B;|
|h () fTH)()|_ 7 Z((fa:afz)apl_<fx>fz>>‘
z€B
| N Z | {fz, f2) a,,T — (fa, F2)] By triangle inequality
z2€B;
1 3
< g B By (126)

Since r < k, we have

1T — ST H]ls = J S (hali) — an(i))2 < VE- &

; n
=1

Therefore by (128) we have

/\/E
ell2 < |BE = fFH||o||W < ¢ 132
lleall2 < [lhy — fo Hll2[W]|2 < Tn (132)
By the same computation we also have
&V
leglla < £ (133)

Next we bound ||A||2. Note that A = (HW)T(HW))~1. By Lemmaitem for any vector x € R”
with ||z|]2 = 1 we have
\[

‘xT (W) (HW)) " = 1)) < 2V€
Therefore

1Alls = [[(EW)T(EW) s <1+5;f<2 (134)

Now we bound ||E||s = |[[(WXW)~! — (WHTHW)~!||5. For any i, € [r] we have
. / 1
(WXW)(’Lv]): |Ca(Bq;)|‘Ca(Bj)" |B||B| : Z <fZi7fz]~>apm
v IV 2,€B;,2,€B;
and

WHTHW)(3,5) = \/ICotmoICotppl- o S (for o)

|
(J) |Bl| ' ‘B‘]| z;€B;,z;€EB;

98

Therefore with probability at least 1 — n™7° we have

(WXW)(i,j) — (WH"HW)(i, j)|

1 o
= |\/ |Co(Bi)HC<7(Bj)| : W Z (.fzizj - <fziafzj>)

J z;€B;,z;€EB;

1 A . . .
< \ICowallCompl gy Do Was = ()| By triangle incquality

J 2;€B;,z;€EB;
1 &
|Bi| - |Bjl -

<n- BB > By (126) and since |C| <n (135)
il *1Dj n

Since r < k and by (135 we get

[|WXW — WHTHW||o| < |[WXW — WHTHW ||

< J > (WXW)(i.) — (WHTHW)(i, 7))’

i=1 j=1

<k-¢

54

Thus for any vector € R” with ||z||2 = 1 we have
T WHTHW)z — k- & <2T(WXW)x < 2T (WHTHW)x + k- ¢ (136)
By Lemma (30| item (1) for any vector x € R" with ||z||s = 1 we have

5
o ((HW)T(HW) = 1) a] < 2V
P
Hence we have .
23 (137)
Therfore by (136]) and (137) we get for any vector x € R™ with ||z||2 = 1 we have

" (HW)(HW)z > 1 - E’f >

1—2-k-&) - 2" WHTHW)z <2T(WXW)z < (1+2-k-¢&) - 2" (WHHW)z (138)

Note that WHT HW is a symmetric matrix. Also note that by definition of X in line |4f of Algorithm EI,
X is a symmetric matrix, hence, W XW is symmetric and positive semidefinit. Also note that W XW is
spectrally close to WHT HW and I, hence, W XW is invertible. Thus by (138) and Lemma [13[we have

1—4-k-&)- 2" WHTHW) lz <2TWXW) e < (14+4-k-&) - 2T(WHTHW) 'z
Therefore by (134]) we have
Bl = [WH"HW) ™ = (WXW) Yy <4 -k-& - [(WHTHW) |2 =8k - & (139)

Putting (139)), (134), (132)), (133), (130), (131]) and(127) together, with probability at least 1 — n=°% we

have

|WIW(WXW)™'Why — fTHWWH"HW)'"WH" f,| =

[(az +e2) (A+ E) (ay +ey) —ayAay[lz <

leall2llAll2llayll2 + [laz (2| Ell2llay (|2 + [[az]l2]| All2lleyll2+

lezll2llEllzllayll2 + [laz 2] Ell2lley 2 + e[|zl All2lleyll2 + lez]l2] Ell2lleyl2

<0 (51 . 25 _n—1/2+406/¢2> L0 (k: RS .n—1+805/¢2)

+o&ﬂ
fl kS . nSOe/g@2
n

The last inequality holds by setting £ =

RIERSI

n

k .5/ . 1{32'5 . n—1/2+406/g02> +0 (512 . k) +0 <£/2 . % k- 5/)

IA
Q

(140)

IN

N
S |l

o (=80/0%) - . . .
EnlWTe kT g per line of Algorithm |§| where ¢ is a large

c

. . .8 .80/ 27
enough constant to cancel the constant hidden in O wrjfj%’)

Therefore with probability at least 1 —n =98 > 1 — n=59 we have

‘<fx7ﬁfy>m — (£ 118,
<N fay — Fos L) |+ [RIW W XW) ' Wh, — fTHW (WHTHW)_l WHTfy‘

!
LEL 1€
- n 2 n
<¢ By (128), (T40), and since &' < £/2
n
(141)

55

Now let &€ be the event that for all z,y € V' we have | <fm, ﬁfy> — <fz,ﬁfy> | < % Then by (141])

ape
and the union bound we get that £ happens with probability at least 1 —n~*® and it is the claimed high
probability event from the statement.

O

Corollary 1. Let G = (V, E) be a d-regular graph that admits a (k, @, €)-clustering C1,...,Cy. Letk > 2
be an integer, ¢ € (0,1), § € (0,1), # <E<, ﬁ be smaller than a positive absolute constant. Let €
be the event that happens with probability 1 — n=48 that is guaranteed by Theorem @ Then conditioned
on & the following conditions hold.

Let r € [k]. Let By,...,B,, B’ denote multisets of points. Let b = max{|Bil|,...,|B.|,|B’|}. Let
o : [r] — [k] denote a mapping from the set B to the cluster C' = o(B). Suppose that for all i € [r],
B; C o(B;) and for alli # j € [r], o(B;) # o(B;). Let [i; = |Bl, Y .epfe forall i € [r], and let

il
o= ﬁ > .e, =+ Suppose that for each i € [r], |[li — po@iyll2 < %Huiﬂg. Let 11 is defined as a

orthogonal projection onto then span({fii,. .., })*. Then the following hold:

1. There exits an algorithm that runs in time O(b® - kO . pd+O(/2*) . (1ogn)? - ﬁ/fu) and for any

x €V returns a value <fx,ﬁﬁ> such that

px

(r.0im) (7. Tin)

<

3 |

2. There exits an algorithm that runs in time O(b* - KO . pd+0(c/9*) . (log n)? - é/gm) and returns

such that — [|T7|3

g

< £,
- n

2 2
apx apx

a value Hﬁﬁ

Proof. Proof of |1t To compute < fas ﬁﬁ> we call Algorithm@ b times in the following way:

~ 1
<fm,Hﬁ> =15 Z DoTPRODUCTORACLEONSUBSPACE(G, z,y,9, D, &, By, ..., B,) (142)
w T TB
The runtime of Algorithm|§|is Ob?- kO STO(e/2%). (logn)?- #/512), thus the runtime of computation
of <fz, ﬁﬁ> is O(b®- kO I +O(e/e) . (logn)?- #/{12). Moreover by Theorem|§|and the assumption
that £ holds we have

~ ~ 1 Y ~
’<fw’n“>m - <f””’H’“‘> 1B yé <fﬂ”Hy> - <f“”’H“>
< ‘Bl,,| é <fz»ﬁy>am - <fz7ﬁﬁ>‘ By triangle inequality
ey
< ‘;,| -|B[- % By Theorem [f]
<&
n

Proof of |2t To compute Hﬁﬁ we call the procedure from item b times in the following way:

2 = ﬁ > <fz,ﬁﬁ> . (143)

r€EB o

2
apx

|1

The runtime of the procedure from item (T]) is O(b* - k) -SFTO(e/e%). (logn)?- ﬁ/fm), thus the runtime
of computation of <f1,ﬁﬁ> is O(b* - kO . nd+O(e/e®) . (logn)? - ﬁ/fm). Moreover by item we

px

56

have

[z

2 75112
— [Tzl
apx

|J;’| > () - “;,' Y (fTi)

wEB/ wEB/
< \;'| : a;%_;e/ <fz7 ﬁﬂ>aw - xé/ <fac, ﬁﬂ> By triangle inequality
< L ~|B'\~§ By item ()
| B'| n
<

57

6 The main algorithm and its analysis

In this section we show that, by having access to approximate spectral dot-products for a (k,p,€)-
clusterable graph GG, we can assign each vertex in GG to a cluster in sublinear time so that the resulting
collection of clusters is, with high probability, a good approximation of a (k, ¢, €)-clustering of G. In
particular, we can show that the fraction of wrong assignments per cluster is at most C - ﬁ -log(k), for
some constant C' > 0. In the next subsection we describe our algorithm then in the remaining part of
the section we present its analysis.

6.1 The Algorithm (Partitioning Scheme, Algorithm (7))

We first present an idealized version of the sublinear clustering scheme defined by Algorithm [7] and
Algorithm In this section to simplify presentation we assume ¢ to be constant.

The algorithm can be thought of as consisting of 3 parts. The first part, described in paragraph
Idealized Clustering Algorithm, is a procedure that explicitly, in iterative fashion, produces a k-
clustering of G. More precisely it recovers clusters in O(log(k)) stages, where for every 4 after the
i-th stage at most k/2¢ clusters are left unrecovered. The algorithm can be thought of as a version
of carving of halfspaces in R* and it relies on the knowledge of cluster means 1, ..., us (recall that
i = ﬁ > wcc, fz). That is why in paragraph Finding approximate centers we show how to
compute approximations of u;’s. To find good approximation to u;’s we need to test many candidate
sets {{i1, ..., ix }, which also means considering many candidate clusterings. This is a problem as we want
our procedure to run in sublinear time but the idealized partitioning algorithm constructs clusterings
explicitly! To solve this we explain in paragraph Verifying a clustering how to emulate the partitioning
algorithm to test that, for a set of {fi1, ..., i}, it indeed induces a good clustering.

Idealized Clustering Algorithm. Assume that the we have access to cluster means {py, ..., ux}
and dot product evaluations. The algorithm proceeds in O(log(k)) stages, in the first stage it considers
k candidate sets @, where z € @ iff f, has big correlation with p; but small correlation with all other
;’s. More precisely « € C; iff:

(Fos) > 093] 23] 2 and for all j # i (f,, 1) < 0.93] 15|

Note that by definition all these clusters are disjoint. Moreover we are able to show (see Lemma
that at least k/2 out of @’s are good approximate clusters, that is for each one of them there exists j
such that |6’iACj| < O(e) -|Cj| . At this point we return these good clusters, remove the corresponding
vertices from the graph, remove the corresponding p’s from the set {1, ..., g} of still alive centers and
proceed to the next stage.

In the next stage we restrict our attention to a lower dimensional subspace I of R¥. Intuitively we
want to project out all the directions corresponding to the removed cluster centers. Recall that u;’s
are close to being orthogonal (see Lemma [12| and 7)) so projecting the returned directions out is almost
equivalent to considering the subspace II := span({p1,...,up}), where {u1,...,up} is the set of still
alive p’s. Now the algorithm considers b candidate clusters where the condition for x being in a cluster
i changes to:

(fo, Op;) > 0.93||p;||* and for all j € [b], 5 # i (fu, Hp;) < 0.93|| T2

We are still able to show (also Lemma that at least b/2 out of them are good approximate clusters.
That is for each ¢ there exists j such that |@A0j| < O(e) - |C;| but this time the constant hidden in the
O notation is bigger than in the first stage. In general at any stage ¢ the bound degrades to O(e - t). At
the end of the stage we proceed in a similar fashion by returning the clusters, removing the corresponding
vertices and p’s and considering a lower dimensional subspace of II in the next stage.

The algorithm continues in such a fashion for O(log(k)) steps, as we guarantee that in each stage
at least half of the remaining cluster means is removed. Thus the final guarantee is: there exists a
permutation 7 on k elements such that for every i:

|Gy OC5] < O (elog(k)) - |Cl.

The decreasing (in the inclusion sense) sequence of subspaces (IIy, ... ,Hlog(k)) corresponds to the sub-
spaces constructed in Algorithm [7} while this offline algorithm as a whole corresponds to the sublinear
Algorithmthat implicitly tries to construct a sequence of subspaces that (with respect to Algorithm (7))
defines a good clustering.

58

Finding approximate centers. Note that cluster means are defined by the clustering, so it may seem
that finding approximate means is a difficult operation. However, there is a gelatively simple solution to
this. In Algorithm [10| we find approximate cluster means by sampling O(‘%k}4 log(k)) points, guessing
cluster memberships and considering the means of the samples as cluster centers. We use that the mean
of a random sample of a cluster is typically close to the true mean of its cluster and so our sample means
will provide a good estimation of the true means. We also remark that sampling a single vertex from
each cluster does not seem to provide a sufficiently good estimate, i.e. we require to take the mean of a
sample set.

Verifying a clustering. We also need a procedure that given an implicit sequence of subspaces
(ITy, ..., IThog(x)) checks whether they indeed define (via Algorithm a good clustering. In fact, for
every guess of cluster centers and the corresponding (as implicitly created by Algorithm sequence of
II’s we need to be able to check efficiently if the resulting clustering is a good approximation of a (k, ¢, €)-
clustering. Since we would like to do this in sublinear time as well, we need to do this verification by
random sampling. Then we design a procedure that consists of two steps. In a first step, we check if the
cluster sizes are not too small. This is only a technical step, which is needed to make sure that the later
steps work. The main step is to test whether every cluster has small outer conductance (Algorithm .
In order to do so, we sample vertices uniformly at random and check whether they are contained in the
cluster that is currently checked. If this is the case, we sample a random edge incident to the sample
vertex. This way, we obtain a random edge incident to a random vertex from the current cluster (this
follows since the conditional distribution is uniform over the cluster). We use standard concentration
bounds to prove that we get a good approximation.

In the partitioning scheme and in the analysis a useful definition are subsets of vertices called threshold
sets. A threshold set of a point y is the set of vertices with dot products (or approximate dot product)
with y being above a specific threshold, more formally:

Definition 8 (Threshold sets). Let G = (V, E) be a (k, ¢, ¢)-clusterable graph (as in Definition [9).
Recall that f, = F1,. For y € R¥,0 € Rt we define:

Cyo={z €V : (fs,y) > 0llyl|*}

Definition 9 (Approximate threshold sets). Let G = (V, E) be a (k, ¢, €)-clusterable graph (as in
Definition @ Recall that f, = F1,. For § € Rt and y € R* such that y = II(f), where II is the
orthogonal projection onto span({fi1, ..., y})* and each [i, fi, . .., iy is an average of a set of embedded
vertices:

apz . _ , 2
v =1 €V (fo,v),,. 2 0lyll,,.}- (144)
Recall that a discussion of how (-,)4p, and || - ||aps are computed is presented in Section

Algorithm 7 HYPERPLANEPARTITIONING(z, (11, T, ..., Tp))
> T;’s are sets of [i; where [i;’s are given as sets of points
> see Section [5.6] for the reason of such representation

1: fori=1tobdo

2 Let TI be the projection onto the span(J, ., Tj)*

3 Let S; = UjZi T’]

4: for i1 € T; do

5 if x € Cﬁ%&% \Uzesi a3 Crinr 0,03 then > see (144) for definition of C}"y
6 return u

HYPERPLANEPARTITIONING is the algorithm that, after preprocessing, is used to assign vertices to
clusters. In the preprocessing step (see COMPUTEORDEREDPARTITION in Section an ordered par-
tition (77, ...,Tp) of approximate cluster means {fi1,. .., fix} is computed. HYPERPLANEPARTITIONING
invoked with this ordered partition as a parameter induces a collection of clusters as follows:

Definition 10 (Implicit clustering). For an ordered partition (T4,...,T,) of approximate cluster
means {fi1, ..., U} we say that (T1,...,T;) induces a collection of clusters {éﬁl, e éﬂk} if for all
i€ [kl

éﬁi = {z € V : HYPERPLANEPARTITIONING (z, (T1,...,T})) = ;i } -

59

Remark 6. Ordered partition (T1,...,Ty), precomputed in the preprocessing step (assuming access to
{p1, ..., ux}), will correspond to the Idealized Clustering Algorithm in the following sense. Number
of sets in the partition (i.e. b) corresponds to the number of stages of Idealized Clustering Algorithm
and for every i € [b] T; contains exactly the u’s returned in stage i.

In the rest of this section we explain how to compute an ordered partition (77,...,T}) of a set of
approximate centers (fi1, fi2, . . ., [i;) such that the induced clustering {Cy,, ..., Cy, } satisfies that there
exists a permutation 7 on k elements such that for all ¢ € [k]:

‘aﬁi Al

€
<0 (@ - log<k>) Coio

We start, in Subsection [6.2] by studying geometric properties of our clustering instance. Recall, that we
denote with p; the center of cluster C; in the spectral embedding. We show that, for specific choices
of 0, the threshold sets of p; have large intersection with the cluster C; and small intersections with all
other cluster Cj. This fact intuitively suggests that our partitioning algorithm works. Unfortunately, as
discussed in the technical overview, this is not enough to prove a per cluster guarantee. For this reason

in Subsection we analyze the overlap structure of {C,,, g,...,C), ¢} more carefully and we give an
algorithm (see COMPUTEORDEREDPARTITION) that given real centers {1, ..., pr} and access to exact
dot product evaluations computes an ordered partition of {u1, ..., s} that induces a valid clustering.

In Subsection we present an algorithm that guesses the cluster memberships for a set of randomly
selected nodes and, using those guesses, approximates cluster centers. Interestingly, we can show, in
Subsection that for the set of correct guesses the algorithm returns a good approximation of the
cluster centers. Finally in Subsection we show that we can find an ordered partition that induces
a good clustering even if we have access only to approximate quantities. That is we show that even
if we have access only to approximate means {fi1,...,ix} and the dot product evaluations are only
approximately correct then we can find an ordered partition (71,...,7Tp) that induces a good collection
of clusters. The last ingredient is to show that we are able to check if the clustering induced by a specific
ordered partition is good. To solve this problem, we design an efficient and simple sampling algorithm
which is also analyzed in Subsection [6.5

6.2 Bounding intersections of C,, y with true clusters C;

In this subsection we show that, for specific choices of 6, the threshold sets of p; (recall that p;’s are
cluster means in the spectral embedding) have large intersection with C; and small intersections with
other clusters. The main idea behind the proof is to use the bounds on dot product of cluster centers
presented in Lemma m In particular, we use Lemma [6 to relate ﬁ with the directional variance of
the spectral embedding in the direction of p; (i.e. Y .o (fo — pi;@)?). Then we use the definition
of threshold set to upper and lower bound (f,, m> and Lemma [7| to upper and lower bound the dot

product between cluster centers. By combining the bounds we obtain the following result:

Lemma 31. Let k > 2, ¢ € (0,1) and 2z be smaller than a sufficiently small constant. Let G = (V,E)

be a d-regular graph that admits a (k,p,€)-clustering {C1,...,Cr}. If p;’s are cluster means then the
following conditions hold. Let S C {p1,...,uxr}. Let IT denote the orthogonal projection matriz on to
the span(S)*t. Let p € {u1,...,ux} \'S. Let C denote the cluster corresponding to the center ji. Let

C:={xeV:{lf,,) > 0.96/u|3}
then we have:
10%¢
902

]c\é‘ <40l

60

Proof. Let x € C'\ C. Then:

K“—ﬁwéﬁbﬂ=ﬂ<<ﬂ))

> 0.04 - [[TTull2 Since (1, TTx) < 0.96]Tul3
> 0.04 - (1 - 24‘f> (]2 By Lemma
1
>0.04- (40\[> |C| By Lemmal[7]
1 . € . .
>0.02- ﬁ Since — is sufficiently small
14
Then by Lemma|§|apphed to direction o = HH#H we have Zz 1 ZrEC (fo — i, > < %. On the other
hand
I \? Cc\C
ZZ —pna) > Y <fz—u,” > > 0.0004 - €1
< 2] [T C]
i= zeC\C
Using the above we conclude with |C'\ C| < 104§|C|. O

Remark 7. Notice that the constants in Lemmal[33 are different, they are equal 0.96 and 0.9. The reason
is that the real tests for membership in Algorithm[7 are performed with constant 0.93 and the slacks are
needed as we have access only to appro:m'mate dot products. See (| @ for the formal reason.

Lemma 32. Let k> 2, p € (0,1) and s be smaller than a sufficiently small constant. Let G = (V, E)
be a d-regular graph that admits a (k, ¢) clustering {C1,...,Cr}. If p;’s are cluster means then the
following conditions hold. Let S C {,Ltl, ..., jug}. Let II denote the projection matriz on to span(S)*.
Let we {p1,...,ux} \ S. Let C denote the cluster corresponding to the center u. Let

C = {z €V (IIf,,) > 0.9y}

then we have:

‘émW\C)‘ gmoém.

Proof. Let z € C'N (V \ C). Then there exists cluster €’ # C such that # € C’. Let p/ be the cluster
mean of C’. Then:

Iy Iy . . .
A >‘ ’< fao, = >’ ‘<HM/> >‘ By triangle inequality
‘< [Tpell2 IIHullz i
II .
> 0.9(/TTplls — ’<H//, ,u> AszeC
([Tpa |2

Note that either ' € S and then Iy’ = 0 and in turn | (IIg/, Tx) | = 0 or ' & S and then | (TIx/, Iy) | <

60({;\2& W by Lemmaﬁ Thus we have
Iy 60ve 1 1
Fo = i e)| 2 091l -
’< ([Tl 2 ©? /|C]-1C7] Mgl

1 12006 1 1
>0.8 - -v/|C| by Lemmaand Lemma Mgy > ——
Vil ¢ Vol 0 2-y/IC

1 C
>0.2 Since — sufficiently small and || C’||

constant
@] ©?

(145)

Then by Lemma|§| applied to direction ov = HHHH we have ZZ 1 2ec, (fo — pisa a)? < 4—2 On the other

hand using we get
M, * ICn(V\O)
— piy) > <f$ = P, > >004 ——=—.
Z 2 s 2 Mpe |2 C

i=1 z€C; zeCn(V\C)

61

Therefore we have ‘6 N\ C)‘ < 1004[C. O

6.3 Partitioning scheme works with exact cluster means & dot products

The goal of this section is to present the main ideas behind the algorithms and the analysis. In this
section we make a couple of simplifying assumptions. We assume that:

e We have access to real centers {u1,..., s},
e Dot products computed by the algorithm are exact,

e A test, that relies on computing outer-conductance of candidate sets, for assessing the quality of
clusters is perfect.

Whenever we use one (or more) of these assumptions we state them explicitly in the Lemmas. Later in
Section [6.5| we show that we can get rid of all of these assumptions.

In the previous section we showed geometric properties of the threshold sets. Recall that threshold
sets are defined as follows:

Cyo={z €V : (fu,y) > 0llyl|*}.

In this section, using these properties of threshold sets, we show an algorithm that given exact centers,
access to real dot products and a perfect primitive for computing outer-conductance computes an ordered
partition (71,...,Tp) of {u1,..., pux} such that (T1,...,T;) induces a good collection of clusters.

Algorithm 8 COMPUTEORDEREDPARTITION(G, fi1, li2, - - - , [k, S1, S2) > [1;’s given as sets of points
> s1 is # sampled points for size estimation
> So is # of sampled points for conductance estimation

y

for p € S do
1 := OUTERCONDUCTANCE (G, i1, (Th, T2, . .., Ti—1), S, 51, $2) > Algorithm
if ¢ < O(7 -log(k)) then
Ti =T U{n}
S:=S\T;
if S =0 then
return (TRUE, (T1,...,T}))
11: return (FALSE, 1)

_.
=

To explain and analyze COMPUTEORDEREDPARTITION we first need to introduce another algorithm
and some definitions.

Definition 11. For a set {a1,...,a;} we say a sequence (Si,...,S,) is an ordered partial partition of
{a1,...,a;} if:

L4 U]E[p] Sj c {ah ERE ai}7
e S;’s are pairwise disjoint.

Intuitively Algorithm ISINSIDE emulates CLASSIFYBYHYPERPLANEPARTITIONING on ordered partial
partition (77, ...,Tp). This intuition is made formal, after introducing Definition in Remark |8 For
this we need additional notation for clusters that are implicitly created by ISINSIDE. We define:

Definition 12 (Candidate cluster). For an ordered partial partition P = (11,...,T},) of approximate

cluster means {fi1, ..., fx} and 0 € {fx, ..., i} \ U Ti we say that 65 is a candidate cluster
corresponding to i with respect to P if:

CP =Sz eV IsINSE | 2,7, P, {fir,....fix}\ | J Th | = True
i€[p]

Furthermore we define: V2 :=V\U,_, User, él%Tl""’Tj’l).

62

Algorithm 9 ISINSIDE(z, i, (T1, T, ..., Tp), S)
> T;’s are sets of [i; where [i;’s are given as sets of points
> see Section for the reason of such representation
> S = set of not yet processed centers, i € S

for i=1to b do

—_

L
2: Let II be the projection onto the span(lJ;; Tj)
3: Let S; = (szi Tj) us
4: for (; € T; do
5: if z € O .03 \ Unresi iy Cita 0,05 then > see ((144) for definition of C}'y
6: return FALSE
7: Let II be the projection onto the span(U; <, T)*.
8: if z € Cff7 93 \ Upes\(ay Ciinr 0,05 then > see ([144) for definition of C}%y
9: return TRUE

10: return FALSE

Algorithm ISINSIDE receives a vertex x, the centre of a cluster i, and an ordered partial partition,
then it tests if vertex x is not recovered by any of the previous stages (see line of Algorithm E[) and
can be recovered at the current stage using 1. More formally, it can be recovered at the current stage if
it only belongs to the candidate cluster corresponding to the center fi (see line of Algorithm E[)

Remark 8. Note that Definitions and are compatible in the following sense. For an ordered
partition (T1,...,Ty) of approrimate cluster means {fi1,..., U} that induces a collection of clusters
{Ca,,...,Cp,} it is true that:

{Car--,Cr b= |J YO0y,
i€[b] peT;

Equipped with Definition we are ready to explain Algorithm COMPUTEORDEREDPARTITION. The
Algorithm proceeds in O(log(k)) stages. It maintains a set S of approximate cluster means, that initially

is equal to {fi1,..., g}, from which fi’s are removed after every stage. At every stage ¢ a collection of
sets U
= U {C;% Tyees 171)}’
nes

is implicitly considered. In fact sets in this collection are, by definition, pairwise disjoint (see Defni-
tion |12{ and line: |8 of ISINSIDE). QéTl"“’Ti’l)’s are defined as threshold sets (see Definition gi that are
made disjoint by removing intersections. The main idea behind the Algorithm is to use properties from
Section so that we can show that égl’ Ti-1)s match some C;’s well. Unfortunately after removing
the intersections the above property might not hold for every cluster in C;. In the rest of this section we
show however that it is true for a constant fraction of sets from C;. The Algorithm COMPUTEORDERED-

PARTITION proceeds by discarding, from set S, the ii’s for which 6}%“"““‘*” matches some C;’s well and

T;

implicitly removes the vertices of égl =) from consideration. Moreover it projects out the directions

corresponding to the removed /i’s and restricts its attention to a lower dimensional subspace II of R”
(see Idealized Clustering Algorithm from Section for comparison). The Algorithm doesn’t know
which sets from C; are good as it runs in sublinear time. That is why we develop a simple sampling pro-

cedure that computes outer-conductance of candidate clusters (see Algorithm . Then the Algorithm

(Ty,...Ti_
! Y have small outer-conductance. We conclude

removes the ii’s for which the corresponding ct
using the robustness property of (k, ¢,)—clusterable graphs (Lemma that these tests are enough.
The rest of this subsection is devoted to showing that if COMPUTEORDEREDPARTITION is called

with (fi1,..., i) equal to (u1,...,u;) and the algorithm has access to real dot products then CoM-

PUTEORDEREDPARTITION returns TRUE and an ordered partition (T3,...,7p) (of {g1,...,pur}) that
induces a collection of pairwise disjoint clusters {C),,,...,C),, } such that for every i

P (éu) <0 (; -1og(k)> . (146)

63

Then using Lemma [16| we get that there exists a permutation 7 such that for all ¢ € [k]:

]c ACo

<0 (-log(k)) |Cr()- (147)

The core of the argument is an averaging argument that, for every linear subspace of R*, bounds the
average distance of embedded points to their centers in this subspace. What is important is that the
bound depends linearly on the dimensionality of the subspace.

Lemma 33. Let k> 2, p € (0,1) and s be smaller than a sufficiently small constant. Let G = (V, E)

be a d-regular graph that admits a (k’ ,€)-clustering {C1,...,Cx}. Then for all L C R* - a linear
subspace of RF, II the orthogonal projection onto L we have:

ST ITf T <0 (dz’m(L) . @)

zeV

Proof. Let b := dim(L) and {w1,...,w,} be any orthonormal basis of L and recall that for z € V p, is
the cluster mean of the cluster which x belongs to. Then

Z ||Hf:v HNJEHQ = Z Z Ma:;wz

zeV zeV i=1

S U

=1 zeV

Sb-46

— By Lemma[f]
¥

In order to show we need to show that a constant fraction of candidate sets G,STI """ Tict)rg
match some C;’s well. To do that we argue that that sets of the form Cr 0.9 (where IT is the orthogonal
projection onto the span(|J; i<i T;)1) don’t overlap too much. We do this in two steps. First in Lemma
and Lemma [35] we show that points from the intersections are far from their centers. Then in Lemma
below we show that having too many such vertices would contradict Lemma [33]

Lemma 34. Let k> 2, p € (0,1) and _z be smaller than a sufficiently small constant. Let G = (V, E)

be a d-reqular graph that admits a (k,¢,¢)-clustering {C1,...,Cr}. Let {vy,..., v} € R¥ be a set of
vectors satisfying:

. \<vl,vj>|<o(i)ﬁ

<0 (%) [

Then for every pair i # j € [k] for every 6 € (0,1) if o :=

vl flogll

w and I = Cy 9N Cyp =
{x €V i {fu,vi) = 0l|vil|*> A {fu,v;) > 0||vj||*} then the following conditions hold:

1. Correlation of vector v, with the direction o is as follows:

. forallpe[kz]\{z’,j},<ua”, ><0()M:‘:jﬂ”i”%,forallz#e[]

. VAV lwillllesl ,
o forallp e {i,j}, < ”a”,vp> < (1 +0 (-)) llvi l[2+[[v; 112 for alli € [k]

2. Spectral embeddings of vertices from set I have big correlation with direction a.

min<a,fm> > (29 —0 <\/E)> C Ml ol
=<l el v ol + 012

64

Proof. For all p € [k] let U, := v,/||vp||. Let v := %, a = 0; + /1 —7%7;, and & := /|||
Vi vj

Fix i # j € [1,...,k]. First we show that since v;’s are close to orthogonal we have ||a|[* ~ 1. More

precisely we will upper bound |||||? — 1]

[all? = 1] = 2Tl 4+ (1 = A1 + 27v/T =72 (53, 5) — 1

2 (v;, v;) B N
N as |13l = Il = 1
i j
2. o()%
s 1 By assumptions
O Ca) e

=9 <\[) |c||c+”|g ||

<0 <\ﬁ) _VIGHIC] <1 (148)

as <
@ max(|Ci, [C])

Observe the following fact:
V1=l =7 [vill (149)

Next notice the following:

(o, vi) = il + (Wi, 05) - V1 = 72| Juil| (150)
(o, v5) = (Ui, U5) - Al|vsl] + V1 = 72| [vj]] (151)
For all p € {1,2,...,k}\ {4,}
(o, vp) = (Ui, Up) - Al[vpl| + (U5, Tp) V1 = 72| [vg | (152)
Moreover for all p # ¢ € [1, k] we have

\%;

1
To B o

By assumptions

SO(UW' p'(l—Ol()

(> AT for small enough ;

() as ||g| 0() (153)

Using the above we can prove:

|@.7) - VT= 2wl l| =

sf5

| /\

\% ﬂ\%

| /\

‘\/1_ ||vj|| || H2 '<vi7vj>
< VTl 0 (L) By (159

€
0 () 51l By @) (15)
And similarly we show:
o 1
(s, 05) - Yl|vj || = 7'||Ui||'W'<%Uj>
<0 (ﬁ) ST By (153) (155)
©

65

For all p € {1,2,...,k}\ {i,7} we get

s e} < | @) - Hlwgll| + | T 3) VI= Il By (52)
1 1
- <vi,vp>-w|vi|v]+ (05e0p) Tzl V=72
7 J
€
<0 (i) el By (53) and (@) (156)
Combining (150, (151), (154), (155) and (156]) we get that for all p € {i,j} we have
o)< (140 (L)) ol (157)
and for all p € {1,...,k}\ {4,5}
€
@) <0 (L) o (159)

Now using (148) we get that for all p € {i, 5}

and for all p € {1,...,k} \ {4,/}

_ 1 Ve a [loalllls|
o) (5)7 =0 (S) Thmsim

)

These two inequalities establish the first statement of the Claim.
Recall that
I={z €V :{fo,v1) = 0l[vil|> A {furvj) > 0]|vj]*}

Now let z € I. Then observe

(@, fo) = (v Vi, fa) + <M'5j7fx>

>0 ul| + V1 =726]| because x € T
=207 - ||vill by (149)
Hence
~ 1
(@ fo) > ——==20-7||uil| By (148)
1+0 (%)

s 1%

> (20-0(£)) ol

Now we use technical Lemma@ to show that vertices from the intersections of Cry, 0.9’s are far from
their centers.

O

Lemma 35. Let k> 2, p € (0,1) and 2z be smaller than a sufficiently small constant. Let G = (V, E)
be a d-regular graph that admits a (k,p,€)-clustering {C1,...,Cr}. If u;’s are cluster means then the
following conditions hold. For all S C {u1,...,ux} if L := span(S)* and 11 is the projection on L then
if v € V is such that

(T, Tas) > 09| T |5 A (T for, Thpag) > 0.9 a3

for some i, pj € {p, -, o} \ S, i # pj. Then:

/ 1
IIf, —11 >03| ——
|| fz ,uxH = max,c |Cp‘

66

Proof. Let x € V be such that (ILf,;, IIu;) > 0.9]|y;]|3 and (I1f,, ;) > 0.9]|Ik;]|3. Note that by
Lemma (12| set {TIuq,. ..,y } satisfies assumptions of Lemma So applying Lemma |34 for § = 0.9
we get that there exists a € span{IIy;, IIy;}, ||e|| = 1 such that:

. = —_O(Xeyy . MpallI0pgll
(o fa) = (o L) 2 (1.8 = OCF)) - AR T

€ 11 il I1 j
o (o, Tlpy) < (14 0(%)) - gt Rl for all p € [K]

Thus we get
(IIfe — gl > | (o, Ify) — (o, ug) |
> (0.8 -0 (\ﬁ» , ”H/MHQ' (1105, | 2
¢ /) /Ml + [Ty
[TTpa | - (1T

€
75 - By assumption that — small 159
RN/ A R F TP 7 (159)

without loss of generality we can assume ||[IIz;|| > ||y ||. Then we get:

e P Y | 1
VIl TP /A T /P
1
> — ||y,
> M|

>t
2/maxp,ey |Cyl
Combining (159) and (160) we get:

ITLf, — Mp, || > 03

Lemma assumption that % small (160)
¥

1

Vmax,er [Cpl

Combining Lemma, and Lemma [35| we show that sets Cfyy0.9's don’t overlap much.

Lemma 36. Let k> 2, p € (0,1) and 2z be smaller than a sufficiently small constant. Let G = (V, E)
be a d-regular graph that admits a (k,p,€)-clustering {C1,...,Cr}. If u;’s are cluster means then the
following conditions hold. For all S C {u1,...,ur} if L := span(S)*, dim(L) = b and 11 is projection
on L then:

€ n
U CHM,OAQ N CHM’,O.Q <0 (b : S02) : %

u,u’G{#ly--;vﬂk}\S
HEN

Proof. Let & € V be such that (I1f,,TIu) > 0.9(|Iu||3 and (I1f,, Iy') > 0.9 114 ||3 for some p, pu' €
{p1,-- -, 1k} \'S. Then by Lemmawe get that

/ 1
f, — Hp,l| >03,/ ————. 161
| | S—TaN (161)

On the other hand Lemma [33| guarantees:

, €
ST, - T3 <0 (dzmw) ') (162)
zeV ®
o max 1 1Cp
Combining (161)), (162)) and the fact that WM = O(1) we get
e\ n
U Crip,0.03 N Crpr 0,03 < O <b~ 902> T

Bt €{ 1o i F\S

67

Our bounds above enable the following analysis. At every stage of the for loop from line [of
Algorithm [§] at least half of the candidate clusters:

A(Ty,..,Ti 1)
— U {C;% 1 1 }7
nes
passes the test from line [6] of Algorithm [§8] which means that they have small outer-conductance and
satisfy condition (146]).

Lemma 37. Let k > 2, ¢ € (0,1) and 5 - log(k) be smaller than a sufficiently small constant. Let
G = (V, E) be a d-regular graph that admzts a (k,,€)-clustering {C1,...,Ci}.
If COMPUTEORDEREDPARTITION (G, [i1, [i2, - - - , bk, S1, S2) 18 invoked wz’th (i1, .- ,ﬂk) = (1,5 fg)

and we assume that all tests Algorithm H performs <z’.e, <fm,ﬁﬁ> > 0.93 HH,u

are exact and
ape

apa
OUTERCONDUCTANCE computes outer-conductance precisely then there exists an absolute constant Y
such that the following conditions hold.

For any i € [0..log(k)] assume that at the beginning of the i-th iteration of the for loop from line
of Algorithm @ |S| = b and, up to renaming of p’s, S = {p1,...,pw}, the corresponding clusters are
C ={C4,...,Cy} respectively and the ordered partial partition of p’s is equal to (Ty,...,T;—1). Then if
for every C € C we have that |V Ti-Ti-1) 0 C| > (1 - ﬁ) |C| then at the beginning of (i + 1)-th

iteration:

1. |S| < b/2 (that is at least half of the remaining cluster means were removed in i-th iteration,),

2. for every u € S the corresponding cluster C satisfies |V (T 0 C| > (1 T -(i+1)- é) |C,

where (T1,...,T;) is the ordered partial partition of u’s created in the first i iterations.

Proof. Let i € [0..log(k)], without loss of generality we can assume that S = {u1,...,up} (if not we can
rename the u’s) at the beginning of the i-th iteration and the corresponding clusters be C = {Cy, .. Cb}

respectively. Assume that for every C' € C we have that [V (71 Ti-1) 0 C| > (1 -1) |C.

start by showing the first part of the Lemma.
At least half of the cluster means is removed from S:

Let p € S, II; be the orthogonal projection onto the span(lJ._,7j)*, where (T1,...,T;—1) is the

J<z

ordered partial partition of {u1,...,ux} created before iteration ¢ by COMPUTEORDEREDPARTITION.
For brevity we will refer to (T4,...,T;—1) as P in this proof. Let
I:= U Cr, 0,93 N O, ,0.93-

wop €{pr, s pn }

€ n
< R, I
|I|O<b @2> k

So by Markov inequality we get that there exists a subset of clusters R C C such that |R| > b/2 and for
every C' € R we have that

By Lemma [36] we have that

€ n
I1<2. — = 1
cnil < o(gDQ) ; (163)

We will argue that for any order of the for loop from line [4] of Algorithm [§]it is true that for every C € R
with corresponding mean u the candidate cluster C’f satisfies the if statement from line

First note that behavior of the algorithm is independent of the order of the for loop from line [of
Algorlthm as by definition C’P 's for p € S are pairwise disjoint. Now let C' € R, p be the corresponding

mean to C' and Cf be the candidate cluster corresponding to p with respect to P = (T4,...,T;—1).
By inductive assumption [V N C| > (1 -Y-i- é) |C| so by (163), Lemma [31| and the fact that

max,ex [Cpl
ming ek \C |

= O(1) we get that:

cpnarz (1-ra-5) -o(3) 1o () e
> (1) (; -10g(k))) le] (164)

68

To prove that 65 passes the outer-conductance test we also need to show that 6’5 doesn’t contain a lot
of points from V¥ \ C. By Lemma [32| we get that:

~ ~ €
CrnwrvolsEinon ol <o(5) el (165)
Combining (165) and (164]) we get that:
~ €
ICPAC| <O (@2 -log(k)> |C]| (166)

Now we want to argue that é}f passes the outerconductance test from line |§| of Algorithm (8, From the
definition of outer conductance:

E(C,V\C)+d|CEAC|
d(|C] - |CPAC))
E(C,V\C)+d-O (? ~10g(k)> le]

d(lc| -0 (@— ~log(k)) 1C)

#(CF) <

from (T60)

_0() +0 (& 1ot e FETAE) (1)

< - dcl - =\
1-0 (5 - log(k)) Il i

<0 (;2 . log(k)> for sufficiently small é -log(k)

and it follows that

which means that (7}5 passes the test as we assumed that OUTERCONDUCTANCE computes outer-
conductance precisely.

Clusters corresponding to unremoved p’s satisfy condition
Now we prove that for every p that was not removed from set S only small fraction of its corresponding
cluster is removed.

Let p € S be such that it is not removed in the ¢-th step. Let II; be the orthogonal projection

onto the span(UKiTj)J-. Let C' € C be the cluster corresponding to p. By assumption |[VF N C| >

w’s created in the first i-th steps of the for loop. We get that there exists u’ € {u1,..., s} such that
T € C’i (recall that C’f, is the candidate cluster corresponding to p with respect to P = (T1,...,T;—1)).

Recall (Definition that 55 is defined as:

55, =2 €V :ISINSIDE | @, pt, P, {1, .., i} \ U T; | = TRUE
jeli—1]

This in particular means (see line |8} of Algorithm ISINSIDE) that:

AP
Cp € Crmpr 093\ U Cr, 7,093,
wres\ i)

which, as u € S\ {u'}, gives us that:
C,]; N Cr,p,0.03 =0,

and finally, using Definition |8] we have:
(fa, i) < 0.93||TLpl[*. (167)
But by Lemma
o€ O Mufon) <093l < 0 (5) - Jo (168)

69

Combining ((167)) and (168 we get that:

|C N (VT Tz (T Toy < O (g@ > |C|. (169)
By assumption that |V (TtTi-1) 0 O] > (1 -1 ﬁ) |C| and (169) we get that:

VT T) A 0 > (1 ~ T (i+1) 2) I,
¥

provided that T is bigger than the constant from O notation in (169]), which is the same constant as the
one in the statement of Lemma BTl
O

Remark 9. Note that in this section we assume that the Algorithm has access to real centers {1, ..., K }.
If it was the case in the final algorithm we could in fact prove a stronger guarantee, i.e. ”Algorithm[§
returns TRUE and an ordered partition (T, ..., Ty) (of {p1,- ., ux}) that induces a collection of pairwise

disjoint clusters {C“m, cee él—Lk} such that there exists a permutation m such that for alli € [k]:

€ 5Cis

<0 (5 1050 1€

Compare the above statement with with and the main theorem of this section, Theorem @ The
reason we present it this way is the following.

The final algorithm doesn’t have access to p’s but instead tests many candidate sets {fi1,..., [k}
Moreover Algorithm @ returns an ordered partition (T1,...,Tp) that induces a collection of clusters
{61, cee ék} whenever every set from this collection passes the test from linela of COMPUTEORDERED-
PARTITION, that is when for every C € {CA'l, A 6k}

& (C) <0 (log(k)>

This in particular means that Algorithm @ may return TRUE even for a set {fi1,..., i} that is not a
good approzimation to {p1, ..., i}

Because of that, once we know that COMPUTEORDEREDPARTITION invoked with {p1, ..., ur} returns
an ordered partition (Ty, ..., Ty) that induces a collection of clusters {Cl, . Ck} when proving the final
result of this section (Theorem @ the only thing we assume about C’s is that they passed the outer-
conductance test. And that is why we use Lemma @and we "loose” a factor é in the final guarantee.

Moreover structuring the argument in this way helps the presentation as later, in Section [6.5, the
proof will follow a similar structure.

The following Theorem concludes this subsection by showing (147)). It does so by induction using
Lemma as an inductive step. At the end it uses Lemma to go from the guarantees for outer-
conductance to guarantees for recovery.

Theorem 7. Let k > 2, ¢ € (0,1) and ;log(k) be smaller than a sufficiently small constant. Let
G = (V, E) be a d-regular graph that admzts a (k,,€)-clustering {Cy,...,Ci}.
If COMPUTEORDEREDPARTITION (G, [i1, li2, - - - , [bk, S1, S2) 1S invoked wz‘th (i1, ... ,ﬂk) = (1, -y k)

and we assume that all tests Algorithm |§ performs (i.e. <f$,ﬁﬁ> > 0.93 HHM

are exact and
apx

OUTERCONDUCTANCE computes outer-conductance precisely then the following conditions hold.

COMPUTEORDEREDPARTITION returns (TRUE, (T1,...,Ty)) such that (T1,...,Tp) induces a collec-
tion of clusters {C,,...,Cy,} such that there exists a permutation m on k elements such that for all
i€ [k]:

\@ ACq

€
<0 (@ -1og<k>) Coo

and #(C,) <O (;2 -log(k)> ,

70

Proof. Note that for i+ = 0 in the for loop in line [2| of COMPUTEORDEREDPARTITION S and clusters
{C,...,Cy} trivially satisfy assumptions of Lemma So using Lemma |37| and induction we get that
for every i € [0..[log(k)]] at the beginning of the i-th iteration:

o |S| <k/2,

e for every y € S and the corresponding cluster C' we have |V(TtTi-1) 0 | > (1 -T-i- é) |C|
(where T is the constant from the statement of Lemma.

In particular this means that after at most [log(k)] iterations set S becomes empty. This also means that
COMPUTEORDEREDPARTITION returns in line so it returns TRUE and the ordered partial partition

(1, ..

., Tp) is in fact an ordered partition of {u1, ..., g}
Note that by definition (see Definition all the approximate clusters {C),,,...,C,,} are pairwise

disjoint and moreover for every constructed cluster C' € {C,,,,...,C,, } we have:

6(C) <0 <¢2 -bg(k)) ,

as it passed the test in line [6] of COMPUTEORDEREDPARTITION. So by Lemma [I6] it means that there
exists a permutation 7 on k elements such that for all i € [k]:

\@” ACo)

<O (;3 : log(k‘)> |Criyl-

6.4 Finding the cluster means

In the previous subsection we showed that COMPUTEORDEREDPARTITION succeeds if we have access to
real cluster centers (i.e. p;’s). In this section we present a search procedure for finding the centers.

The main idea behind our algorithm is to guess the clustering assignment of few random nodes and use

this assignment to compute the approximate cluster means. More precisely, the first step of our algorithm

is to learn the spectral embedding as described in Section Then we sample s = Q(%2 -k*log(k)) random
nodes and we consider all the possible clustering assignments for them. For each assignment, we implicitly

define the cluster center for a specific cluster as ji; := ﬁ D oac p, fo-
Remark 10. We note that in FINDCENTERS we don’t necessarily find p1, . .., pr exactly but we are able

to show (see Section that it finds a good approzimation to p;’s. Then in Section[6.5 we show that
such approximation is sufficient for the partitioning scheme to work.

Algorithm 10 FINDCENTERS(G, 7, d)

1: INITIALIZEORACLE(G, 0)
2: for t € [1...log(2/n)] do

3:
4
5:
6

T
8:

10:

S := Random sample of vertices of V of size s = @(%2]64 log(k))
for (Py, Py, ..., P;) € PARTITIONS(S) do

for =1 to k do

i = ﬁ Yo p, [z > Note that we compute the centers only implicitly.
(r,C) = 2 4
CoMPUTEORDEREDPARTITION (G, (i1, 2, - - -, fk), © (%k5 log? (k) log(l/n)) ,0 (%kz5 log? (k) log(l/n)))

if r = TRUE then
return C

6.4.1 Quality of cluster means approximation

In the previous Section we showed that the partitioning scheme works if we can find pq, ..., g
exactly. In this section we show that it is possible to estimate the cluster means with a small error

71

factor (i.e u; ~ ;). Later in Section we show that such an approximation to u;’s is enough for the
partitioning scheme to work.

In the rest of this section we show that if PARTITIONS(S) (see Algorithm computes a correct
guess of cluster assignments then the cluster means computed in line @ are close to the real cluster
means with constant probability. Then we repeat the procedure O(log(1/7n)) times to achieve success
probability of at least 1 — 7.

In particular, in Lemma we show using Matrix Bernstein that if we have enough samples in a
cluster ¢ then ||p; — fiill2 < ¢ - ||pill2 - Then we prove that if we sample enough random nodes we have
enough samples in every cluster.

Before proving Lemma we show a tail bound for the spectral projection of a node that will be
useful to apply Matrix Bernstein.

Lemma 38. Let k > 2, ¢ € (0,1) and Z;log(k) be smaller than a sufficiently small constant. Let
G = (V, E) be a d-regular and a (k, ¢, €)-clusterable graph. Let 5> 1 .Let

10
{ Hf || s min;e(g) |Cz| }

—?/20-€
Then we have |T| < k - (g) ’ - (ming e [Cyl)-

Proof. Recall that f, = Uﬁ;]]lz, and u; denote the ¢ column of U Thus we have || f; ||loo = max;e) {ui(x)}.
Let Spin = min;eg |C;|. We define

Smin

Ti:{xEV:|ui(a:)|25- 10}

—p2/20-€
Therefore, by Lemma [4f we have |T;| < (g) - Smin- Note that T = Ule T;. Therefore we have

—p?/20-€
|T| S k - <§> * Smin

Now we are ready to derive a bound on the difference between p; and i;.

Lemma 39. Let (,0 € (0,1), k > 2, ¢ € (0,1), EIZ—%’C be smaller than a positive sufficiently small
constant. Let G = (V,E) be a d-regular graph that admits a (k,,€)-clustering Cq,...,Cy. Let s >

2
(80-¢/p?) o\ 1/(1—(80-€/¢%))
o (kg () () (1))

be the multiset with s vertices sampled uniformly at random from cluster C'. Let u = |—é‘ Y wec fo denote

for large enough constant c¢. Let S = {x1,xa,...,Ts}

the cluster mean, and let i = %25:1 fz denote the empirical cluster mean. Then with probability at
least 1 — § we have

e —rllz < ¢ e

Proof. Let syin := min;epy |Ci|. We define

g (40¢/9%) 1
C’:{xeC:||fw|oo§2-<55k> : /89}

(40-¢/¢%)

we have

Note that by Lemma |38 and by choice of § =2 (%)

g —#/(20) o B\ 2
cve<k-(2) s <k (S5) Ll =052 6)

Thus we have

IC'> (11— (k"-s7%-6%)|C| (170)

72

Let p/ = |Cl,| > wcor fo- By triangle inequality we have

i = pllz < 117 = w2+ 11" = pll2 (171)
In the rest of the proof we will upper bound both of these terms by % el 2-
Step 1: We first prove || — p/||2 < % - ||ge|]2. By the assumption of the lemma for sufficiently small
. 2
clogk we have k(40°¢/¢*) < 2. Thus for any = € C’ we have || fy]|os < (%)(40 AR 160 Therefore by

2 Sm
triangle inequality we have

> fe

zeC’

/) ;
lefxl\oo_(f) oo 160k g

Il = -
zeC”’ min

< Zﬂmb_Ky

/
|C zeC’

By (170) and by union bound over all samples in S with probability at least 1 — s - (k=1 -s72.62) =
1—5*1 kT2 >1-4 for all ; € S we have x; € (', hence, || fz]]o0 < (5)(40 /") I8 Thus with

Smin

probability at least 1 — S, S is chosen uniformly at random from C’ so for all x; € S we have

(0/¢®) (160
3) o (173)

Felloo < (5

In the rest of the proof of step 1 we assume S C C” which holds with probability at least 1 — g. Therefore
conditioned on S C C” we have E[f,,] = i/

Smin

-~ "o - & o
17— p'll2 = Z(S u)
=1 2
We define z; = f: - ?/, so || — p'll2 = || X001, Zill2. Observe that E[z;] = E {f:} - %/ = 0, thus we

can apply Lemma Therefore we get

-
Pl —plly > ql = [IIZZZII2>Q] (k+1)-exp ((721?) (174)

where 02 = max{|| > ;_, E[z;z}]||2, || >, E[z] z;]||]2} and b is an upper bound on ||z;||2 for all random
variables z;. Therefore we need to upperbound ||z;||2 and o2. Note that

% <f foz||oo+* 1412 (175)
2

v

foo W
s s

2 ’ 2 ’

Therefore by (172)), (173]) and (175]) we have

Imb=’

Vk 1 2 /s\(@0e/¢%) 160k
lzills < 2= failloo + 5 - 1l < 5 - (3) Vo (176)
S S S Smin
-€ 2
Thus b < % . (%)(40 /7). % We also need to upper bound o2. By (176) we get
4 5\ (80¢/9*) 160 - k
o —max{||ZEzZ ||2,||Z]Ez zillla} = s E [||z]|2] < (g) . am

We set ¢ = % - ||pt||2. Having upper bound for o2 by (177) and on b by (176)) we can apply Lemma
and we get

=
P@ﬁ—wm>§wmm}sw+n-wp(2)

2 4 bg
J+3

—¢2-[1pl13
g

< (k+1)-exp (178)

640-k- ()‘80 </e)

o.(5)(40-c/0%) :
(B) "7 ¢l - 2B f1e0x

73

By Lemma 7] for small enough 5 we have ||z > ﬁ and since min; ; ‘l ‘I > Q(1). Thus for a small
enough constant ¢’ we have

Smln
Smin - ||,U||2 =5 |C| >, (179)

. e, 6 80-¢ /2 2 10%-klog(k) (1)EO</eT) (1
Thus by (T79) and by choice of s(1 80 c/e*) > %-k-log (%)(%)(/e)(%) > os(8)-(3))

- Smin'Hl"Hg

(80-¢/9p%)
2. 2 640 - k -
% > 400 - log (l;) . () (180)

S - Smll’l

o (80-¢/¢%)

¢ [lull3 LANES 2-(5) 160 - &
> P2 > 400 -1 b > . 181
G2 200 Tog () [5 llulla - =T ———y [(181)

1/(1=(80-¢/¢%))
)) for large enough constant ¢, and

we get

and

Therefore since s > ¢ | k- log (%) . (%)(80'6/9@2) . (

putting (178]), (180) and (181) together we get

~ ’ ¢ —200-log (%) s\
PlllE=pwlly> 5 llullz| < (k+1)-e ey

1
¢

)100

Thus with probability at least 1 — g — (% >1— 96 we have

~ ¢
HM—MM§§¢WM~ (182)

Step 2: Next we want to bound ||u — p'||2. We have

zeC’ zeC 2
C’ Z Jr — o Z fz Z fa By triangle inequality
| | ‘ | 2 zGC\C/ 9
1 . _ _
< (1(k1-82-52) _1> HN||2+ Z fm Since |C/|Z (1_(k 1'5 2'62)) ‘CI by "
mGC\C’)
2 (ks) et || D e (183)

xEC\C”)

It thus remains to upper bound the second term. We now note that

k
Y At T ks Y sk (184)
2

zEC\C” zeC\C’ zeC\C’

For any y > 1 we define

(40-¢/9?)
sk 10
() = {xev Iell 225+ (25 }

Smin
Therefore, by Lemma [38] we have

—¢?/(20-¢)

k) (40-€/¢7))
2. (2E -k
Ty < k- v:{ 62) * Smin = (‘9) .y—saz/(2o.e) * Smin- (185)

74

Using the bound on |T(y)| above, we now get

> fello (186)
zeC\C’
0 Tk (40-¢/¢%) 4
< /1 <y (56) s 0 T (y)| - dy By definition of T'(y) and C’
1 (40-¢/@®) [-logk
< 56~0 . (5> v / y- |T(y)| - dy Since k(49€/¢*) < 2 for small enough £ @OQg
min 1
(40-€/%) [/o k\ 2 2
< 160 (g) @ / <85k> 'y(p@ /(206)) - Smin - dy By (135)
Smin 1
160 s\ (40¢/®) (s k77 1 > -1
< * Smin * | ¢ | — Since f <0, Cdy =
SV S (5> (5) 22720 -6 = 2 ince for any ¢ /1 Yy ay ct1
<k2.5' \/Smin For small enough % (187)
¥
Therefore we get
Vk
zeC\C’ zEC\C"
\/E k257 v/ Smin
< o By (187)
2-k7tesTh /S
< ~ By (170)
Vil VICl
kfl. -1
< bos Since |C| > Smin
VIC|
1
<2k t.st. By Lemma |7 > —
< Il s emmafills > 5
Therefore by (183) we have
/ -1, -2 2 -1, -2 52 -1 -1 ¢
I = plla <2- (k71572 6%)|ull2 + | E:jg <2k s 0% kT 5T [lplle < 3 Ml
xeC\C’

(188)
2
The last inequality holds since s > 8 - (%) , hence, 2 (k;_l 287282 4 kL. s_l) < % Putting (171])),
(1182)) and (|188]) together with probability at least 1 — § we get
N N ¢ ¢
18 = pllz < {18 =l + 116" = pllz < 5 - llallz + 5 - el < € lullz
O

To conclude our argument we show that if we sample enough nodes, we have a large number of
samples in each cluster.

Lemma 40. Let k > 2, ¢ € (0,1), elogk be smaller than a positive sufficiently small constant. Let
G = (V,E) be a d-regular graph that admzts a (k,p,€)-clustering Cy,...,Cy. Let S be the multiset of
s € Q(klogk) vertices each sampled independently at random from V. Then with probability at least %,
for every i € [K],
09-s min 1Cp|

k p,q€[k] |C ‘
Proof. Fori € [k], and 1 <r < s, let X! be a random variable which is 1 if the r-th sampled vertex is in

C;, and 0 otherwise. Thus E[X]] = ‘%l Observe that [SNC;| is a random variable defined as > »_, X
where its expectation is given by

1SN Cy| >

E[|SNCy|] = E:EXTf

7

Notice that random variables X are independent, Therefore, by Chernoft bound,

|Cz| 1 S * Smin
— < _ . .
Pr{|SﬁC|<1O - xXP =505 s —

By union bound and since s =500 - & - logk - ‘Zi“n—‘:‘ we have

9 C 1 * Omin
Pr{Elz 1SN Gy < 13 |n1q§k~exp(—200-;j)

IN

L
10°
Therefore with probability at least -5 for all i € [k] we have

ISNC;| >

9-s |Ci] _ 09-5 Smin
A b BN . Smin
10

N k Smax

6.4.2 Approximate Centers are strongly orthogonal

The main result of this section is Lemma that generalizes Lemma to the approximate of cluster
means.

Lemma 41. Let k > 2 be an integer, ¢ € (0,1), and € € (0,1). Let G = (V, E) be a d-regular graph that

admits a (k,p,€)-clustering C1,...,Ck. Let 0 < ¢ < 20{ Let pq,. .., ug denote the cluster means of

Ci,...,Cy. Let iy, ..., M, € R¥ denote an approzimation of the cluster means such that for each i € [k],
|ies — Tisll2 < Cl|pill2- Let S C {fi1, ..., Hx} denote a subset of cluster means. Let I1 € R¥*F denote the
orthogonal projection matrix into the span(S)*. Then the following holds:

1. For allfir € {fi, .. i} \ S we have [|T7l13 — 1 113] < 22 - 13

2. For all fi; # 1i; € {i1,...,fik} \ S we h T, Ta;)| < 2%e. 1
or all ji; # ji; € {jin, -, i} \ § we have [(I1fi, 1ljij)| < 257 - —meey

To prove Lemma [41] we use Lemma [30] from Section [4] and we prove Lemma

Lemma 42. Let k > 2 be an integer, v € (0,1), and € G (0,1). Let G = (V, E) be a d-regular graph that

admits a (k, ¢, €)-clustering Cy, ..., Cy. Let0 < ¢ < 55— Let i1, ... iy € R¥ denote an approzimation
of the cluster means such that for each i € [k], || — fall2 < Cl|lpill2- Let S = {1, ..., e} \ {f:}. Let
H = [fi1,fi2, -« [hi—1, fit1, - - - s g] denote a matriz such that its columns are the vectors in S. Let

W e RE=DX(k=1) genote q diagonal matriz such that for all j < i we have W(j,j) = /|C}| and for all
7 > 1 we have W (4,7) = VICjs1l. Let 7 = HW. Then we have

rear- 10y
i 2270 < |1l 13-
¥
Proof. Note that ZZ7 = (Y5, |Cy1fi;AT) — |CylfiAT . Thus we have
il 27 = nf | Do ICsIa]T | s — |Gl - (1l (189)
By Lemma [J] for any vector 2 with ||z||> = 1 we have
4\f

k
S] —I | =< (190)

76

Note that

k k
1> 1CH R = 1Csluin] 12
j=1 j=1

Mw‘

< 1C;l - ||ﬁg/7f - Mjﬂ?||2 By triangle inequality

<.
Il
i

M=

1 (I s+ g = 1)) (s + (5 = 1)) = e 112)

<.
I
—

M=

~ ~ T -~ T ~ . . .
1G5l (H (g = m) (15 = 1) N2+ Mg Gy = 1g)™ M2 + 11 (i = uj)ujTHz) By triangle inequality

.
Il
A

M=

|51+ (6% +20) - 15113 Since |15 — pjll2 < Cllp]l2

<.
Il
-

1 2
Ci|-6-C-— By Lemma [7] ||| <
|]l |C]| EH J|2 |Cz|

IN
1

IA
o

ok

IN
1%

. Ve
< —Y
Smce(_QO.k.@

Thus for any vector x with ||z||2 = 1 we have

(191)

<%

k k
S A e T T
j=1 j=1

Putting (191)) and (190) for any vector any vector with ||z||2 = 1 we have that

k

o 5/€

T D IC A, — 1) @ < =
i=1 v

Hence we can write
k k
e o)~ PSR T~ 5vEN |~
i\ Do lcilang | me=al | doIclaaT — 1| i+ Al s < (1 + (p) 172113
j=1 j=1
Therefore by (189) we get

k
T ESOT~ o~ P N N 5+/€ - ~
72770 =i [S Ios AT m—|ci|-||m||3s(1+w —ci|~||ui|§)||ui||§
j=1

By Lemma and since ||;]] > (1 = Q)||wi]|2 and ¢ < 20\~/kip we have that

IR (1 _ ‘“) 1_op>1_ Ve
¥)

Thus we get

S, 5y/e R R 5y/e NN 10y
i 2277 < (14 25 - o Il) 1B < (14 25 - 14 20 g < 0

We now prove the main result of this section (Lemma .

7

Lemma 41. Let k > 2 be an integer, ¢ € (0,1), and € € (0,1). Let G = (V, E) be a d-regular graph that

admits a (k, @, €)-clustering Cy,...,Cl. Let 0 < { < 20{({} Let uq,. .., ux denote the cluster means of

Ci,...,Cx. Let iy, ..., [r € R* denote an approximation of the cluster means such that for each i € [k,
|15 — Tisll2 < C||pill2. Let S C {fi1, ..., M} denote a subset of cluster means. Let I1 € R**F denote the
orthogonal projection matriz into the span(S)*. Then the following holds:

1. For all fi; € {fi1, ..., fix} \ S we have [|TT:|3 — [|:|13] < 225 - [|d] 3.

~ s ~ S e 50Ve 1
2. For all fi; # [ij € {fi1, -, e} \ S we have [(I1fz;, I17i;)| < = TR

Proof. Proof of item (I): Since Il is a orthogonal projection matrix we have ||II||; = 1. Hence, we

have Ve
20+/€ N
)l
®

izl 2 < 1 < (1+

Thus it’s left to prove ||ﬁﬁl||§ > (1 - %j/g) ||72:]12. Note that by Pythagoras [|TIfi;||2 = ||7:]12 — [|(I —

I0)7i;||2. We will prove ||(I — I)7i;||2 < 20f||ﬁi|\§ which implies
~ \ﬁ N
1875 > (1- 20

Thus in order to complete the proof we need to show ||(I — D2 <

LNl 3. Let 87 =
{fir, ... fie} \ {fis}. Let II' denote the orthogonal projection matrix into span(S’)*. Note that S C S,
hence span(S) is a subspace of span(S’), therefore we have ||(I — II)z;||3 < ||[(I — II')f;||3. Thus it

suffices to prove ||(I — IT')fi;||2 < 20‘/€|\ﬁ2||§ Let H = [fiy, fiz, -, Fi—1, Hit1, - - -, ix] denote a matrix
such that its columns are the vectors in S’. Let W e RG=1)x (k= 1) denote a diagonal matrix such that
for all j < i we have W(j J) =+/|C;| and for all j > i we have W (4,7) \/|C’]+1 Let Z = HW. Then
the orthogonal projection matrix onto the span of S’ is defined as (I —II') = Z(ZTZ)~*Z". By Lemma
item (2)), (Z7Z)~! is spectrally close to I, hence, (Z7Z)~! exists. Therefore we have
(T = T)lls = 57 2(Z272) " 27 s
—ATZ(272) - 2T + AT 227, (192)

By Lemma (30| item we have

W2 (@2 - 1) 27 < 227 (193)
Thus we get
I =Tall3 <Al 2027 2) ™ = DZ" i + 1] 227 T By
< <5f+1) 127513 By (193)
<2127 |2 For small enough é

By Lemma [A2] we have

e 10yE
NZ" T3 = i 2271 < " 1|3

Therefore we get

~ o P 20/€
107 = ID7l3 < (7 = Tl < 20127 3 < " [17all3 (194)

_ Ve
T3 > (1—20 7l

78

Hence,

Proof of item : Note that

~ ~

(s g) = (I = i + Mg, (I = Wi + W) = (I = Wi, (I = T)gaz) + (T, i)
Thus by triangle inequality we have
| (g, g)| < [Gy 1) | + [((1 = Tz, (I = 1))
By Cauchy-Schwarz we have

(T = T, (I = ;)| < |11 = T]| (1 — T |2

20/€ ., . N
< S;fnuingnujnz By (199)
NG 1
< 10ve, By Lemma [Jand || — uslz < ¢llil:
PR realTen

Also for any 4, j € [k] we have

<ﬁz’,ﬁj> - <Muﬂj>|
= (s + (s — pa)s g + (5 — pg)) — (i 13|

< | (i = iy g — pug) [+ 1 — s pg) |+ g — g, 1) | By triangle inequality

< s = pallallig = wlle + 118 = pall2lligll2 + 1175 — pyllaflpall2 - By Cauchy-Schwarz

< (¢ +20) (lmallal s 12) Since [|fi; — pill2 < ¢l[pil|2 for all i
1 2
<6-(———— By Lemma [7] ||ui]|3 < — for all i
Nieien Bl < 1
(195)
Note that
| s 1) | <V i) | 1 s 1) — By 1) | By triangle inequality
8/ 1 1
A [—— By Lemma[7] and (195)
4 G4l Gy vileni(e
10 1
< \/Ei Since ¢ < i
¢ VIGHCl 20-k-¢
Therefore we get
PPN L o o 50yE 1
|(Mi, Tz)| < [(Eaa,)| + (2 —)i, (1 — M)zag)] < : :
¢ VIGG]

O

79

6.5 Partitioning scheme works with approrimate cluster means & dot prod-
ucts

In Section we showed that the partitioning scheme works if we have access to real centers (i.e.
W1, -, k), to exact dot product evaluations (i.e (-,-)) and OUTERCONDUCTANCE is precise.

In this section we show that approximations to all above is enough for the partitioning scheme to
work. More precisely we show that if we have access only to (-,-) = (-,-), the search procedure finds
[1;’s that are only approximately equal to u;’s and OUTERCONDUCTANCE is only approximately correct
then FINDCENTERS still succeeds with high probability.

In order to prove such a statement we first show a technical Lemma (Lemma m that relates the
approximate dot product with approximate centers to the dot product with the actual cluster centers.

Note that the following Lemma 43| works for any S C {u1,...,ur} and the corresponding S. This
is useful for application in Lemma [45| because it allows to reason about candidate sets o' 1o Ih)fs
| T; with S.

after we associate Uie[b

Lemma 43. Let k > 2, ¢ € (0, 1) > be smaller than a sufficiently small constant. Let G = (V, E) be
a d-regular graph that admits a (k, <p,)—clustemng Cq,...,Cx. Then conditioned on the success of the
spectral dot product oracle the following conditions hold.

Let [iy, Jia, - - ., fx be such that for all i € [k] || — il < 10712 T lmill®>. Leti € [k] and S C
{ps -\ {pi} and S C {fn, -, fu} \{fi} be the corresponding subset to S. Let I1 be the orthogonal
projection onto span(S)* and II be the orthogonal projection onto span(S)~. Let also m; : R¥ — RF be

the projection onto the subspace spanned by Iy and 1fi;. Then if ITL; £ || < < 10" ihen:

— minge[g [Cpl

(fo, Hps) <fw’ﬁﬁi>apz

<0.02
HHMHQ

apx

po~ . fz7ﬁ/\i . =~ (@)
Furthermore if [i; s are averages of s points, then <”fmuzm can be computed in O, (34 . (%) W, n1/2+0(e/*"2)>
apx

time with preprocessing time of 6¢ ((%)O(l) ~n1/2+0(6/¢2)> and space 6¢ ((%)0(1) -n1/2+0(6/s02))

Proof. First we prove the runtime guarantee and then we show correctness.

Runtime. We first bound the running time. If we set the precision parameter of Algorithm [6] to
& = 1079 . % then by Theorem [2[the preprocessing time takes O (()O(l) n1/2+0(6/w2)) time,

O, ((%)O(l) -pl/2H0(e/¢)) space, and by Corollarycomputing (e MI0),,, takes O ((%)O(l) 'n1/2+0(5/“"2))

7.,

time.

Correctness. Now we show that we also obtain a good approximation. We will show it in two steps:

1. ’%HW V=Tl < 0.01

[T T IE

o i
’(fI,H,ui) <f i >am <0.01

[

If we are able to prove [[] and 2] then the claim of the Lemma follows from triangle inequality.
Before we present the two proofs we show a useful fact:

|0 = g | < J[T0EG — faa]| + ||H/~Lz‘ = pal| + (1A — pal] By triangle inequality
2061 /4 1/4 €
< N |l + \/@ ——||pal| +107C- \[kHHiH By Lemma [T} [T2 and the bound on ||fz; — |
40et/4 ~ 2 —12 € 2
<7 I As ([t — pa|* <1077 (pg_kglluiH

(196)

80

Proof of [I} Notice that
(for Tps) (o) | _

| Hpi 17
TR E

Ml) TI7z]2
- M7, "
= ifs - —=_ By definition of m;
’< HHMAP 117232
Iy 17

By Cauchy-Schwarz (197)

S Hzfm =
” ”’HHMAP L

First we will upper bound HHTIIT#% — Hfl?u% . We split it into two cases:
Case 1. If HH# ||2 > m then we have:
Hpi I Hp; 17
- —= < - —= By Lemma
‘IHMiP [k |U<—”ZQNWA2 [k
g, 17, H .
< - Lemma (7], assumptions
(1= 255 [l (14 225 (1410712) a2
2 1600v/€\ =~
< M — (1 1z,
—|uiP‘ " (v > "
2 1600 1600 ~ . . .
< \ﬁH il + 11— Ve [|TT72; — M| By triangle inequality
[l |2 @ @
12800/ 1
S Tl By (196)) and Lemma [12]
K3
Case 2. If 1« & 100 we have:
HHI‘ [IENNTIATE '
Hpi i Hpi I
- —= < - —=— By Lemma
‘ Ll | 107 |2 ‘ (14 28 a2 11072
H,U/i ﬁ//j\/z .
< - Lemma assumptions
‘U-+“ZQNWA2 (1- 251 -107" %) |‘
2 1600/€ \ ~ .
< 3 ‘H,ui - (1 + f) e
il o
2 1600 1600 ~
< ﬁH Al + {1+ Ve [|TT7z; — M| By triangle inequality
[|2 @ @
128004/¢ 1
< — T By (196)) and Lemma [12]
P i
Combining the two cases we get:
Iy s 12800,/ 1
Tl)07 |2 vl

Substituting into (197) we get:

Ty, Ring 12800/ 1
|| /ffz” ||H,uz|| ||Mz||

1 12 1

< - 00 . 800y By assumption of the Lemma

/ming,e i [Cyl 2 Iz
1 € maXpe k] |Cy

< 0.005 As — is sufficiently small and ——————
V/ MaXpe (k] |Cp] - []1il| ¥ min,e k) |Cyl

<0.01 By Lemmal[7]

81

= 0(1)

Proof of 2

2
HHM
ap

> || - 1070
20 N _
z(f) I — 0.01 07!

z(10—12 k) 0.99 - ||u]|* —0.01-n~"

Ve
¥

By [[f; —

il P < 10712

By Corollary [1} setting of £ and assumptions

By Lemma [1] and % small
¥

||,u1|| and — small
©?

4
(1 - \[) 20.98-n7 1 —0.01-n7" By Lemmal7] |C;| < n, % small
¥
>0.5-n" As % small (198)
¥
Next notice that:
o M7, ~ I -6, Ve -1
<fA>A /1'2> o — . apx <f/\7,\ M2> - 5 — ¥» 5 By Corollary
v Hmi v Hnﬂi Hﬂﬁl
~ 1 1 1076 . n~t €
< <fz7HMi> = 5 0E n By (198) and —; small
, ~ B5en
||H/’LZH HH'IM ¥
~ 1 1 _5
< (o Tifts)| | = = — +10 (199)
([Tz | ‘ m
Now we will separately bound ‘<fx,ﬁﬁz> and ”ﬁg . ||ﬁA1\|2 from - As | {a,b)| < ||a]] - ||0]]
¢ Hi apx
we get:
(o T2 | < MLl - 1| (200)

Now we bound the second term from (199)):

~ 2 ~
[z il

apx

1 1
[T

3 — 2
|| 117 |2 HHM

apx

apx

106 . € . -1
< £ 5
F372l 2 | 17
<10_5'£. _ 0.5-n"!
o ||fa2-05-n1
<105 Ve, _ 1 S
e M - (g || = ==l)
Ve
B o | [IE| - {] gl

Substituting (200]) and (- in - we get:

82

Corollary [1} setting of £ and assumptions

By (198)

By (196)

By Lemma [12] and % small
14

(201)

(fo) (fooll)
Al —
[ar |z

[
=
=

g10*5+10*4.£~7

2
apx

100 1 .
. By assumption

Vmingep [Cpl |14l
1

As % small,

vmaxpe i) [Cpl - ||| @

<0.01 By Lemmal[7]

<1075 +107%.

s |5

S 1075 + 1073 maxpe[k] ‘Cp| —

minpe[k] ‘Cp| o

O

Now we are ready to show that there exist an algorithm (Algorithm that can estimate accurately

the size of candidate clusters of the form C 1) and then, if the size is not too small, estimate outer-

conductance of all candidate clusters. The proof of correctness of the algorithm is based on applications
of standard concentration bounds.

Algorithm 11 OUTERCONDUCTANCE(G, i, (T1, T3, ..., T}), S, 1, 82)
> T;’s are sets of [1; where [i;’s are given as sets of points
> see Section for the reason of such representation
> s1 is # sampled points for size estimation
> S is # sampled points for outer-conductance estimation

1: cnt :=0

2: for t =1 to s; do

3: x ~ UNIFORM{1..n} > Sample a random vertex and test if it belongs to the cluster
4: if ISINSIDE(z, i, (Th, T3, ..., Tp),S) then

5: cnt :=cnt 4+ 1

6: if - -cnt < mingepy [Cpl/2 then

7 return oo > If the estimated size is too small return oo
8: e:=0,a:=0

9: for t =1 to s do
10: x ~ UNIFORM{1..n}
11: y~ UNIFORM{w € N (u)} > N (u) = neighbors of u in G
12: if ISINSIDE(z, i, (Th, T3, ..., Tp),S) then
13: a:=a+1
14: if —ISINSIDE(y, i, (T1, T, ..., Tp),S) then
15: e=e+1
16: return £

Lemma 44. Let k > 2, ¢,e,v € (0,1). Let G = (V,E) be a d-regular graph that admits a (k,p,€)-
clustering C1, ..., Ck.

For a set of approxzimate centers {fi1,..., ik}, where each [; is represented as an average of at
most s embedded vertices (i.e f,’s), an ordered partial partition (T1,...,Ty) of {fi1,..., ik} and pi €
{1, st} \Ujep Ti the following conditions hold.

If Algorithm is invoked with (G, i, (Th,...,Ty), {fi1,- -l } \ Uje[b] T, s1,82) then it runs in

6¢, ((51 + 59) - 5% (%)O(l) on1/2+0(5/"92)> time and if s1 = @(klog(%)) and sy = @(glog(%)) then
with probability 1 — n it returns a value q with the following properties.

o [f |C\l%T1,...,Tb)| > %minpe[k] |Cp| then q € |:%¢ (ai(;Tl,-n,Tb)> _ 6/@27% (C\i(ITl,...,Tb)) + 6/302i|)
o If|aéTl’m’Tb)| < %minpe[k] |Cp| then q > %Qﬁ (aléTl,u.,Tb)> _ 6/@2.

Proof. We start with the runtime analysis then follows the correctness analysis.

83

Runtime. Algorithm [T has two phases: one from line 1 to line 7 and second from line 8 to line 16.
During the first phase Algorithm |11| calls Algorithm |§| 51 times and Algorithm |§| runs in O (st

(%)O(l) -n1/2+o(6/“’2)) time as it computes kM values of the form M which are computed in

2112 pe

time 54/,(54 . (%)O(l) - n1/2+0(¢/¢*)) by Lemma o0 in total the runtime of this phase is ap(sl st
(g)om - pl/2+0(/97)).

During the second phase Algorithm calls Algorithm [J] 2s, times so the runtime of this phase is
Oy(sg - s*- (5)0(1) - nl/2+0(/*) in total.

So in total the runtime is ap((sl +59) - 5% (%)O(l) . n1/2+0(5/"92)).

Correctness. For simplicity we denote é/ng """ o) by C and min,epg) [Cp| by Tmin in this proof. Notice
that the Algorithm [11|in the first phase computes cnt = Zle X;, where X;’s are independent Bernoulli
trials with success probability p = % Let z := % Zf;l X;. We introduce notation = =5, y to denote

€ [(1 -9y —a,(1+0d)y+ a]. By Chernoff-Hoeffding bounds we get that there exists a universal
constant I" such that for all 0 < 6 <1/2,a >0

2 A§.am |a| with probability 1 — 2775129,

Setting § = 1/2,a = "2i» we get that z =9, /8 |C| with probability
1 _ 2—1—‘31%’572‘ Z 1 _ 2—9(81/]6')7

as 2wem €] _ (1) So if s; = O(klog(1/n)) then with probability 1 — 1/2 we have

mingepr) [Cpl
2 %1/, rin /s |C. (202)

Observe that if C' < ryin/4 then by (202) we have that z < (1 + 1/2)|C| 4 rmin/8 < Tmin/2, Which
means that Algorithm [I1] returns co. Note that it is consistent with the conclusion of the Lemma.

For the analysis of the second stage we assume that |C | > Tmin/4. We will analyze what value is
returned in the second stage. First we will bound the probability that a < 22Zmi». For i € [1...s5] let
X; be a binary random variable which is equal 1 iff in ¢ — th iteration of the for loop we increase the
a counter. We have that, for every i, P[X; = 1] = |C|/n and the X;’s are independent. Notice that
a =372, X;. From Chernoff bound we have that for § < 1:

iXi —-E li Xi] iX;H < 96— SE[T2, Xqv]’ (203)
i=1 i1 i1

Noticing that E[>°72, X;] = 52| Cl if we set 6 = 1/2 we get that

>4-E

N €]

=1

52 "min

< 2esrimm < 9o~ (204)

c
P 5, 1C1

2 "min

So with probability at least 1 — 2™ 5™ > 1 — 2e~s2/k) (ag maxpe Ol O(1)) we have that

minpepi) [Cpl

1 6’ 89 * Tmin
a= ZX >3 L > ﬁ > Q(sy/k). (205)

Now observe that line of OUTERCONDUCTANCE is invoked exactly a times. Let Y be the indicator
random variable that is 1 iff e is increased in the j-th call of line Notice that

PlY; = 1] = ¢(C) (206)

That is because if U; is a random variable denoting a vertex u sampled in i-th step then U; is uniform
on set C' conditioned on X; = 1 and the graph is regular. Now by the Chernoff-Hoeffging bounds we get
that for all 0 < 6 <1/2,a > 0 we have:

- Z Y =54 a with probability 1 — 2e~19%9,

84

Setting 6 = 1/2,a = ﬁ we get that %Z?:l Yi R1/2,¢/p2 (;5(6) with probability:

1_ 267Fa6/(4<p2) >1-— 26*9(“/@2) (207)

Now taking the union bound over (205) and (207) we get that if we set sy = @(#log(l/n)) then
LS Vi~)9.6/02 ¢(C) with probability:

)

1 — 2e=s2/k) _ 9o=Rac/e?) 5 1 _ 9e=Rs2/k) _ 9=k By (205)
>1-1n/2

To conclude the proof we observe the following.
o If |6| < *=in then with probability 1 —7/2 the Algorithm returns oo,

o If|C| € [fmin 3Tmin) then either the Algorithm returns oo in the first stage or it reaches the second

~

stage and with probability 1 — 7 it returns a value 1) such that 1 x5 /42> ©(C),

o If \6’ | > 7=i= then by the union bound over the two stages with probability 1 — n it reaches the
second stage and returns a value 1 such that 1) = /5 ¢ /2 (;5(6)

The above covers all the cases and is consistent with the conclusions of the Lemma.
O

Before we give the statement of the next Lemma we introduce some definitions. In Lemma [44] we
proved that for every call to OUTERCONDUCTANCE the value returned by the Algorithm is, in a
sense given by the conclusions of Lemma a good approximation to outer-conductance of aéTl’”"Tb)
(where @, (T, ..., Tp) are the parameters of the call) with high probability. What follows is a definition
of an event that the values returned by OUTERCONDUCTANCE throughout the run of the final algorithm
always satisfy one conclusion of Lemma Later we use Definition [13| in Lemma [45] and then in the

proof of Theorem |8 we will lower bound the probability of E.onductance-

Definition 13 (Event Econductance): Let k> 2, v 6,7 € (0,1). Let G = (V, E) be a d-regular graph
that admits a (k, ¢, €)-clustering Cy, ..., C.

We define Econductance as an event:

For every call to Algorithm (i.e. OUTERCONDUCTANCE) that is made throughout the run of
FINDCENTERS the following is true. If Algorithm [11]is invoked with (G, &, (Th, ..., Tp), {f1,-- -, ik} \
U e Tir 515 $9) then it returns a value ¢ with the following property.

o If |ai(zT1’m’Tb)| > %minpe[k] |Cp| then g€ |:%¢ (6}%T1,...7Tb)) _ 6/(,02,% (Ai(iTl)M7Tb)> + 6/@2:| .

The following Lemma is the key part of the corresponding proof of correctness of Algorithm 8| (see
Theorem [8 below). It is a generalization of Lemma We show that if i1’s are close to real centers and
& and Econductance hold then at every stage of the for loop from line [d] of Algorithm [§] at least half of the
candidate clusters:

nes
pass the test from line [6] of Algorithm 8] which means that they have small outer-conductance and satisfy

condition .
Lemma 45. Let k > 2, ¢ € (0,1), é be smaller than a sufficiently small constant. Let G = (V,E) be
a d-regular graph that admits a (k,p,€)-clustering Cy,...,Cy. Then conditioned on the success of the
spectral dot product oracle there exists an absolute constant Y such that the following conditions hold.
If COMPUTEORDEREDPARTITION (G, [i1, li2, - . ., ik, S1,S2) is called with (i1, ..., 1) such that for
every i € [k] we have ||f; — pi]|* < 10712 . ﬁ“ﬂi\\z then the following holds. Assume that at the
beginning of the i-th iteration of the for loop from line|j| of Algorithm @ |S| = b and, up to renaming of
s, S ={f,..., [}, the corresponding clusters are C = {C1, ..., Cy} respectively and the ordered partial
partition of p’s is equal to (Ty,...,Ti_1). Then if for every C € C we have that |V (TvTim1) 0 C| >

(1 -1 ﬁ) |C| then at the beginning of (i + 1)-th iteration:

85

1. |S| < b/2 (that is at least half of the remaining cluster means were removed in i-th iteration),

2. for every u € S the corresponding cluster C satisfies |V (TrT) 0 C| > (1 T -(i+1) %) |C,

where (T, ...,T;) is the ordered partial partition of p’s created in the first i iterations.

Proof. Outline of the proof. We start but defining a subset of vertices called outliers and then we show
that the number of them is small. Next we prove that for vertices that are not outliers the evaluations
(fo.T70
of ———
T,
high level the logic, of the proof of Lemma[37} we first show the first conclusion of the Lemma and then
the second one.
For simplicity we will denote minye(x) |Cp| by 7min in this proof. Without loss of generality we can
assume S = {fi1,..., fip} at the beginning of the i-th iteration of the for loop from line [4| of Algorithm I
and the corresponding clusters be C4, ...,y respectively. Assume that for every C € C we have that

V(T ~>m0|>(1—rz)\C\

Let II be the projection onto the span(|J
For every j < i let

Z “pr are approximately correct (as in Lemma [43). Next we mimic the structure, and on the

i< T;)*. Recall that each T} is a subset of {fi1,..., ik}

= J{u
RET;
That is T”s are T;’s with [’s replaced by the corresponding p’s. Now let II be the projection onto the
Span(UJQ)+

Outliers. First we define a set of outliers, i.e. X, as the set of points with abnormally long projection
onto the subspace spanned by {Tu1, ..., Oup, iy, ..., }. Then we show that the number of outliers
is small. R R

Let @ be the orthogonal projection onto the span({Iu1, ..., My, g, ..., Iiy}) and let:

xofoevijonr> 2

min

By Lemma, [33] we get that

€
D Qfr — Quall® §O<b~2). (208)
zeV ¥
Moreover for every x € X:
1Qfe — Quall 2 ||Qfell — [|Qpual| By triangle inequality
> 1Qfz|| — ||| As projection can only decrease the norm
10? 1
> - (1 +0 <ﬁ>) By Lemma [7] and Definition of X
T'min "2} T'min
90
> N For % small enough (209)
Combining (208]) and (209) we get:
€ € n
X|<o(b-5) rmm<o(b-S). 0 210
|_<<p2)r <¢2>k (310)

Tests performed for non-outliers are approximately correct. Observe that by the fact that
spectral dot product succeeds we have by Lemma [43] that for all € V' \ X and for all i € [k]:

(fo i) <fxﬁﬁ> <002, (211)

e e
el ™ i,

apx

as ||Qf:]* < < 10° and the norm in any subspace can only be smaller and thus the assumption of

— Tmin

Lemma [43] is satisfied.

86

1. At least half of the cluster means is removed from S. Now we proceed with proving that
most of the candidate clusters 0 "7"~) have small outer-conductance and thus the corresponding
[’s are removed from set S (see line [f] of COMPUTEORDEREDPARTITION). For brevity we will refer to
(Th,...,Ti—1) as P in this proof.
Let p € S. Let
I:= U Crpr,0.0 N Crpr 0.9
B €{pa,.spat
By Lemma [36] we have that

€ n
<)2
11<0 (b (p2> : (212)

So by (210) and (212) and Markov inequality we get that there exists a subset of clusters R C C such
that |R| > b/2 and for every C' € R we have that:

|Cﬂ(IUX)|§O(;2>~Z (213)

We will argue that for any order of the for loop from line @ of Algorithm [§] it is true that for every
C € R with corresponding means pu, i the candidate cluster CA satisfies the if statement from line |§| of
Algorithm 8] Recall that as per Definition

CFP = {2 €V : ISINSIDE x, iy P, ooy ik} \ U T; | = TRUE
jeli-1]
First note that behavior of the algorlthm is independent of the order of the for loop from line []
of Algorithm [§| as by definition C’ s for i € S are pairwise disjoint. Now let C € R, u,u be the

means corresponding to C' and C’ﬁ be the candidate cluster corresponding to @ with respect to P =
(Th,...,Ti1).
Now the goal is to show:

~ €
icEnci<o (@2 ~log(k)> -lcy,

from which we will later conclude that the outer-conductance of the candidate set 65 is small. Intuitively
we would like to argue that

Crp.,0.96 CHPTO 03 = CH,U. 0.95 (214)

and then use Lemmas from Section , The equation (214) is true up to the outliers as Lemma
guarantees a bound of 0.02 for the test computations for vertices of small norm.
Now we give a formal proof, which is split into 2 parts:

Showing |6§HC| > (1 -0 (é . log(k‘g> |C|. First we note that by (211]) Cry,0.96 is mostly contained

in C2 Recall that (see Definition |9 and Definition [8) we have:
. 12
Clizo.os = {I €V <f“’H“>m = p}

1,0.93°
CHM70,96 = {x eV.: <fI,H/,L> > 096||HMH2} .
And (211]) gives us that the errors for non-outliers are bounded by 0.02, so formally we get:

Cr1p1,0.96 \ O 003 X (215)
Similarly, also by . we get that the intersections of candidate clusters COI:,O.Q?, lie mostly in I.
Formally:
O 0s N U i g STUX (216)
g
By Lemma [31] we get that
€

101 Cio90] 2 <1 e (@2)) e (217)

87

Note that having two thresholds (O 9 and 0. 96) is very important here (see Remark @ Intuitively we

need some slack to show Chy,0.96 C C’ C Chip0.9 as there is always some error in computation of

093_

117,

Now combining inductive assumption |V N C| > (1 -T-i- %) IC|, [13), (215)), (216) and (217)

we get that:
AP cors (1. N o).
|Cu nC| > (X e >|C| (<p2 . 0] 22 |C|
€

Showing |6§D nvr\C) <o (%) |C|. Recall that as per Deﬁnitionwe have:

©
= V\ U U al%Tlv"*vTj—l)

J<ifET;
By Lemma [32 we get that:
|onuogm<vp\o>|<|cnuogm<V\c>|<0(¢)|0| (219)
By (@TI) we get:
Cere o\ Crinos € X (220)

Let 7/ be the projection onto the span of {I, IIji}. Moreover let:

10%
X' = {xEV: |7’ fall® > — }

min

Note that by Lemma 3] we have:

S lin's — 'l < 0 (%) (221)

zeV

Moreover for every x € X’ we have:

1 o= aal| = (1 full = 17| By 4 inequality
102 2
> - By Lemmal[7]
Tmin Tmin
90
> 222
- Tmin ()
Combining (221]) and (222) we get that:
, € € n

Then similarly to the analysis of (211]) by Lemma |43|and the fact that spectral dot product succeeds we
have that for every x € V' \ X"

<fil?7H/‘l’> _ <fz7HM>apz < O 02
2 ~ 2 —
LT

apx
Thus we get:

Cerr o\ Citnos © X', (224)

88

as for points not belonging to X ! the error in the tests performed by the Algorithm is upper bounded
by 0.02. Combining (219)) and (we have:

cEnoronso(5)el (225)
And finally putting (218)) and (225) together we have:

ICEACI <0 <;2 -log(k)) 0] (226)

Outer-conductance of CL is small. Now we want to argue that C'A passes the outer-conductance
test from line [6] in Algorithm [§] From the definition of outer- conductance:

E(C,V\C)+dCEAC]

#C) = - orsc)
B(C,V\C)+d-0 (& -log(k)) C]
4(1C1 - 0 (& - 1og(h)) [€1) o
0 () +0 (& loglh) E(C,V\C) ¢
=T o (7 1og(k)) becanse e =© (902>
<0 ((;2 . log(k)> for sufficiently small é -log(k)

and it follows that

$(CH)Y <0 (gog .10g<k)> :

To conclude we notice that by (226|) we have |55 | > 3"?%‘“, S0 as Econductance 18 true we get that the

candidate cluster 5’5 passes the test.

2. Clusters corresponding to unremoved [i’s satisfy condition |Z|. Now we prove that for every
1 that was not removed from set S only small fraction of its corresponding cluster is removed.
Let zi € S be such that it is not removed in the i-th step and let u be the corresponding real center.

Let C € C be the cluster corresponding to p. By assumption [VENC| > (1 -T-i-) |C|, where recall
that P = (Th N ,Tifl).
Now the goal is to show:

N (VT T\ y(TieT)y| < 0 ((p) IC|+0 <<p2>) % <0 (;) 1l

that is, that there is only a small number of vertices that were removed in the i-th stage and belong to C
at the same time. Intuitively we want to show that:

(VT T\ @61y 0 O, .96 & 0,

and then use Lemmas from Section [6.2 The equation above is true up to the outliers as Lemma [{J
guarantees a bound of 0.02 for the test computations for vertices of small norm.

Now we give a formal proof Let ¢ € V(T Tic) \ (T T) — P (T 1) where (T, ..., T;)
is the partial partition of i /y s created in the first ¢ steps of the for loop of COMPUTEORDEREDPARTI—
TION. Then there exists p/ € {fi1,..., s} such that = € CA, (recall that CL is the candidate cluster

corresponding to i’ with respect to P = (T1,...,T;-1)). Recall (Definition) that C ~, is defined as:
552 x €V :ISINSIDE | , 1, P, {fi1, .-, fix} \ U | = TrUE
j€li—1]

89

This in particular means (see line [§| of Algorithm ISINSIDE) that:

chcee N\ | oo

fip’,0.93 g’ ,0.93’
pres\{n'}

which, as 1 € S\ {ii'}, gives us that:

AP apx _
Cw N Cﬁﬁ,o.93 =0,
which using Definition [8] gives that:
~ 12
< for Hﬁ> <0.93 Hnﬁ (227)
apx apx

We define X’ similarly as in point 1. Let #’ be the projection onto the span of {II, ﬁﬂ} Moreover let:

10*
X' = {xEV:||7r'fw||2> }

T'min

Similarly to the proof of (223) we get

, € € n
‘){ | f; () <:¥f2) * "min f; () <:¢f2> . i; (225£
Again similarly to the analysis of (211]) we note that by Lemma and the fact that spectral dot product
succeeds:

fin
I <fya N>
for every y € V'\ X’ we have (oo i) 2| < 0.02 (229)

T2 2 =
LT

apx

Combining (229) and (227)) we get that if x € V' \ X’ then

(fo, Tp) < <fy7 ﬁﬁ>

< 2 +0.02
vl Hﬁﬁ

2
apx

< 0.93 +0.02
< 0.96

which also means that & Crp,0.96. This means that:

(V(T17"'7Ti—1) \V(Tl Tl)) N OHLL,0496 g X/ (230)
But by Lemma
€
o € s 1A 1) < 090112 < 0 (5) - Ic] (231)
Combining (230), (228)) and (231)) we get that:
CN(VTTeo\ @ty <o (S) joj+o (<) 2 <o(<) ol (232)
AN) kT \¢?

By assumption that [V (TtTi-1) 0 C| > (1 -Y-i- ﬁ) |C| and (232) we get that:

provided that T is bigger than the constant hidden under O notation in (232)).
O

The following Lemma is a generalization of Theorem [7] that uses Lemma [5] as an inductive step to
show that if COMPUTEORDEREDPARTITION is called with i’s that are good approximations to p’s then
it returns an ordered partition that induces a good collection of clusters.

90

Lemma 46. Let k > 2, ¢ € (0,1) and ﬁ -log(k) be smaller than a sufficiently small constant. Let
G = (V,E) be a d-regular graph that admits a (k, @, €)-clustering C1,...,Cy. Then conditioned on the
success of the spectral dot product oracle the following conditions hold.

If COMPUTEORDEREDPARTITION (G, i1, fi2, - - . , ik, S1, S2) s called with (f1,..., fix) such that for
every i € [k] we have ||fi; — w;l|* < 10712 - so;-kQHMHQ then. COMPUTEORDEREDPARTITION returns
(TRUE, (T1,...,Ty)) such that (Ty,...,Ty) induces a collection of clusters {éﬁl s éﬁk} such that there
exists a permutation m on k elements such that for all i € [k]:

‘6,% ACo)

€
<O ((p?) '10g(k)) |Cr)l

and

$(Ca,) <O (;2 ~log(l<:)> .

Proof. Note that for ¢ = 0 in the for loop in line [2] of COMPUTEORDEREDPARTITION S and clusters
{C1,...,Cy} trivially satisfy assumptions of Lemma So using Lemma [45| and induction we get that
for every i € [0..[log(k)]] at the beginning of the i-th iteration:

o |5 < k:/Qi7

e for every fi € S with corresponding p and corresponding cluster C' we have |V (Tt-Tiz1) A | >
(1 - ﬁ) |C| (where T is the constant from the statement of Lemma)

In particular this means that after O(log(k)) iterations set S becomes empty. This also means that
COMPUTEORDEREDPARTITION returns in line [I0] so it returns TRUE and the ordered partial partition
(Th,...,Tp) is in fact an ordered partition of {f1, ..., ik}

Note that by definition (see Definition all the approximate clusters {éﬁn ceey Gﬁk} are pairwise
disjoint and moreover for every constructed cluster Ce {éﬁl sy C\ﬁk} we have:

$(C) <0 <802 ~1og(k>) :

as it passed the test in line [6] of COMPUTEORDEREDPARTITION. So by Lemma [I6] it means that there
exists a permutation 7 on k elements such that for all i € [k]:

\éﬁi ACo

€
<0 (@ ~ 1og<k>) Coio

Recall Remark [9] for why the proof follows this framework of first arguing about outer-conductance
and only after that, using Lemma reasoning about symmetric difference. O

Now we present the final Theorem of this section which shows that FINDCENTERS with high proba-
bility returns an ordered partition that induces a good collection of clusters. The proof is a careful union
bound of error probabilities.

Theorem 8. Let k> 2, ¢ € (0,1), Elo;# be smaller than a sufficiently small constant. Let G = (V, E)
be a d-regular graph that admits a (k,,¢)-clustering Cy,...,Cx. Then Algorithm with probability

1 —n returns an ordered partition (T1,...,Ty) such that (Ty,...,Tp) induces a collection of clusters
{Ca,,...,Cq,} such that there exists a permutation ™ on k elements such that for all i € [k]:

~ €

‘Cﬁiﬁcﬂ(i) <O ((pg, '10g(k)) |Cr sy
and

~ €
(G < 0 (55 touth))

Moreover

91

e Algorithm[10] (FINDCENTERS) runs in time

0, (tog2 (1) - 200 KD /21001

and uses Qa ((%)O(l) .n1/2+0(6/<p2)) space,

e Algorithm |7 (HYPERPLANEPARTITIONING) called with (T4,...,Tp) as a parameter runs in time
6¢ ((E)O(l ~n1/2+0(6/“"2)> per one evaluation.

€

Proof. We first prove the runtime guarantee and then we show correctness.

Runtime. The first step of FINDCENTERS (Algorithm [10)) is to call INITIALIZEORACLE(G, 1/2) (Algo-
rithm which by Lemmaruns in time 5¢ ((%)O(l) . n1/2+0(6/w2)) and uses 6@ ((%)0(1) . n1/2+0(6/</>2))
space (It’s the preprocessing time in the statement of Lemma . Then Algorithm (10| repeats the fol-
lowing procedure O(log(1/n)) times.

It tests all partitions of a set of sampled vertices of size s = O(%Q - k*log(k)) into k sets. There is at

2
= 20(%k"108°(k)) of them. Notice that for each partition each ji; is defined as

~ 1
M4 = |P7,| Zf"u

zeP;

most k°

so as the number of sampled points is O(%2 - k*log(k)) then each fi; is an average of at most O(%2 .
k*log(k)) points. To analyze the runtime notice that:

e For each partition Algorithm [I0] runs Algorithm [3]

e Algorithm [8| invokes Algorithm |11 (OUTERCONDUCTANCE) k9! times,

o(1)
o OUTERCONDUCTANCE takes, by Lemma |44} (s1 + s2) - 5 - s* - (%Qk) - p1/2H0(/9%) 10g? (n)

time,
® 51 = @(%zk‘r‘ log®(k) log(1/n)) and sy = @(f—;k‘r’ log? (k) log(1/7)).

So in total the runtime of FINDCENTERS is

1 (p2 o(1) . o2 4 o 54 <p2 o(1) ,
& (k> /0L log? (n) g (1) 2007 DO 5,) 25 (k) /2O og? ()

Substituting for s, s1, s it simplifies to:
1 P op? /o2

Runtime of Algorithm B Each 7i; is an average of at most s points, where s < O(%2 - k*log(k)),
Algorithm [7| performs k() tests <fw,ﬁ(ﬁ)> > 0.93|/TI(7})||? and by Lemma each test takes
apx

~ o(1
O, (54 : (%) W .p1/240(/9")) time. So in total the runtime of one invokation of CLASSIFYBYHY-
PERPLANEPARTIONING(:, (T4,...,T})) is in:

o)
0, <<’z) .n1/2+0<e/¢2>>

92

Error of OuterConductance algorithm. Now we analyze the error probabilities of OUTERCON-
DUCTANCE across all the iterations of our algorithm. Note that we run the test for each cluster for each
partition and for each of the log (2/n) iterations of the algorithm. So in total we run OUTERCONDUC-

TANCE test 2O(§‘k4 1Og(’“)Z)klog (%) times. By setting s; in
©? ©?
0 (k (1og<4/n> +log(klog(1/m) + £ - k* 1og2<k>)) <0 (- log (k) ~10g(1/77)> ,

and so in:

0 (“026’“ (10g(4/17) +log(klog(1/n)) + %2 K 1og2(k)>> <0 <f§ - log (k) 'log(l/n)> ’

we get by Lemma [44] that the probability that the conclusion of Lemma [44] is not satisfied in a single

run is bounded by
n

®2. 2
100 . 22 (% 4t o (k))klog<)

1

n

So by union bound over the clusters, the partitions and the iterations we conclude that with probability
1— % the algorithm for every invokation returns a value satisfying the statement of Lemma Moreover
observe that this also means that E.onductance 1S true as conclusions of Lemma are stronger than the
property required for event Econductance tO be true.

W.h.p. every returned ordered partition defines a good clustering. By the lower bound on

the error probability of OUTERCONDUCTANCE algorithm above we get that with probability 1— Z5 every
cluster C' that passes the test from line |§| of Algorithm [§| has to satisfy:

$(C) <0 <SD2 ~log(k)) :

as for C to pass the test the value ¢ returned by OUTERCONDUCTANCE has to satisfy ¢ < O (ﬁ -log(k)
but by Lemma 44| we have ¢ > 3¢ (6’/&T1""’T”)) —¢e/¢p?. Now by Lemmathis implies that if Algorithm

returns an ordered partition, then with probability 1 — 25 the collection of clusters it defines satisfies the
statement of the Theorem.

Each iteration succeeds with constant probability. In the remaining part of the proof we will
show that a clustering is accepted with probability 1 — 2. First note that from the paragraph Error
of OuterConductance algorithm we know that E.onductance holds with probability 1 — £5. Next we
show that in each iteration of the outermost for loop of Algorithm [10]it succeeds with probability 1/2
(conditioned on Econductance). By amplification this will imply our result.

Now consider one iteration. Let S be the set of sampled vertices. Observe that there exists a partition
of S=P,UP,U---U Py such that for all i € [k], P, = SNC;. We set s = 1015 %2 -k*log(k). Therefore

by Lemma with probability at least <5 we have for all i € [k]

09-s en @2
SNGC;| > - min —2 >9-10". = . k2 log(k).
| |2 = min Ak ; g(k)
Let § = k%0 and ¢ = 10;1\/; Therefore, we have
2 (80-6/4,02) 2 1/(1_(80'5/472))

SO > 9104 2= kP log(k) > c- [k tog (5 - (2 (1

= € -)) ¢
where ¢ is the constant from Lemma The last inequality holds since 5 log(k) is smaller than a

(e/¥?)

sufficiently small constant, hence, (%) € O(1), and E(e/e”) ¢ O(1). Therefore by Lemma 39| for

all i € [k] with probability at least 1 — k=50 we have:

106 /e
-k

172 = pill2 < €+ lill2 = i]2

93

Hence, by union bound over all sets P;, with probability at least 1% — k- k90> % we get || — will2 <

10;72#”]2 for all ¢ € [k] simultaneously.

Now by Theorem [2[and the union bound we get that spectral dot product oracle succeeds with
probability 1 —n"48. So by Lemma and the union bound FINDCENTERS with probability %—n“‘g > %

returns an ordered partition (71,...,7}) which induces a collection of clusters {6,717 RPN aqk} such that
there exists a permutation 7 on k elements such that for all ¢ € [k]:

‘éﬂiﬁcﬂ(i) <0 ((;3 '10g(k)> |Cr i)l
and
6(C) <0 (5 outh)).
O
6.6 LCA

Now we prove the main result of the paper. Recall that a clustering oracle (Definition 4} is a randomized
algorithm that when given query access to a d-regular graph G = (V, E) that admits (k, ¢, €)-clustering
Cq,...,C} it provides consistent access to a partition 617 e ék such that there exists a permutation
7 on k elements such that for all i € [k]:

’CA”ﬁiACTr(i)

so(;w%@ﬂmam. (233)

Consistency means that a vertex x € V is classified in the same way every time it is queried.

First we will show a Proposition (Proposition [3)) that shows that it is enough to design an algorithm
that returns a collection of disjoint clusters (not necessarily a partition) that satisfies to get
a clustering oracle. Using this Proposition as a reduction we then show Theorem [3] which is the main
Theorem of the paper.

Proposition 3. If there exists a randomized algorithm O that when given query access to a d-reqular
graph G = (V, E) that admits a (k, ¢, €)-clustering C1, ..., Cy, the algorithm O provides consistent query
access to a collection of disjoint clusters C = (51, .. ,ék) of V.. The collection C is determined
solely by G and the algorithm’s random seed. Moreover, with probability at least 9/10 over the random
bits of O the collection C has the following property: for some permutation m on k elements one has for
every i € [k]:

) €
|CiAC,T(i)| <0 (g03> |C;].

Then if clusters have equal sizes and ng(k) is bigger than a constant then there exists an algorithm
O’ that is a (k, e, €)-clustering oracle with the same running time and space up to constant factors.

Proof. The idea is to assign the points outside Uie[k] C; randomly. That is to assign vertex x € V, O’
works exactly the same like O but if O left x unassigned then O’ assigns x to a value chosen from [k]
uniformly at random.

Let R =V \ U,y Ci and for every i € [k] let S; C R be the set of vertices that were randomly
assigned to C;. By the fact that for every i € [k] |C’iA6,,(i)| <O (ﬁ) |C;| we get that there exists a

constant C' such that: ¢
IR <C- 5 (234)

Now let ¢ € [k]. By the Chernoff bound we have that for every ¢ > 1:

P H|Si| - @‘ > 5'5'] <e 0% (235)

Setting § = ngl'}’%l we get:

PH|51'—|];|‘ZC-€3~

] < e BeTR (236)
¥

94

Combining (2 and (| and the assumption that Wg() is bigger than a constant we get that
plisiz2c. S .0 <L
"= 03 k|~ 100k

Using the union bound we get that with probability 9/10 — & - 100 1007 = 8/10 we have that for every i € [k]
Sl <2C- & - %. So finally with probability 8/10 for every i € [k]:

~

|Ci N (Crgiy U Sai))| < 1CiAC(ay| + [Snia)|

<0() |C|+O(3) n By definition of O
@3 ® k
€ maxpe[k] |Cp|
¥ mmpe[k]| ol

which means that O is a (k, @, €)-clustering oracle. O

Theorem 3. For every integer k > 2, every ¢ € (0,1), every e < %, every ¢ € (0,1/2] there exists a
(k, p, €)-clustering oracle that:

~ 2,4, 2
has O, <2O<ik leg (k)) ~n15+o(6/“"2)> preprocessing time,

has 6¢ ((%)O(l) ~n5+0(€/”’2)) query time,

uses 5tp ((

o3

)O(l)) n1—5+0(6/s&2)) space,

0(1)
) .

uses 5¢ ((

o

no(f/“"2)) random bits,
where O, suppresses dependence on ¢ and O hides all polylog(n) factors.

~ 2
Proof. By Theorem a we get that there exists an algorithm that runs in O, 205k log? (k) . p1/24+0(¢/”)

time and that with probability 9/10 returns an ordered partition (T4,...,Tp) of {fi1,...,ix} such that

the induced collection of clusters {éﬂl, cey 6% } satisfies the following. There exists a permutation 7 on
k elements such that for every i € [1,...,k]:

N €
Coy 5| < O (@ -log<k)) Coto

That algorlthm is the preprocessing step of oracle O. Then for each query x; € V' we run Algorithm [7]
which outputs f1; such that z; € C (Note that 2; might not belong to any of Cj,, see Proposition |3 for

how to deal with that). Algorithm I by Theorem I runs in Og, ((;)0(1) . pl/2+0(e/¥?)) time.

Runtime tradeoff. Notice however that by Theorem [2] we can achieve a tradeoff in the preprocess-

ing/query runtime and achieve 5(,0 (20(%"“4 log? (k) . n1*5+0(6/¢2)) for preprocessing time and 9] (()O(l)

nl=0+0(c/?*)) space and ap ((%)O(l) ~n5+o(6/*"2)> for query time.

Random bits. The only thing left to prove is to show that we can implement these two algorithms
in LCA model using few random bits. There are couple of places in our Algorithms where we use
randomness.

First in INITIALIZEORACLE (Algorithm we sample O (n Ole/#?) . kM) random points. For that we
need O(nC/#") . ;OW) random bits.

For generating random walks in Algorithm [4 and Algorithm [f] we need the following number of
random bits. Notice that in all the proofs (see Lemma we only need 4-wise independence of random
walks. That means that we can implement generating these random walks using a hash function h(x)
that for vertex x € V generates O(log(d) - ﬁ -log(n)) bit string that can be interpreted as encoding a

random walk of length O(-log(n)) (remember that graphs we consider are d-regular so log(d) bits is

95

enough to encode a neighbour). It’s enough for the hash function to be 4-wise independent so it can be
implemented using O(ﬁ -log(d) - log(n)) = 5¢(1) random bits.

The partitioning scheme (see Algorithm [7) works in O(log(k)) adaptive stages. The stages are
adaptive, that is why we use fresh randomness in every stage. For a single stage we observe that in the
proof of Lemma [44] we only use Chernoff type bounds. So by [SSS93] we don’t need fully independent
random variables. In our case it’s enough to have O(log(n))-wise independent random variables which
can be implemented as hash functions using O(log?(n)) random bits. This means that in total we need
O(log(k)log?(n)) = 5(1) random bits for this.

For sampling set S in Algorithm |10/ we can use O(%2 k*log(k) -log(n)) = 5¢(% -kOM) fresh random
bits.

So finally the total number of random bits we need is in:

3, <n0<e/w2> GOW L1414l kou)) <0, (1 0L/ | kO(l))
€

€
O

Remark 11. Note that threshold sets Cy g (recall Deﬁnition@ are well defined in LCA model because
for all x,y € V whenever we compute (fz, f,), the result is the same as we use consistent randomness

(see Definition [])). v

References

[Abb18] Emmanuel Abbe. Community detection and stochastic block models. Foundations and
Trends in Communications and Information Theory, 14(1-2):1-162, 2018.

[ACLOS] Reid Andersen, Fan R. K. Chung, and Kevin J. Lang. Local partitioning for directed
graphs using pagerank. Internet Mathematics, 5(1):3-22, 2008.

[AGPT16] Reid Andersen, Shayan Oveis Gharan, Yuval Peres, and Luca Trevisan. Almost optimal
local graph clustering using evolving sets. J. ACM, 63(2):15:1-15:31, 2016.

[ALM13] Zeyuan Allen Zhu, Silvio Lattanzi, and Vahab S. Mirrokni. A local algorithm for finding
well-connected clusters. In Proceedings of the 30th International Conference on Machine
Learning, ICML 2013, Atlanta, GA, USA, 16-21 June 2013, pages 396404, 2013.

[ARVX12] Noga Alon, Ronitt Rubinfeld, Shai Vardi, and Ning Xie. Space-efficient local computa-
tion algorithms. In Proceedings of the Twenty-Third Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA 2012, Kyoto, Japan, January 17-19, 2012, pages 1132-1139,
2012.

[AS12] Pranjal Awasthi and Or Sheffet. Improved spectral-norm bounds for clustering. In Anupam
Gupta, Klaus Jansen, José D. P. Rolim, and Rocco A. Servedio, editors, Approximation,
Randomization, and Combinatorial Optimization. Algorithms and Techniques - 15th Inter-
national Workshop, APPROX 2012, and 16th International Workshop, RANDOM 2012,
Cambridge, MA, USA, August 15-17, 2012. Proceedings, volume 7408 of Lecture Notes in
Computer Science, pages 37-49. Springer, 2012.

[BJOG] Francis R. Bach and Michael 1. Jordan. Learning spectral clustering, with application to
speech separation. J. Mach. Learn. Res., 7:1963-2001, 2006.

[BMD*15] Dino Bellugi, David G Milledge, William E Dietrich, Jim A McKean, J Taylor Perron,
Erik B Sudderth, and Brian Kazian. A spectral clustering search algorithm for predict-
ing shallow landslide size and location. Journal of Geophysical Research: Earth Surface,
120(2):300-324, 2015.

[CKCLL*13] Tsz Chiu Kwok, Lap Chi Lau, Yin Tat Lee, Shayan oveis gharan, and Luca Trevisan.
Improved cheeger’s inequality: Analysis of spectral partitioning algorithms through higher
order spectral gap. Proceedings of the Annual ACM Symposium on Theory of Computing,
01 2013.

96

[CKK*18]

[CPS15]

[HJ90]

[KPS13]

[KS08]

[KVV04]
[LGT14]

[LRTV12]

[NJW02]
[NS10]

[0A14]

[PCS06]

[Pen20]

Ashish Chiplunkar, Michael Kapralov, Sanjeev Khanna, Aida Mousavifar, and Yuval Peres.
Testing graph clusterability: Algorithms and lower bounds. In 2018 IEEE 59th Annual
Symposium on Foundations of Computer Science (FOCS), pages 497-508. IEEE, 2018.

Artur Czumaj, Pan Peng, and Christian Sohler. Testing cluster structure of graphs. In
Proceedings of the Forty-Seventh Annual ACM on Symposium on Theory of Computing,
STOC 2015, Portland, OR, USA, June 14-17, 2015, pages 723-732, 2015.

Artur Czumaj and Christian Sohler. Testing expansion in bounded-degree graphs. Com-
binatorics, Probability & Computing, 19(5-6):693-709, 2010.

Chandler Davis and William Morton Kahan.

Chandler Davis and William Morton Kahan. The rotation of eigenvectors by a perturba-
tion. iii. SIAM Journal on Numerical Analysis, 7(1):1-46, 1970.

Oded Goldreich and Dana Ron. On testing expansion in bounded-degree graphs. In Oded
Goldreich, editor, Studies in Complexity and Cryptography. Miscellanea on the Interplay
between Randomness and Computation - In Collaboration with Lidor Avigad, Mihir Bel-
lare, Zvika Brakerski, Shafi Goldwasser, Shai Halevi, Tali Kaufman, Leonid Levin, Noam
Nisan, Dana Ron, Madhu Sudan, Luca Trevisan, Salil Vadhan, Avi Wigderson, David
Zuckerman, volume 6650 of Lecture Notes in Computer Science, pages 68-75. Springer,
2011.

Roger A. Horn and Charles R. Johnson. Matriz analysis. Cambridge University Press,
1990.

Satyen Kale, Yuval Peres, and C. Seshadhri. Noise tolerance of expanders and sublinear
expansion reconstruction. SIAM J. Comput., 42(1):305-323, 2013.

Satyen Kale and C. Seshadhri. An expansion tester for bounded degree graphs. In Luca
Aceto, Ivan Damgard, Leslie Ann Goldberg, Magntus M. Halldérsson, Anna Ingdlfsdéttir,
and Igor Walukiewicz, editors, Automata, Languages and Programming, 35th International
Colloguium, ICALP 2008, Reykjavik, Iceland, July 7-11, 2008, Proceedings, Part I: Tack
A: Algorithms, Automata, Complezity, and Games, volume 5125 of Lecture Notes in Com-
puter Science, pages 527-538. Springer, 2008.

Ravi Kannan, Santosh S. Vempala, and Adrian Vetta. On clusterings: Good, bad and
spectral. J. ACM, 51(3):497-515, 2004.

James R Lee, Shayan Oveis Gharan, and Luca Trevisan. Multiway spectral partitioning
and higher-order cheeger inequalities. Journal of the ACM (JACM), 61(6):37, 2014.

Anand Louis, Prasad Raghavendra, Prasad Tetali, and Santosh Vempala. Many sparse
cuts via higher eigenvalues. In Proceedings of the Forty-fourth Annual ACM Symposium
on Theory of Computing, STOC 12, pages 1131-1140, New York, NY, USA, 2012. ACM.

Andrew Y Ng, Michael I Jordan, and Yair Weiss. On spectral clustering: Analysis and an
algorithm. In Advances in neural information processing systems, pages 849-856, 2002.

Asaf Nachmias and Asaf Shapira. Testing the expansion of a graph. Inf. Comput.,
208(4):309-314, 2010.

Lorenzo Orecchia and Zeyuan Allen Zhu. Flow-based algorithms for local graph clus-
tering. In Proceedings of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete
Algorithms, SODA 2014, Portland, Oregon, USA, January 5-7, 2014, pages 1267—-1286,
2014.

Alberto Paccanaro, James A Casbon, and Mansoor AS Saqi. Spectral clustering of protein
sequences. Nucleic acids research, 34(5):1571-1580, 2006.

Pan Peng. Robust clustering oracle and local reconstructor of cluster structure of graphs.
In Shuchi Chawla, editor, Proceedings of the 2020 ACM-SIAM Symposium on Discrete
Algorithms, SODA 2020, Salt Lake City, UT, USA, January 5-8, 2020, pages 2953-2972.
SIAM, 2020.

97

[RTVX11]

[Sin16]

[SMO0]

[S5593]

[ST14]

[Tod11]

[Trol2]

[VLO7]

Ronitt Rubinfeld, Gil Tamir, Shai Vardi, and Ning Xie. Fast local computation algorithms.
In Proceedings of Innovations in Computer Science - ICS 2010, Tsinghua University, Bei-
jing, China, January 7-9, 2011, pages 223238, 2011.

Ali Kemal Sinop. How to round subspaces: A new spectral clustering algorithm. In Pro-
ceedings of the Twenty-Seventh Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2016, Arlington, VA, USA, January 10-12, 2016, pages 1832—-1847, 2016.

Jianbo Shi and Jitendra Malik. Normalized cuts and image segmentation. Departmental
Papers (CIS), page 107, 2000.

Jeanette P. Schmidt, Alan Siegel, and Aravind Srinivasan. Chernoff-hoeffding bounds for
applications with limited independence. In Proceedings of the Fourth Annual ACM-SIAM
Symposium on Discrete Algorithms, SODA 93, pages 331-340, Philadelphia, PA, USA,
1993. Society for Industrial and Applied Mathematics.

Daniel A. Spielman and Shang-Hua Teng. Nearly linear time algorithms for preconditioning
and solving symmetric, diagonally dominant linear systems. SIAM J. Matrixz Analysis
Applications, 35(3):835-885, 2014.

Alexis Akira Toda. Operator reverse monotonicity of the inverse. The American Mathe-
matical Monthly, 118(1):82-83, 2011.

Joel A Tropp. User-friendly tail bounds for sums of random matrices. Foundations of
computational mathematics, 12(4):389-434, 2012.

Ulrike Von Luxburg. A tutorial on spectral clustering. Statistics and computing, 17(4):395—
416, 2007.

98

	Introduction
	Preliminaries
	Technical overview
	Sublinear time dot product access to the spectral embedding
	Geometry of the spectral embedding
	Hard instance for natural hyperplane partitioning
	Our hyperplane partitioning scheme

	Properties of the spectral embedding of (k,,)-clusterable graphs
	Standard bounds on cluster means and directional variance
	Strong Tail Bounds on the Spectral Embedding
	Centers are strongly orthogonal
	Robustness property of (k,,)-clusterable graphs

	A spectral dot product oracle
	The spectral dot product oracle - overview
	Stability bounds for the low rank approximation
	Stability bounds under sampling of vertices
	Stability bounds under approximations of columns by random walks
	Proof of Theorem 2
	Computing approximate norms and spectral dot products (Proof of Theorem 6)

	The main algorithm and its analysis
	The Algorithm (Partitioning Scheme, Algorithm 7)
	Bounding intersections of Ci, with true clusters Ci
	Partitioning scheme works with exact cluster means & dot products
	Finding the cluster means
	Quality of cluster means approximation
	Approximate Centers are strongly orthogonal

	Partitioning scheme works with approximate cluster means & dot products
	LCA

