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Abstract

Consider the following communication problem. Alice holds a graph G 4 = (P, @, E4) and Bob holds
agraph Gp = (P, Q, Ep), where | P| = |Q| = n. Alice is allowed to send Bob a message m that depends
only on the graph G 4. Bob must then output a matching M C E4 U Ep. What is the minimum message
size of the message m that Alice sends to Bob that allows Bob to recover a matching of size at least (1 —€)
times the maximum matching in G4 U G? The minimum message length is the one-round communica-
tion complexity of approximating bipartite matching. It is easy to see that the one-round communication
complexity also gives a lower bound on the space needed by a one-pass streaming algorithm to compute a
(1 —¢)-approximate bipartite matching. The focus of this work is to understand one-round communication
complexity and one-pass streaming complexity of maximum bipartite matching. In particular, how well
can one approximate these problems with linear communication and space? Prior to our work, only a
%-approximation was known for both these problems.

In order to study these questions, we introduce the concept of an e-matching cover of a bipartite graph
G, which is a sparse subgraph of the original graph that preserves the size of maximum matching between
every subset of vertices to within an additive en error. We give a polynomial time construction of a %-
matching cover of size O(n) with some crucial additional properties, thereby showing that Alice and Bob
can achieve a %-approximation with a message of size O(n). While we do not provide bounds on the size
of e-matching covers for ¢ < 1/2, we prove that in general, the size of the smallest e-matching cover of
a graph G on n vertices is essentially equal to the size of the largest so-called e-Ruzsa Szemerédi graph
on n vertices. We use this connection to show that for any 6 > 0, a (% + J)-approximation requires a
communication complexity of n!+$(1/loglogn)

We also consider the natural restriction of the problem in which G 4 and G g are only allowed to share
vertices on one side of the bipartition, which is motivated by applications to one-pass streaming with vertex
arrivals. We show that a %—approximation can be achieved with a linear size message in this case, and this
result is best possible in that super-linear space is needed to achieve any better approximation.

Finally, we build on our techniques for the restricted version above to design one-pass streaming al-
gorithm for the case when vertices on one side are known in advance, and the vertices on the other side
arrive in a streaming manner together with all their incident edges. This is precisely the setting of the cele-
brated (1— %)—competitive randomized algorithm of Karp-Vazirani-Vazirani (KVV) for the online bipartite
matching problem [13]]. We present here the first deterministic one-pass streaming (1 — %)-approximation
algorithm using O(n) space for this setting.
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1 Introduction

We study the communication and streaming complexity of the maximum bipartite matching problem. Con-
sider the following scenario. Alice holds a graph G4 = (P, @, E 4) and Bob holds a graph G = (P, Q, Ep),
where |P| = |@Q| = n. Alice is allowed to send Bob a message m that depends only on the graph G 4. Bob
must then output a matching M C E4 U Ep. What is the minimum size of the message m that Alice sends to
Bob that allows Bob to recover a matching of size at least 1 — € of the maximum matching in G4 U Gg? The
minimum message length is the one-round communication complexity of approximating bipartite matching,
and is denoted by C'C'(¢, n). It is easy to see that the quantity C'C' (e, n) also gives a lower bound on the space
needed by a one-pass streaming algorithm to compute a (1 — €)-approximate bipartite matching. To see this,
consider the graph G 4 UG p revealed in a streaming manner with edge set E 4 revealed first (in some arbitrary
order), followed by the edge set Ep. It is clear that any non-trivial approximation to the bipartite matching
problem requires €2(n) communication and €2(n) space, respectively, for the one—round communication and
one-pass streaming problems described above. The central question considered in this work is how well can
we approximate the bipartite matching problem when only O(n) communication/space is allowed.

Matching Covers: We show that a study of these questions is intimately connected to existence of sparse
“matching covers” for bipartite graphs. An e-matching cover or simply an e-cover, of a graph G(P,Q, E)
is a subgraph G'(P, Q, E’) such that for any pairs of sets A C P and B C (@, the graph G’ preserves the
size of the largest A to B matching to within an additive error of en. The notion of matching sparsifiers may
be viewed as a natural analog of the notion of cut-preserving sparsifiers which have played a very important
role in the study of network design and connectivity problems [12} 4]]. It is easy to see that if there exists an
e-cover of size f(e,n) for some function f, then Alice can just send a message of size f(e,n) to allow Bob
to compute an additive en error approximation to bipartite matching (and (1 — €)-approximation whenever
G 4 UG p contains a perfect matching). However, we show that the question of constructing efficient e-covers
is essentially equivalent to resolving a long-standing problem on a family of graphs known as the Ruzsa-
Szemerédi graphs. A bipartite graph G(P, Q, E) is an e-Ruzsa-Szemerédi graph if E can be partitioned into
a collection of induced matchings of size at least en each. Ruzsa-Szemerédi graphs have been extensively
studied as they arise naturally in property testing, PCP constructions and additive combinatorics [7, [11} [19].
A major open problem is to determine the maximum number of edges possible in an e-Ruzsa-Szemerédi graph.
In particular, do there exist dense graphs with large locally sparse regions (i.e. large induced subgraphs are
perfect matchings)? We establish the following somewhat surprising relationship between matching covers
and Ruzsa-Szemerédi graphs: for any € > 0 the smallest possible size of an e-matching cover is essentially
equal to the largest possible number of edges in an e-Ruzsa-Szemerédi graph.

Constructing dense e-Ruzsa-Szemerédi graphs for general € and proving upper bounds on their size ap-
pears to be a difficult problem [9]]. To our knowledge, there are two known constructions in the literature.
The original construction due to Ruzsa and Szemerédi yields a collection of n/3 induced matchings of size
n/ 20(Viogn) using Behrend’s construction of a large subset of {1, ..., n} without three-term arithmetic pro-
gressions [3,[19]. Constructions of a collection of n%/ °21°8™ induced matchings of size n/3—o(n) were given
in [7, [17]. We use the ideas of [7, [17] to construct (% — 0)-Ruzsa-Szemerédi graphs with nit+$s(1/loglogn)
edges and a more general construction for the vertex arrival case. To the best of our knowledge, the only
known upper bound on the size of e-Ruzsa-Szemerédi graphs for constant € < % is O(n?/log* n) that follows
from the bound used in an elementary proof of Roth’s theorem [19].

One-round Communication: We show that in fact CC(e,n) < 2n — 1 for all ¢ > %, i.e. a message of

linear size suffices to get a %—approximation to the maximum matching in G4 U G'g. We establish this result
by constructing an O(n) size %—cover of the input graph that satisfies certain additional properties which
allows Bob to recover a %-approximatiorﬂ We refer to this particular %-cover as a matching skelton of the

"'We note here that a maximum matching in a graph is only a %-cover.



input graph, and give a polynomial time algorithm for constructing it. Next, building on the above-mentioned
connection between matching covers and Ruzsa-Szemerédi graphs, we show the following two results: (a)
our construction of %—cover implies that for any § > 0, there do not exist (% + 6)-Ruzsa-Szemerédi graph
with more than O(n/d) edges, and (b) our %—approximation result is best possible when only linear amount
of communication is allowed. In particular, Alice needs to send n!+%(}/1°e10gn) bits to achieve a (2 + §)-
approximation, for any constant § > 0, even when randomization is allowed.

We then study the one round communication complexity C'C)(e,n) of (1 — €)-approximate maximum

matching in the restricted model when the graphs G4 and Gp are only allowed to share vertices on one
side of the bipartition. This model is motivated by application to one-pass streaming computations when the
vertices of the graph arrive together with all incident edges. We obtain a stronger approximation result in this
model, namely, using the preceding %—cover construction we show that CC)(e,n) < 2n — 1 for e > 1/4.
Thus a %-approximation can be obtained with linear communication complexity, and as before, we show that
obtaining a better approximation requires a communication complexity of n+(1/loglogn) pjtg.
One-pass Streaming: We build on our techniques for one-round communication to design a one-pass stream-
ing algorithm for the case when vertices on one side are known in advance, and the vertices on the other side
arrive in a streaming manner together with all their incident edges. This is precisely the setting of the cele-
brated (1 — %)—competitive randomized algorithm of Karp-Vazirani-Vazirani (KVV) for the online bipartite
matching problem [13]. We give a deterministic one-pass streaming algorithm that matches the (1 — %)—
approximation guarantee of KVV using only O(n) space. Prior to our work, the only known deterministic
algorithm for matching in one-pass streaming model, even under the assumption that vertices arrive together
with all their edges, is the trivial algorithm that keeps a maximal matching, achieving a factor of % We
note that in the online setting, randomization is crucial as no deterministic online algorithm can achieve a
competitive ratio better than %

Related work: The streaming complexity of maximum bipartite matching has received significant attention
recently. Space-efficient algorithms for approximating maximum matchings to factor (1 — €) in a number of
passes that only depends on 1/ have been developed. The work of [16] gave the first space-efficient algorithm
for finding matchings in general (non-bipartite) graphs that required a number of passes dependent only on
1/e, although the dependence was exponential. This dependence was improved to polynomial in [5], where
(1—¢)-approximation was obtain in O(1/¢®) passes. In a recent work, [[1] obtained a significant improvement,
achieving (1 — €)-approximation in O(log log(1/¢€)/€?) passes (their techniques also yield improvements for
the weighted version of the problem). Further improvements for the non-bipartite version of the problem have
been obtained in [2]. Despite the large body of work on the problem, the only known algorithm for one pass
is the trivial algorithm that keeps a maximal matching. No non-trivial lower bounds on the space complexity
of obtaining constant factor approximation to maximum bipartite matching in one pass were known prior to
our work (for exact computation, an Q(nQ) lower bound was shown in [6]]).

Organization: We start by introducing relevant definitions in section[2] In section[3|we give the construction
of the matching skeleton, which we use later in section (4| to prove that CC(1/3,n) = O(n), as well as
show that the matching skeleton forms a 1/2-cover. In section |5\ we deduce using the matching skeleton that
CCy(1/4,n) = O(n). In section [f] we use these techniques to obtain a deterministic one-pass (1 — 1/e)
approximation to maximum matching in O(n) space in the vertex arrival model. We extend the construction
of Ruzsa-Szemerédi graphs from [[7, [17]] in section|/| We use these extensions in section [§| to show that our
upper bounds on CC(e,n) and CC, (e, n) are best possible, as well as to prove lower bounds on the space
complexity of one-pass algorithms for approximating maximum bipartite matching. Finally, in section [9] we
prove the correspondence between the size of the smallest e-matching cover of a graph on n nodes and the
size of the largest e-Ruzsa-Szemerédi graph on n nodes.



2 Preliminaries
We start by defining bipartite matching covers, which are matchings-preserving graph sparsifiers.

Definition 1 Given an undirected bipartite graph G = (P,Q, E), and sets A C P,B C Q, and H C E, let
My (A, B) denote the size of the largest matching in the graph G' = (A, B, (A x B) N H).

Given an undirected bipartite graph G = (P, Q, F) with |P| = |Q| = n, a set of edges H C F is said to
be an e-matching-cover of G if forall A C P, B C (), we have My (A, B) > Mg(A, B) — en.

Definition 2 Define Lc(e,n) to be the smallest number m' such that any undirected bipartite graph G =
(P,Q, E) with P = QQ = n has an e-matching-cover of size at most m/.

We next define induced matchings and Ruzsa-Szemerédi graphs.

Definition 3 Given an undirected bipartite graph G = (P, Q, E) and a set of edges F C E, let P(F') C P
denote the set of vertices in P which are incident on at least one edge in F, and analogously, let Q(F') denote
the set of vertices in QQ which are incident on at least one edge in F. Let E(F), called the set of edges induced
by F, denote the set of edges EN (P(F) x Q(F')). Note that E(F') may be much larger than F' in general.

Given an undirected bipartite graph G = (P, Q, E), a set of edges F' C F is said to be an induced
matching if no two edges in F' share an endpoint, and F(F) = F. Given an undirected bipartite graph
G = (P,Q, E) and a partition F of E, the partition is said to be an induced partition of G if every set F' € F
is an induced matching. An undirected bipartite graph G = (P, Q, E) with P = ) = n is said to have an
e-induced partition if there exists an induced partition of G such every set in the partition is of size at least
en. Following [7]], we refer to graphs that have an e-induced partition as e-Ruzsa-Szemerédi graphs.

Definition 4 Ler Uj(e,n) denote the largest number m such that there exists an undirected bipartite graph
G = (P,Q, E) with |E| = m, |P| = |Q| = n, and with an e-induced partition.

Note that for any 0 < €; < €2 < 1, any ez-induced partition of a graph is also an €;-induced partition, and
hence, Us(e, n) is a non-increasing function of e. Analogously, any €;-matching-cover is also an ex-matching
cover, and hence, Lc (€, n) is also a non-increasing function of e.

3 Matching Skeletons

Let G = (P, Q, F) be a bipartite graph. We now define a subgraph G’ = (P, Q, E’) of G that contains at most
(IP| + |Q| — 1) edges, and encodes useful information about matchings in G. We refer to this subgraph G’
as a matching skeleton of G, and this construction will serve as a building block for our algorithms. Among
other things, we will show later that G’ is a %-cover of G.

We present the construction of G’ in two steps. We first consider the case when P is hypermatchable,
that is, for every vertex v € () there exists a perfect matching of the P side that does not include v. We then

extend the construction to the general case using the Edmonds-Gallai decomposition [[18].

3.1 P is hypermatchable in G

We note that since P is hypermatchable, by Hall’s theorem [18]], we have that [I'(A)| > |A| forall A C P.
For a parameter o € (0, 1], let Rg(a) = {A C P : |[I'¢(A4)| < (1/a)|Al}. Note that as the parameter «
decreases, the expansion requirement in the definition above increases. We will omit the subscript G when G
is fixed, as in the next lemma.



Lemma 5 Ler o € (0, 1] be such that R(a + €) = 0 for any € > 0, i.e. G supports an ai_e

P-side for any € > 0. Then for any two A1 € R(«), Ay € R(«) one has A1 U Az € R(«).

-matching of the

We now define a collection of sets (S;,7}),j =1,...,400, where S; C P,T; C Q,S;NS; =0,i # j.
1. Setj:=1,Go:= G,ap:= 1. We have R¢, (ag) = 0.

2. Let 3 < a1 be the largest real such that R¢;_, (3) # 0.

3. Let Sg = Uaer(s) A and T = T'(Sp). We have Sg € Ry, _, (8) by Lemmal5]

4

. Let G := Gj_1 \ (Sg UTg). We refer to the value of «v at which a pair (S, T,) gets removed from
the graph as the expansion of the pair. Set S; := Sg, T} := T, oj := . If G; # 0, let j := j + 1 and
go to (2).

The following lemma is an easy consequence of the above construction.

Lemma6 /. ForeachU C S;one has |U'q;(U)| > (1/a;)|U|.

2. Forevery k >0, ((Ujgk Sj) X (Q \ U<k TJ)) NE =0.

To complete the definition of the matching skeleton, we now identify the set of edges of G that our
algorithm keeps. For a parameter v > 1 and subsets S C P, T" C () we refer to a (fractional) matching
M that saturates each vertex in S exactly v times (fractionally) and each vertex in 7" at most once as a -
matching of S'in (S,T,(S x T) N E). By Lemma [f] there exists a (fractional) (1/c;)-matching of S; in
(S;,T;,(S; x Tj) N E). Moreover, one can ensure that the matching is supported on the edges of a forest by
rerouting flow along cycles. Let M be a fractional (1/c;)-matching in (S}, Tj) that is a forest.

3.2 General bipartite graphs

We now extend the construction to general bipartite graphs using the Edmonds-Gallai decomposition of
G(P,Q, E), which essentially allows us to partition the vertices of G into sets Ap(G), Dp(G), Cp(G),
Ag(G), Dg(G), and Cg(G) such that Ap(G) is hypermatchable to Dg(G), Ag is hypermatchable to
Dp(G), and there is a perfect matching between C'p(G) and Cg(G).

Using the above partition, we can now define a matching skeleton of G using the above partition. Let Sy =
Cp(G), Ty = Cqo(G), and let M be a perfect matching between Sy and Ty. Let (S1,71), .. ., (Sj,T}) be the
expanding pairs obtained by the construction in the previous section on the graph induced by Ap(G)UDg(G).
Let (S—j,T_;),..., (S-1,7—-1) be the expanding pairs obtained by the construction in the previous section
from the () side on the graph induced by Ag(G) U Dp(G).

Definition 7 For a bipartite graph G = (P, Q, E) we define the matching skeleton G' of G as the union of
pairs (S;,T}),j = —o0,...,+00, with corresponding (fractional) matchings M;. Note that G' contains at
most |P| + |Q| — 1 edges.

As before, we can show the following:

Lemma8 /. ForeachU C Sj, one has |T; N\I'qr(U)| > (1/c)|U]|.

2. Foreveryk >0, ((P\Uj585) % (Ujsi 73) )NE = 6 and ((Q\Uj<— 85) % (Ujes T3) )0
E ={.
We note that the formulation of property (2) in Lemma [§]is slightly different from property (2) in Lemma [6]

However, one can see that these formulations are equivalent when there are no (.S, 7;) pairs for negative j,
as is the case in Lemma 6l



4 O(n) communication protocol for CC(3,n)

In this section, we prove that for any two bipartite graphs G, G2, the maximum matching in the graph
G| U Go is at least 2/3 of the maximum matching in G1 U G2, where G is the matching skeleton of G;.
Thus, CC(e,n) = O(n) for all e > 1/3; Alice sends the matching skeleton G’ of her graph, and Bob
computes a maximum matching in the graph G’y U G.

Before proceeding, we establish some notation used for the next several sections. Denote by (S;,7}),j =
—00, ..., +00 the set of pairs from the definition of G’. Recall that S; C P when j > O and S; C @
when j < 0. Also, given a maximum matching M in a bipartite graph G = (P, Q, E), a saturating cut
corresponding to M is a pair of disjoint sets (A; U By, Ay U By) such that A1 U Ay = P, B; U By = @, all
vertices in Ao U Bj are matched by M, there are no matching edges between A5 and B, and no edges at all
between A; and Bs. The existence of a saturating cut follows from the max-flow min-cut theorem. Let ALG
denote the size of the maximum matching in G} U G2 and let O PT denote the size of the maximum matching
in Gl U GQ.

Consider a maximum matching M in (G U G3) and a corresponding saturating cut (A; U By, Ay U Bs);
note that ALG = |Bj| + |Az|. Let M* be a maximum matching in E; N (A; x Bg). Note that we have
OPT < |Bi| + |Ag| + |M*|.

We start by describing the intuition behind the proof. Suppose for simplicity that the matching skeleton
G of G consists of only one (S;,T;) pair for some j > 0, such that |Tj| = (1/a;)|S;|. We first note
that since the matching M™ is not part of the matching skeleton, it must be that edges of M* go from S;
to T;. We will abuse notation slightly by writing M* N X to denote, for X C P U @, the subset of nodes
of X that are matched by M*. Since all edges of M™* go from S; to Tj, we have M* N Ay C S; N Ay
and M* N By C T; N By. This allows us to obtain a lower bound on |B;| and |A3| in terms of |AM*|
if we lower bound |Bi| and |Az| in terms of |S; N Aq| and |T; N Bs| respectively. First, we have that
|Bi| = [T'gr (S5 N A1) = (L/a;)[S; N A1| = (1/ay)|M*|, where we used the fact that the saturating cut
is empty in G U G2 and Lemma|8]. Next, we prove that [I'g; (Sj N A2) N Ba| < (1/a;)|S; N Ao (this is
proved in Lemmabelow). This, together with the fact that M* N By C T; N By = Lgy (S; N Az) N By,
implies that |[As| > «a;|M*|. Thus, we always have |As| 4+ |B1| > (o + 1/;)|M*|, and hence the worst
case happens at a; = 1, i.e. when the matching skeleton G} of G; consists of only the (Sy, Tp) pair, yielding
a 2/3 approximation. The proof sketch that we just gave applies when the matching skeleton only contains
one pair (S;,7}). In the general case, we use Lemma (8| to control the distribution of M* among different
(S5, T;) pairs. More precisely, we use the fact that edges of M* may go from S; N A to T; N By only if i < j.
Another aspect that adds complications to the formal proof is the presence of (.S;, ;) pairs for negative j.

We will use the notation

A SjﬁAl, j>0 A TjﬂBg, 7>0
Z]g{SjﬂBQ, 7 <0. and W]g{TjﬂAl, 71<0
for the vertices in P and () that are matched by M™* (see Fig. in the appendix). Further, let Z* denote
the set of vertices in Sp N A; that are matched by M* to By N Ty, and let W* = M*(Z*) C By N Ty.
Let VVO1 C Sp N A; denote the vertices in Sy N A; that are matched by M™ outside of Ty. Similarly, let
WO2 C Ty N By denote the vertices in Ty N By that are matched by M™* outside of Sy (see Fig. in the
appendix). Let

L= B0 T () uTe W U | (Te (%) U sy)
§>0

hi=As N [T (W) UTg, (We) U <FG’1(ZJ) U S—a’)
§<0



Then since

OPT < |Bj| + |A5] + |[M*| + (|B1 \ By| + |42\ A3])
ALG = |Bj| + |A3] + (|B1 \ By| + A2\ A3)),

it is sufficient to prove that (|Bf| + |A5]) > (2/3)(|By| + |AL| 4+ |M*|). Let OPT' = |B}| + |AL| + | M*|
and ALG' = |Bj| + |A4}|. Define A’ = (OPT' — ALG')/OPT’. We will now define variables to represent
the sizes of the sets used in defining B}, A%:

wh = |Wi|, w3 = |W2|,z* = |Z*|,w* = |W*|,(Note that z* = w*)

o Z L ws = (Wl e — Moo= L 1SN A 5>0
= 1wy = Wil = ezl = { (20 120 -

Lemma 9] expresses the size of Bj and A} in terms of the new variables defined above.

Lemma 9 ALG' =3}, ,o(s;j+ 1)+ (2" + w) + (w* +wd), and OPT' < 2* + (2* + w}) + (w* + wd) +
> 2085 + 25 +15).

The proof is deferred to the full version. The main idea is that most of the sets in the definitions of B{ and
A, are disjoint, allowing us to represent sizes of unions of these sets by sums of sizes of individual sets.

For ALG', recall that I'cr (Sj) = T and hence, the sets I'g; (.S;) are all disjoint. Further, the sets .S; are
all disjoint, by construction, and disjoint with all the T}’s. Thus, |A}| + |Bs| = [T'q, (W) U T/ (W) +
Te (Z*) Ul (W) + >_jz0(sj + ;). The sets W* and W¢ are disjoint. Further, they are subsets of T
(corresponding to o = 1), and hence nodes in these sets have a single unique neighbor in G}; consequently
Ter (W*) UT g (W§)| = w* + wg. Similarly, [T (Z2*) UT g (Wy)| = 2* + wg. This completes the proof
of the lemma for ALG'.

We have OPT" = ALG' + |M*|. Consider any edge (u,v) € M*. This edge is not in G and hence
must go from an S to a Tj» where 0 < j/ < j or 0 > 5/ > j. The number of edges in M* that go from Sy to
Ty is precisely z* by definition; the number of remaining edges is precisely > j£0%j- We now derive linear
constraints on the size variables, leading to a simple linear program. We have by Lemma 8| that for all £ > 0

P\{Jz | x{UUwW;||nE1=0, and o\ J z | x| U W | |nEi=0. 1)
Jj=k Jjzk Jj<—k J<—k
The existence of M™* together with (T)yields
400 400 —k —k
> 2> w;,Vk>0,  and 2= ) w, k>0 )
Jj=k Jj=k Jj=—00 j=—o00

Furthermore, we have by definition of W together with (T)that

wéSsz—ij and w%Ssz—ij. 3)

§<0 §<0 §>0 §>0
Also, we have
— ) L a2 .
g zj = wg + E W and E zj = wj + g wj. “)
j<0 j<0 j>0 >0

Next, by Lemma(8] we have r; > (1/a;)z;. We also need



Lemma 10 (/) |FG/1(Sj N Ag) N BQ| < (1/01]')’Sj N A2|f01’ all 3 > 0, and (2) |FG/1(S]‘ N Bl) N A1| <
(1/a;)|S; N By forall j < 0.

Proof: We prove (1). The proof of (2) is analogous. Suppose that [I'g: (S; N A2) N Ba| > (1/a;)[S; N As|.
Then using the assumption that (A x Bs) N E' = (), we get

75| = |Tj N Bo| + [T; N B1| > [Ty (S5 N A2) N Ba| + [P (S5 N Ay
> (1/a;)]S; M Az + (1/)[S; N Ar] > (1/ay)|S5],

a contradiction to the definition of the matching skeleton. [ |

We will now bound A" = (OPT’ — ALG')/OPT’ using a sequence of linear programs, described in
figures We will overload notation to use P}, Py, P;, respectively, to refer to these linear programs
as well as their optimum objective function value. By Lemma one has for all j # 0 that (1/a;)s; > w;.
We combine this with equations and [] to obtain the first of our linear programs, Py, in figure [T(a)l
Bounding A’ is equivalent to bounding this LP (i.e. A’ < Py). Note that we have implicitly rescaled the
variables so that OPT’ < 1.

—+00
Pl* = maximize z* + Z 25 S.t P2* — maximize Z zj S.t
J#0 j=0
2 (25 wp) + () + Y sj ozt <1 =
j#0 Y ositztr <l
+00 +00 7=0
Vk>0,ZZjZij, k k
=k =k VhZ0,) wi>) 2
—k —k 3=0 7=0
VE>0, ) z> Y w; (1/aj)s; = wj,j =0
. Jj=—o0 Jj=—00 r; > (1/04j)2’j,j >0
Vi #0,(1/aj)s; > w, x,z,w,r >0
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Figure 1: The linear programs for lower bounding ALG/OPT.

We now symmetrize the LP P} by collecting the variables for cases when j is positive, negative, and 0
to obtain LP Py in figure Finally, we relax LP P; by combining the second and third constraints, and
then establish that the remaining constraints are all tight. This gives us the LP P in figure Again,
details are in full version where we also prove: P < Py < P;. But Py is easy to analyze: there exists an
optimum solution that sets all z; to zero except for a j that minimizes («; + 1 + 1/c;). For all non-negative



z, f(x) =1+ z + 1/x is minimized when = 1, and f(1) = 3. This gives P; < 1/3, and hence A’ < 1/3,
or ALG" > (2/3)OPT". Thus, we have proved

Theorem 11 For any bipartite graph G, = (P, Q, E1) there exists a subforest G of G such that for any
graph Gy = (P, Q, Es) the maximum matching in G UG} is a 2/3-approximation of the maximum matching
in G1 U Gy; further, it suffices to choose G| to be the matching skeleton of G1.

Corollary 12 CC(},n) = O(n).

Theorem [11] also implies that the matching skelton gives a linear size 1/2-cover of G; the proof of the
following corollary is in the full version.

Corollary 13 For any bipartite graph G = (P, Q, E), the matching skeleton G' is a %-cover of G.

5 O(n) communication protocol for CC, (3, n)

In this section we prove that CC\(¢,n) = O(n) for all e < 1/4. In particular, we show that given a bipartite
graph G1 = (P, Q, E1), there exists a forest F' C Ej such that for any Gy = (P, @, F) that may share
nodes on the ) side with G but not on the P side, the maximum matching in G} UG} is a 3/4-approximation
of the maximum matching in G'; U G2. The broad outline of the proof is similar to the previous section, but
we can now assume a special optimal matching using the assumption that G2 may only share nodes with G
on the @ side. The proof uses the simple lemma below; we state it here since it is also needed in section [6]

Lemma 14 Let G = (P, Q, E) be a bipartite graph and let S C P be such that |T'(U)| > |U| for all U C S.
Then there exists a maximum matching in G that matches all vertices of S.

We now state the main theorem of this section. The proof is deferred to the full version of the paper.

Theorem 15 Let G; = (P1,Q, E1),Ga = (P2, Q, E2) be bipartite graphs that share the vertex set on one
side. Let G| be the matching skeleton of G1. Then the maximum matching in G, UG is a 3 /4-approximation
of the maximum matching in G1 U Ga.

6 One-pass streaming with vertex arrivals

Let G; = (P, Q, E;) be a sequence of bipartite graphs, where P, N P; = () for i # j. For a graph G, we
denote by SPARSIFY* () the matching skeleton of G modified as follows: for each pair (S}, 7}), j < 0keep
an arbitrary matching of S; to a subset of T}, discarding all other edges, and collect all these matchings into
the (S, Tp) pair. Note that we have S; C P, where P is the side of the graph that arrives in the stream. Let

G = SPARSIFY*(G}), and G = SPARSIFY*(G}_, U G,). (5)

We will show that for each 7 > 0 the maximum matching in G’ is at least a 1 — 1/e fraction of the
maximum matching in | J]_, G;. We will slightly abuse notation by denoting the set of expanding pairs in G-
by (Sa(7), Tw(7)). Recall that we have o € (0, 1], and | S, (7)| = «|Ta(7)|. We need the following

Definition 16 For a vertex u € P define its level after time T, denoted by o, (T), as the value of « such that
u € So (7). Similarly, for a vertex v € Q define its level after time T, denoted by ., (7), as the value of «
such that u € T, (7). Note that for a vertex w is at level o = ov,,(T) the expansion of the pair (S (7), To(T))
that it belongs to is 1/



Before describing the formal proof, we give an outline of the main ideas. In our analysis, we track the
structure of the matching skeleton maintained by the algorithm over time. For the purposes of our analysis,
at each time 7, every vertex is characterized by two numbers: its initial level 3 when it first appeared in the
stream and its current level o at time T (we denote the set of such vertices at time 7 by S, g(7)). Informally,
we first deduce that the matching edges that our algorithm misses may only connect a vertex in S, g(7) to a
vertex in Tz () for 8’ > 3, and hence we are interested in the distribution of vertices among the sets S, ().
We show that vertices that initially appeared at lower levels and then migrated to higher levels are essentially
the most detrimental to the approximation ratio. However, we prove that for every A € (0, 1], which can
be thought of as a ‘barrier’, the number of vertices that initially appeared at level 3 < X but migrated to a

level o > A can never be larger than A Uwe[)\,l] T, (7)| at any time 7. This leads to a linear program whose

optimum lower bounds the approximation ratio, and yields the (1 — 1/e) approximation guarantee.
Lemma 17 For all u € P and for all 7, o, (7 + 1) > oy, (7). Similarly forv € Q, c, (T + 1) > (7).

Let S, 3(7) denote the set of vertices in u € P such that (1) u € Sg(7’), where 7’ is the time when
w arrived (i.e. w € Pr), and (2) u € So(7). Note that one necessarily has o > 3 by Lemma [17] for all
nonempty S, g. Combining this with properties of the matching skeleton construction we obtain

vr,vA e (0,1 [(@\ | Tam)x |J Sas(r ﬂLTJEt:(B. ©)
t=1

a€lA1] BEN]]

Details are in the attached full version, where this statement is stated and proved as lemma Let
ta(7) = |Ta(7)|, $a,8(T) = |Sa,5(7)|. The quantities ¢, (7), so,(7) are defined for o, 3 € D = {Ak : 0 <
k < 1/A}, where 1/A is a sufficiently large integer (note that all relevant values of «, 3 are rational with de-
nominators bounded by n). In what follows all summations over levels are assumed to be over the set D. Then

Lemma 18 Forall 7 and for all o € (0, 1], we have 3 5c(0, 1) 2se(0,0—n] 58.6(T) < (@—=A) 3 geiq11 t8(T).

The proof is by induction on 7, and an easy consequence of lemma[I7} details are in the attached full version.
In what follows we only consider sets o 5(7), Ta(7) for fixed 7, and omit 7 for brevity. Let S = {J,, 5 Sa,s-
Choose a maximum matching M in G, that matches all of S, as guaranteed by Lemma Let v denote
the number of vertices in 77 that are matched outside of S by M (note that no vertices of T, € (0, 1) are
matched outside of .S by (6)). For each a € (0, 1] let r,, < t,, denote the number of vertices in Ty, that are not
matched by M. Then the following is immediate from (6).

Lemma 19 Forall A <1 , Zaep\’” to > Zae[k,l]”@’e[)\,l} 50,8+ Zaep\’” To + 7.

Wealsohave 3501, 11 se(0,1] 580 = 2_pefa,1) Btp foralla € (0,1]. By Lemmaand Lemma we get

ALG = Z (ta_ra)+(t1_7"1—’)/), OPT:ALG+7’ tlZ’Y‘i‘Tl.
ae(0,1)

Thus, we need to minimize ALG/OPT subjectto t1 > r1 + 7, tq, Sq,8 > 0 and

Vae (0,1]: Y tg=v+ > > spst >, s

BE[a,1] BE[a,1] 6€[a,1] BE[a,1]
VO&G Z Z Sﬂ5< a—A Z tg 7
B€[a,1] 6€(0,a—A] B€[a,1]
Ya € (0, 1] Z Z 88,8 = Z ,Btg.
B€[a,1] 6€(0,1] B€[a,1]



This is almost a linear program. After a series of simplifications of the type presented in section 4, we show
that ALG/OPT > P*/(1+ P*), where P* is the LP

P* = minimize Z ta s.t.
a€e(0,1)
Vo€ (0,1]:) (1-B+a—A)tz=1. ®)
B>a
to > 0.

It is relatively straightforward to show that the optimum value of this LP is at least (1 — A)_l/ A — 1. Details
of the simplification steps and the analysis are in the attached full version. Thus, we get

ALG pP*
> —1- >S1—(1-AYA>1-1
OPT = P*+1 1ol e /e

since (1 — A)Y/A < 1/e forall A > 0. We have now proved

Theorem 20 There exists a deterministic O(n) space 1-pass streaming algorithm for approximating the max-
imum matching in bipartite graphs in the vertex arrival model.

Proof: Run the algorithm given in (3, letting | P;| = 1, i.e. sparsifying as soon as a new vertex comes in. The
algorithm only keeps a sparsifier G, in memory, which takes space O(n). |

7 Constructions of Ruzsa-Szemerédi graphs

In this section we give two extensions of constructions of Ruzsa-Szemerédi graphs from [7]. The first con-
struction shows that for any constant € > 0 there exist (1/2 — ¢)-Ruzsa-Szemerédi graphs with superlinear
number of edges. We use this construction in section[8]to prove that our bound on C'C'(€,n), e < 1/3 is tight.
The second construction that we present is a generalization to lop-sided graphs, which we use in section [8[to
prove that our bound on C'C),(e,n), e < 1/4 is tight. Specifically, we show the following results:

Lemma 21 For any constant € > ( there exists a family of bipartite (1/2 — €)-Ruzsa-Szemerédi graphs with
111/ loglogn) edges.

Lemma 22 For any constant § > 0 there exists a family of bipartite Ruzsa-Szemerédi graphs G = (X,Y, E)
with | X| = n, |Y| = 2n such that (1) the edge set E is a union of nf(1/1081987) indyced 2-matchings
My, ..., My, of size at least (1/2 — O(0))|X]|, and (2) for any j € [1 : k| the graph G contains a matching
M7 of size at least (1 — O(6))|X| that avoids Y \ (M; NY).

The proofs of these results are based on an adaptation of Theorem 16 in [7]] (see also [[17]), which con-
structs bipartite 1/3-Ruzsa-Szemerédi graphs with superlinear number of edges. The main idea of the con-
struction, use of a large family of nearly orthogonal vectors derived from known families of error correcting
codes, is the same. A technical step is required to go from matchings of size 1/3 to matchings of size 1/2 — ¢
for any € > 0. Since the result does not follow directly from [7], we give a complete proof in the full version.

8 Lower bounds on communication and one-pass streaming complexity

We show here that lower bounds on the size of Ruzsa-Szemerédi graphs yield lower bounds on the (random-
ized) communication complexity, and hence for one-pass streaming complexity.

10



In the edge model, we show that CC (% -9, n) = Q(Ur(e,n/2)) forall €,6 > 0. In particular,

combined with the constructions of (1/2 + §;)-Ruzsa-Szemerédi graphs for any constant 6 > 0 (Lemmal[21))
this proves that CC(e,n) = nl+®(1/loglogn) for ¢ < 1/3. Thus our O(n) upper bound on CC(3,n) in
section [] is optimal in the sense that any better approximation requires super-linear communication. As a
corollary, we also get that super-linear space is necessary to achieve better than 2/3-approximation in the
one-pass streaming model.

In the vertex model, using the construction of Ruzsa-Szemerédi graphs from Lemma [22] we show that
CCy(e,n) = n' 1/ loglogn) for all € < 1/4. This proves optimality of our construction in section and also
shows that super-linear space is necessary to achieve better than 3 /4-approximation in the one-pass streaming
model even in the vertex arrival setting.

We note that our lower bounds for both the edge and vertex arrival case apply to randomized algorithms.
The proofs of these results appear in the full version.

9 Matching covers versus Ruzsa-Szemerédi graphs

In this section we prove that the size of the smallest possible matching cover is essentially the same as the
number of edges in the largest Ruzsa-Szemerédi graph with appropriate parameters.

The first theorem below shows that the size of the matching cover is at least as large as the size of a
Ruzsa-Szemerédi graph with appropriate parameters. The proof of this result is straightforward.

Theorem 23 [Lower bound] For any § > 0, Lo (e,n) > Ur ((1 +0)e, n) - (1%—6)

The theorem below gives a simplified version of the complementary upper bound result.

Theorem 24 [Simplified upper bound] Assume 0 < € < 2/3,0 < 0 < 1, and en > 3. Then, Lo(e,n) <
log(1/e
Ur((1— d)e,n) - O ( 55"1(*/5;).

The proof of the upper bound is more intricate. We describe briefly the main idea of the proof, deferring
the complete details to the full version. We formulate a linear program to minimize the number of edges
needed in an e-cover of a given graph G, and show that if the optimal value of the fractional cover is Z*, there
exists an integral cover of size at most enZ* (roughly speaking). On the other hand, we show using the dual
linear program (whose optimum is also Z* by strong duality), that for any 0 < ¢ < 1, the graph G contains a
subgraph G’ of size roughly enZ* such that the edges of G’ can be partitioned into induced matchings of size
(1 — d)en. These two results together imply the upper bound in the theorem above.
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A Introduction

We study the communication and streaming complexity of the maximum bipartite matching problem. Con-
sider the following scenario. Alice holds a graph G4 = (P, @, E 4) and Bob holds a graph G = (P, Q, Ep),
where |P| = |@Q| = n. Alice is allowed to send Bob a message m that depends only on the graph G 4. Bob
must then output a matching M C E4 U Ep. What is the minimum size of the message m that Alice sends to
Bob that allows Bob to recover a matching of size at least 1 — € of the maximum matching in G4 U Gg? The
minimum message length is the one-round communication complexity of approximating bipartite matching,
and is denoted by C'C'(¢, n). It is easy to see that the quantity C'C' (e, n) also gives a lower bound on the space
needed by a one-pass streaming algorithm to compute a (1 — €)-approximate bipartite matching. To see this,
consider the graph G 4 UG p revealed in a streaming manner with edge set E 4 revealed first (in some arbitrary
order), followed by the edge set Ep. It is clear that any non-trivial approximation to the bipartite matching
problem requires €2(n) communication and €2(n) space, respectively, for the one—round communication and
one-pass streaming problems described above. The central question considered in this work is how well can
we approximate the bipartite matching problem when only O(n) communication/space is allowed.

Matching Covers: We show that a study of these questions is intimately connected to existence of sparse
“matching covers” for bipartite graphs. An e-matching cover or simply an e-cover, of a graph G(P,Q, E)
is a subgraph G'(P, Q, E’) such that for any pairs of sets A C P and B C (@, the graph G’ preserves the
size of the largest A to B matching to within an additive error of en. The notion of matching sparsifiers may
be viewed as a natural analog of the notion of cut-preserving sparsifiers which have played a very important
role in the study of network design and connectivity problems [12} 4]]. It is easy to see that if there exists an
e-cover of size f(e,n) for some function f, then Alice can just send a message of size f(e,n) to allow Bob
to compute an additive en error approximation to bipartite matching (and (1 — €)-approximation whenever
G 4 UG p contains a perfect matching). However, we show that the question of constructing efficient e-covers
is essentially equivalent to resolving a long-standing problem on a family of graphs known as the Ruzsa-
Szemerédi graphs. A bipartite graph G(P, Q, E) is an e-Ruzsa-Szemerédi graph if E can be partitioned into
a collection of induced matchings of size at least en each. Ruzsa-Szemerédi graphs have been extensively
studied as they arise naturally in property testing, PCP constructions and additive combinatorics [7, [11} [19].
A major open problem is to determine the maximum number of edges possible in an e-Ruzsa-Szemerédi graph.
In particular, do there exist dense graphs with large locally sparse regions (i.e. large induced subgraphs are
perfect matchings)? We establish the following somewhat surprising relationship between matching covers
and Ruzsa-Szemerédi graphs: for any € > 0 the smallest possible size of an e-matching cover is essentially
equal to the largest possible number of edges in an e-Ruzsa-Szemerédi graph.

Constructing dense e-Ruzsa-Szemerédi graphs for general € and proving upper bounds on their size ap-
pears to be a difficult problem [9]]. To our knowledge, there are two known constructions in the literature.
The original construction due to Ruzsa and Szemerédi yields a collection of n/3 induced matchings of size
n/ 20(Viogn) using Behrend’s construction of a large subset of {1, ..., n} without three-term arithmetic pro-
gressions [3,[19]. Constructions of a collection of n%/ °21°8™ induced matchings of size n/3—o(n) were given
in [7, [17]. We use the ideas of [7, [17] to construct (% — 0)-Ruzsa-Szemerédi graphs with nit+$s(1/loglogn)
edges and a more general construction for the vertex arrival case. To the best of our knowledge, the only
known upper bound on the size of e-Ruzsa-Szemerédi graphs for constant € < % is O(n?/log* n) that follows
from the bound used in an elementary proof of Roth’s theorem [19].

One-round Communication: We show that in fact CC(e,n) < 2n — 1 for all ¢ > %, i.e. a message of

linear size suffices to get a %—approximation to the maximum matching in G4 U G'g. We establish this result
by constructing an O(n) size %—cover of the input graph that satisfies certain additional properties which

allows Bob to recover a %-approximatiorﬂ We refer to this particular %-cover as a matching skelton of the

2We note here that a maximum matching in a graph is only a %-cover.
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input graph, and give a polynomial time algorithm for constructing it. Next, building on the above-mentioned
connection between matching covers and Ruzsa-Szemerédi graphs, we show the following two results: (a)
our construction of %—cover implies that for any § > 0, there do not exist (% + 6)-Ruzsa-Szemerédi graph
with more than O(n/d) edges, and (b) our %—approximation result is best possible when only linear amount
of communication is allowed. In particular, Alice needs to send n!+%(}/1°e10gn) bits to achieve a (2 + §)-
approximation, for any constant § > 0, even when randomization is allowed.

We then study the one round communication complexity C'C)(e,n) of (1 — €)-approximate maximum

matching in the restricted model when the graphs G4 and Gp are only allowed to share vertices on one
side of the bipartition. This model is motivated by application to one-pass streaming computations when the
vertices of the graph arrive together with all incident edges. We obtain a stronger approximation result in this
model, namely, using the preceding %—cover construction we show that CC)(e,n) < 2n — 1 for e > 1/4.
Thus a %-approximation can be obtained with linear communication complexity, and as before, we show that
obtaining a better approximation requires a communication complexity of n+(1/loglogn) pjtg.
One-pass Streaming: We build on our techniques for one-round communication to design a one-pass stream-
ing algorithm for the case when vertices on one side are known in advance, and the vertices on the other side
arrive in a streaming manner together with all their incident edges. This is precisely the setting of the cele-
brated (1 — %)—competitive randomized algorithm of Karp-Vazirani-Vazirani (KVV) for the online bipartite
matching problem [13]. We give a deterministic one-pass streaming algorithm that matches the (1 — %)—
approximation guarantee of KVV using only O(n) space. Prior to our work, the only known deterministic
algorithm for matching in one-pass streaming model, even under the assumption that vertices arrive together
with all their edges, is the trivial algorithm that keeps a maximal matching, achieving a factor of % We
note that in the online setting, randomization is crucial as no deterministic online algorithm can achieve a
competitive ratio better than %

Related work: The streaming complexity of maximum bipartite matching has received significant attention
recently. Space-efficient algorithms for approximating maximum matchings to factor (1 — €) in a number of
passes that only depends on 1/ have been developed. The work of [16] gave the first space-efficient algorithm
for finding matchings in general (non-bipartite) graphs that required a number of passes dependent only on
1/e, although the dependence was exponential. This dependence was improved to polynomial in [5], where
(1—¢)-approximation was obtain in O(1/¢®) passes. In a recent work, [[1] obtained a significant improvement,
achieving (1 — €)-approximation in O(log log(1/¢€)/€?) passes (their techniques also yield improvements for
the weighted version of the problem). Further improvements for the non-bipartite version of the problem have
been obtained in [2]. Despite the large body of work on the problem, the only known algorithm for one pass
is the trivial algorithm that keeps a maximal matching. No non-trivial lower bounds on the space complexity
of obtaining constant factor approximation to maximum bipartite matching in one pass were known prior to
our work (for exact computation, an Q(nQ) lower bound was shown in [6]]).

Organization: We start by introducing relevant definitions in section (B} In section|C|we give the construction
of the matching skeleton, which we use later in section [D| to prove that CC(1/3,n) = O(n), as well as
show that the matching skeleton forms a 1/2-cover. In section [E] we deduce using the matching skeleton that
CCy(1/4,n) = O(n). In section |[F we use these techniques to obtain a deterministic one-pass (1 — 1/e)
approximation to maximum matching in O(n) space in the vertex arrival model. We extend the construction
of Ruzsa-Szemerédi graphs from [7, [17] in section |G} We use these extensions in section |H|to show that our
upper bounds on CC(e,n) and CC, (e, n) are best possible, as well as to prove lower bounds on the space
complexity of one-pass algorithms for approximating maximum bipartite matching. Finally, in section [l we
prove the correspondence between the size of the smallest e-matching cover of a graph on n nodes and the
size of the largest e-Ruzsa-Szemerédi graph on n nodes.
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B Preliminaries
We start by defining bipartite matching covers, which are matchings-preserving graph sparsifiers.

Definition 25 Given an undirected bipartite graph G = (P,Q, E), and sets A C P,B C Q,and H C E, let
My (A, B) denote the size of the largest matching in the graph G' = (A, B, (A x B) N H).

Given an undirected bipartite graph G = (P, Q, F) with |P| = |Q| = n, a set of edges H C F is said to
be an e-matching-cover of G if forall A C P, B C (), we have My (A, B) > Mg(A, B) — en.

Definition 26 Define Lo (e,n) to be the smallest number m’ such that any undirected bipartite graph G =
(P,Q, E) with P = QQ = n has an e-matching-cover of size at most m/.

We next define induced matchings and Ruzsa-Szemerédi graphs.

Definition 27 Given an undirected bipartite graph G = (P, Q, E) and a set of edges F' C E, let P(F) C P
denote the set of vertices in P which are incident on at least one edge in F, and analogously, let Q(F') denote
the set of vertices in QQ which are incident on at least one edge in F. Let E(F), called the set of edges induced
by F, denote the set of edges EN (P(F) x Q(F')). Note that E(F') may be much larger than F' in general.

Given an undirected bipartite graph G = (P, Q, E), a set of edges F' C F is said to be an induced
matching if no two edges in F' share an endpoint, and F(F) = F. Given an undirected bipartite graph
G = (P,Q, E) and a partition F of E, the partition is said to be an induced partition of G if every set F' € F
is an induced matching. An undirected bipartite graph G = (P, Q, E) with P = ) = n is said to have an
e-induced partition if there exists an induced partition of G such every set in the partition is of size at least
en. Following [7], we refer to graphs that have an e-induced partition as e-Ruzsa-Szemerédi graphs.

Definition 28 Ler U; (€, n) denote the largest number m such that there exists an undirected bipartite graph
G = (P,Q, E) with |E| = m, |P| = |Q| = n, and with an e-induced partition.

Note that for any 0 < €; < €2 < 1, any ez-induced partition of a graph is also an €;-induced partition, and
hence, Us(e, n) is a non-increasing function of e. Analogously, any €;-matching-cover is also an ex-matching
cover, and hence, Lc (€, n) is also a non-increasing function of e.

C Matching Skeletons

Let G = (P, Q, F) be a bipartite graph. We now define a subgraph G’ = (P, Q, E’) of G that contains at most
(IP| + |Q| — 1) edges, and encodes useful information about matchings in G. We refer to this subgraph G’
as a matching skeleton of G, and this construction will serve as a building block for our algorithms. Among
other things, we will show later that G’ is a %-cover of G.

We present the construction of G’ in two steps. We first consider the case when P is hypermatchable,
that is, for every vertex v € () there exists a perfect matching of the P side that does not include v. We then

extend the construction to the general case using the Edmonds-Gallai decomposition [[18].

C.1 P is hypermatchable in G

We note that since P is hypermatchable, by Hall’s theorem [18]], we have that [I'(A)| > |A| forall A C P.
For a parameter o € (0, 1], let Rg(a) = {A C P : |[I'¢(A4)| < (1/a)|Al}. Note that as the parameter «
decreases, the expansion requirement in the definition above increases. We will omit the subscript G when G
is fixed, as in the next lemma.
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Lemma 29 Ler v € (0,1] be such that R(c + €) = ) for any € > 0, i.e. G supports an a}i_g

P-side for any € > 0. Then for any two A1 € R(«), Ay € R(«) one has A1 U Az € R(«).

-matching of the

Proof: Let By = I'(A;) and By = I'(Ay). First, since (A1 X (Q\ B1))NE = @ and (A3 x (Q\ B2))NE =0,
we have that (A; N Az) x (Q \ (B1 N Bg)) = 0. Furthermore, since R(« + €) = (), one has |B; N Ba| >
(1/a)| A1 N Agl. Also, we have | B;| < |4;|/a,i =1, 2. Hence,

|B1U Ba| = |Bi] + |Bz| — [B1 N Ba| < (1/a)(|A1| + [A2] — [A1 N Az|) = (1/a)| A1 U Agf,

and thus (A; U Az) € R(«) as required. [ |
We now define a collection of sets (S;,7}),j = 1,...,+00, where S; C P,T; C Q,5;NS; = 0,i # j.

1. Setj:=1,Go:= G,ap := 1. We have Rg, () = 0.
2. Let 3 < a1 be the largest real such that R¢,_, (3) # 0.
3. Let Sg = Uaecr(s) 4, and Ty = I'(Sg). We have Sg € Rr;_,(53) by Lemma

4. Let Gj := Gj—1 \ (Sg UTp). We refer to the value of « at which a pair (S, 7T, ) gets removed from
the graph as the expansion of the pair. Set S; := Sg, T} := T, o := . If G; # 0, let j := j+ 1 and
go to (2).

The following lemma is an easy consequence of the above construction.

Lemma30 [. ForeachU C Sjone has |I'g,;(U)| > (1/a;)|U]|.

2. Forevery k >0, ((Ujgk Sj) X (Q \Uj<k T])) NE=0.

Proof: We prove (1) by contradiction. When j = 1, (1) follows immediately since we are choosing the
largest 3 such that R(f3) # (). Otherwise suppose that there exists U C Pg, such that [I'¢, (U)| < (1/a;)|U].
Then first observe that [, (U)| > (1/a;—1)|U|. If not then

1 1
(1551l +|U]) <

Tg,_ (Sj-1UU)| = |Tj-1| + [T'g,(U)| < . P~

(1Sj-1 LU,

since S;_1 N Pg = () by construction. Now as aj < a1 is chosen to be the largest real for which there
exists some subset U' C Pg, with [T, (U’)| < (1/c;)|U’|, it follows that for every U C Pg,, we must have
[T, (U)] = (1/a)|U].

(2) follows by construction.

|

To complete the definition of the matching skeleton, we now identify the set of edges of G that our
algorithm keeps. For a parameter v > 1 and subsets S C P, T" C () we refer to a (fractional) matching
M that saturates each vertex in S exactly « times (fractionally) and each vertex in 7" at most once as a -
matching of S in (S,T,(S x T) N E). By Lemma 30 there exists a (fractional) (1/c;)-matching of S; in
(S4,T},(S; x Tj) N E). Moreover, one can ensure that the matching is supported on the edges of a forest by
rerouting flow along cycles. Let M be a fractional (1/c;)-matching in (S}, Tj) that is a forest.

Interestingly, the fractional matching corresponding to the matching skeleton is identical to a 1-majorized
fractional allocation of unit-sized jobs to (1 — oo) machines [14} [8]; as a result, the fractional matchings x.
simultaneously minimize all convex functions of the x.’s subject to the constraint that every node in P is
matched exactly once.
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C.2 General bipartite graphs

We now extend the construction to general bipartite graphs using the Edmonds-Gallai decomposition of
G(P,Q, E), which essentially allows us to partition the vertices of G into sets Ap(G), Dp(G), Cp(G),
Ag(G), Dgo(G), and Cg(G) such that Ap(G) is hypermatchable to Dg(G), Ag is hypermatchable to
Dp(G), and there is a perfect matching between C'p(G) and Cg(G).

The Edmonds-Gallai decomposition theorem is as follows.

Theorem 31 (Edmonds-Gallai decomposition, [18)]) Let G = (V, E) be a graph. Then V' can be partitioned
into the union of sets D(G), A(G), C(G) such that

D(G) = {v € V|there exists a maximum matching missing v}
A(G) =T(D(G))
C(GQ) =V \ (D(G)U A(G)).

Moreover, every maximum matching contains a perfect matching inside C(G).

Applying Edmonds-Gallai decomposition to bipartite graphs, we get

Corollary 32 LetG = (P, Q, E) be a graph. Then'V can be partitioned into the union of sets Dp(G), Dg(G),
Ap(G),Ag(G), Cp(G),Co(G) such that

Dp(G) = {v € Pl|there exists a maximum matching missing v}
Dq(G) = {v € Q|there exists a maximum matching missing v}
Ap(G) =T'(Dq(G))
Aq(G) =T(Dp(G))
Cp(G) = P\ (Dp(G) U Ap(G))
CQ(G) = @\ (De(G) U AQ(G)).
Moreover,
1. there exists a perfect matching between Cp(G) and Cq(G)
2. forevery U C Ap(G) one has |I'(U) N Dg(G)| > |U]|
3. forevery U C Ag(G) one has |I'(U) N Dp(G)| > |U|.

Proof: (1) is part of the statement of Theorem To show (2), note that by definition of D¢ (G) for each
vertex v € Dg(G) there exists a maximum matching that misses v. Thus, [I'(U) N Dg(G)| > |U]| for every
set U. |

Using the above partition, we can now define a matching skeleton of (¢ using the above partition. Let Sy =
Cp(G),Th = Cq(G), and let M) be a perfect matching between Sy and Tp. Let (S1,71), .. ., (Sj,T}) be the
expanding pairs obtained by the construction in the previous section on the graph induced by Ap(G)UDg(G).
Let (S—j,T-;),..., (S—1,T-1) be the expanding pairs obtained by the construction in the previous section
from the () side on the graph induced by Ag(G) U Dp(G).

Definition 33 For a bipartite graph G = (P, Q, E) we define the matching skeleton G' of G as the union of
pairs (Sj,T}),j = —00, ..., 400, with corresponding (fractional) matchings M;. Note that G’ contains at
most |P| 4+ |Q| — 1 edges.

As before, we can show the following:
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Lemma34 /. ForeachU C S}, one has |T; N\T'qr(U)| > (1/c)|U]|.

2. Foreveryk > 0, ((P \ szk Sj> X (szk TJ>>QE = (), and ((Q \ Ujg—k Sj) X (Ujg—k Tj))ﬂ

Proof: Follows by construction of G’. [ |
We note that the formulation of property (2) in Lemma [§]is slightly different from property (2) in Lemma [6]
However, one can see that these formulations are equivalent when there are no (.S;, ;) pairs for negative j,
as is the case in Lemmal6l

D O(n) communication protocol for CC(3,n)

In this section, we prove that for any two bipartite graphs G, G2, the maximum matching in the graph
G| U G2 is at least 2/3 of the maximum matching in G; U G2, where G is the matching skeleton of G;.
Thus, CC(e,n) = O(n) for all ¢ > 1/3; Alice sends the matching skeleton G’, of her graph, and Bob
computes a maximum matching in the graph G’y U Gp.

Before proceeding, we establish some notation used for the next several sections. Denote by (5;,7}),j =
—00,...,+oo the set of pairs from the definition of G’. Recall that S; € Pwhenj > 0and 5; C @
when j < 0. Also, given a maximum matching M in a bipartite graph G = (P, Q, E), a saturating cut
corresponding to M is a pair of disjoint sets (A; U By, Ay U By) such that A; U Ay = P, B; U By = @, all
vertices in Ao U Bj are matched by M, there are no matching edges between Ao and B, and no edges at all
between A; and Bs. The existence of a saturating cut follows from the max-flow min-cut theorem. Let ALG
denote the size of the maximum matching in G} U G2 and let O PT denote the size of the maximum matching
in G1 U Gs.

Consider a maximum matching M in (G U G2) and a corresponding saturating cut (A; U By, Ay U Bs);
note that ALG = |B;| + |Az|. Let M* be a maximum matching in Eq N (A; x Bsy). Note that we have
OPT < |Bi| + |Ag| + |M*|.

We start by describing the intuition behind the proof. Suppose for simplicity that the matching skeleton
G of Gy consists of only one (S;,Tj) pair for some j > 0, such that |T;| = (1/a;)|S;|. We first note
that since the matching M™ is not part of the matching skeleton, it must be that edges of M* go from S;
to T;. We will abuse notation slightly by writing M* N X to denote, for X C P U @, the subset of nodes
of X that are matched by M*. Since all edges of M™* go from S; to T}, we have M* N Ay C S; N Ay
and M* N By C T; N By. This allows us to obtain a lower bound on |B;| and |Aj3| in terms of |AM*|
if we lower bound |Bi| and |Az| in terms of |S; N Aq| and |T; N Bs| respectively. First, we have that
|Bi| > [Py (S5 N A1)| = (1/a;)[Sj N Ar] > (1/ay)|M*|, where we used the fact that the saturating cut
is empty in G} U G and Lemma . Next, we prove that [, (S; N A2) N Ba| < (1/a;)[S; N Ay (this is
proved in Lemma |10| below). This, together with the fact that M* N By C T; N By = I‘G/1 (S; N Az) N By,
implies that |As| > «;|M*|. Thus, we always have |As| + |By| > (o + 1/c;)|M*|, and hence the worst
case happens at a; = 1, i.e. when the matching skeleton G} of G consists of only the (Sp, Tp) pair, yielding
a 2/3 approximation. The proof sketch that we just gave applies when the matching skeleton only contains
one pair (S;,7}). In the general case, we use Lemma [§| to control the distribution of A/* among different
(S, T}) pairs. More precisely, we use the fact that edges of M/ * may go from S; N A5 to T; N By only ifi < j.
Another aspect that adds complications to the formal proof is the presence of (.S;, T;) pairs for negative j.

We will use the notation

S:NAy, j>0 T:NBy, 7>0
. C J ’ . C J ’
Z]_{SjﬂBz, j<o. and WJ—{ijAl, j<0
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for the vertices in P and () that are matched by M* (see Fig.[2(a)). Further, let Z* denote the set of vertices
in Sy N A; that are matched by M* to By N Tp, and let W* = M*(Z*) C By NTy. Let Wi C Sy N Ay
denote the vertices in Sy N A; that are matched by M * outside of Ty. Similarly, let VVO2 C Ty N By denote the
vertices in Tp N By that are matched by M* outside of .Sy (see Fig. 2(b)). Let

(= B0 T (2 Ul U (Tey(2)US)

7>0
b= A0 T (W) UTq (WU (FGQ(ZJ-) U S,j)
7<0
Then since
OPT < |By| + [Ay| 4+ |M*| + (|B1 \ By| + A2\ 4))
ALG = |By| + |Ay] + (|B1 \ By| + |42\ Ag)),

it is sufficient to prove that (|B1| + |45]) > (2/3)(|B}| + |AL| + |M*|). Let OPT' = |B}| + |AL| + | M*|
and ALG' = |Bj| + |A}|. Define A’ = (OPT' — ALG’)/OPT’. We will now define variables to represent

BZ - T - T . Bl BZ — — Bl
T W) (s, (Zy) L} >1 /) Sy (2T, (W) W) ) (L T T
S1 Tf1 [Zl S, T, W 1 | T‘,l, 59 Wi, 7* S, /T W l,‘\“
A, A A - A,
(a) Distribution of (S}, T}) pairs across the cut (b) Matching of the (So, To) pair

Figure 2: The structure of the saturating cut

the sizes of the sets used in defining B}, A%:

w(l) = |W01’7w(2) = ‘WO2|7Z* = ‘Z*|7w* = |W*‘7(N0te that Z* == ’U)*)
SjNAs[ j>0

Lemma expresses the size of B and A in terms of the new variables defined above.
Lemma 35 ALG' =Y. o(sj +75) + (2" +wp) + (w* +wp), and OPT' < z* + (2* +wg) + (w* + wg) +
> 0(sj + zj +1j).
Proof: The main idea is that most of the sets in the definitions of B{ and A, are disjoint, allowing us to

represent sizes of unions of these sets by sums of sizes of individual sets.
For ALG', recall that I'g/ (S;) = T and hence, the sets I, (S;) are all disjoint. Further, the sets S; are

all disjoint, by construction, and disjoint with all the 7}’s. Thus, [A}| + |B3| = [Tgr (W) U 'y (W) +
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Te (Z*) UTla (W) + >_jz0(sj + ;). The sets W* and W¢ are disjoint. Further, they are subsets of T
(corresponding to o = 1), and hence nodes in these sets have a single unique neighbor in G’ ; consequently
T (W) Ulg (W&)| = w* + w?. Similarly, Ter (Z2*)Ulg (W3] = z* + w}. This completes the proof
of the lemma for ALG'.

We have OPT’ = ALG’ + | M*|. Consider any edge (u,v) € M*. This edge is not in G} and hence must
go from an S; to a Tj where 0 < j* < jor 0 > j' > j. The number of edges in A/* that go from Sy to T is
precisely z* by definition; the number of remaining edges is precisely 0 %+ [ |

We now derive linear constraints on the size variables, leading to a simple linear program. We have by
Lemma [34] that for all £ > 0

P\UUz | x| Jw;] |nEL=0, and o\ z | x| Uw)||nEi=0 9
j>k >k J<—k J<—k
The existence of M* together with (9)yields
+00 +o0 —k —k
> 2> w;, k>0,  and oz ) w, k>0 (10)
j=k j=k j=—o0 j==—00

Furthermore, we have by definition of WO1 together with (Q)that

wéSsz—ij and w%Ssz—ij. (11)

j<0 j<0 §>0 §>0
Also, we have
_ 1 , 2 ,
E zj = wy + E W and E zj = wj + g wj. (12)
j<0 j<0 >0 >0

Next, by Lemma[34] we have r; > (1/c;)z;. We also need

Lemma 36 (/) |FG/1(S] N A2) N BQ| < (1/013')’5]‘ N A2|f01" all j > 0, and (2) |Fc;/1(S] N Bl) N A1| <
(1/a;)|S; N By forall j < 0.

Proof: We prove (1). The proof of (2) is analogous. Suppose that [I'g: (S; N A2) N Ba| > (1/a;)[S; N As|.
Then using the assumption that (4; x Bs) N E' = (), we get

|75 = |75 N Ba| + [T N Bi| > [Ty (Sj N A2) N Ba| + [Ty (S5 N Ay
> (1/a;)|55 N Ag| + (1/0)]S; N Ax| > (1/e)[ 551,

a contradiction to the definition of the matching skeleton. [ |

We will now bound A" = (OPT’ — ALG")/OPT’ using a sequence of linear programs, described in
figures We will overload notation to use Py, Py, P;, respectively, to refer to these linear programs
as well as their optimum objective function value. By Lemma one has for all j # 0 that (1/a;)s; > w;.
We combine this with equations and [12to obtain the first of our linear programs, Py, in figure [3(a)]
Bounding A’ is equivalent to bounding this LP (i.e. A’ < Pj). Note that we have implicitly rescaled the
variables so that OPT" < 1.
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Py = maximize z*+sz s.t.
370
* * 1 * 2
24 (27 wp) + (W wd) + > stz <1
370

+00 +oo
Vk > O’sz > ij,
=k =k

—k
vk > 0, Z Zj > Z wj

j=—00 j=—o00
Vi #0,(1/a;)s; > w;
Vi # 0,15 > (1/ay)z;

7<0 7<0

7>0 7>0
Zf=w*

s, z,w, T, 25w, wg, wi >0

+o0o
P; = maximize E zj st

Jj=0
—+o00
Z S+ zj+r; < 1
j=0

k k
VE>0,> w; >z
=0 §=0

(L/ej)s; 2wy, j >0
rj > (1/aj)zj,j 2 0

z,z,w,” >0

sz :w(1]+2wj
ZZ]' :wg—Fij

oo
P = maximize sz s.t.
j=0
D ey +1+1/05)z <1
J
z>0

Figure 3: The linear programs for lower bounding ALG/OPT.

We now symmetrize the LP P} by collecting the variables for cases when j is positive, negative, and 0

to obtain LP Py in figure Finally, we relax LP P; by combining the second and third constraints, and
then establish that the remaining constraints are all tight. This gives us the LP P53 in figure Details of

the construction are embedded in the proof of the following lemma.

Lemma 37 P/ < Py < F5.

Proof:

From P} to P3

We will show that the optimum of the LP P53 in figure is an upper bound for the optimum of P} in

o0

figure [3(a)l First increase the set {a;}72

function). Now, we define

~

s =s8;+s5_4,7>0

J
T;:Tj+7”_j,j>0
Z;ZZj+ij,j>0
w;:wj+w,j,j>0
wh = w* +wh + w§
sp = w* + wh + w}
2y = 2"
ro = 2"

22

to ensure that «; = «_;(this can only improve the objective
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We will show thatif s, 7, 2z, w, 2*, w*, w, wg are feasible for Py, then s', 1/, 2/, w’ are feasible for Py with
the same objective function value.

First, the objective function is exactly the same by inspection. Constraints 3 and 4 of P5 for j > 0 are
linear in the respective variables and are hence satisfied. Furthermore, one has

(1/an)shy = w* + w§ + wh = w

and
ro = 2% = 2.

Hence, constraints 3 and 4 are satisfied for all 3 > 0.
To verify that constraint 1 is satisfied, we calculate

—+00 —+00
s+ 25 4 1) :.96+26+T6+Z(S;+z§-+r;)
j=0 J=1
= (W't wp+wd) + 27+ 2"+ (s 42 +7))
J#0
=2+ (2t wp) + (2" +wp) + > (sj+2+7) <L
J#0

We now verify that constraint 2 of P35 is satisfied. First, for k = 0 one has

wh = w* + wh + wi > w* = 2* = 2.

Next, note that by adding constraints 2,3 of P|" we get

D= ) w (14)

ljl=k ljl=k

for all £ > 0. Adding constraints 6 and 7 of P, we get

sz:w(l)+w(2)+2wj. (15)
j#0 J#0
Subtracting (I3) from (14)), we get
k k
>z <wptwy+ Y w (16)
li[=1 li[=1

Adding 2* to both sides and using the fact that 2}, = z* and wj, = 2* + w} + w3, we get

k
ZZ]' S Zw] (17)

k
J=0 J=0

This completes the proof of the first half of lemma
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From Py to P35

We now bound P;. First we relax the constraints by adding constraint 3 of over j from 0 to k£ and adding to

constraint 2:

o0

maximize g Zj
J=0
S.t.

x
Zsj+zj+rj§1

=0 (18)
k k

Z(l/aj)sj Z ZZ]',V]C Z 0

7=0 7=0

rj > (1/aj)2,¥j >0

z,z,w,m >0

Note that the first constraint is necessarily tight at the optimum. Otherwise scaling all variables to make
the constraint tight increases the objective function. We now show that all of the constraints in the second line
of (I8) are necessarily tight at the optimum. Indeed, let £* > 0 be the smallest such that 25:0(1 Jaj)sj >

Z?;o zj. Note that one necessarily has si~ > 0. Let

+ (o g1/ g )depe 41

/ /
r=rz =z,

s’ =5 — fepx

where e; denotes the vector of all zeros with 1 in position j. Then

for all k£ and

k
(1/a)ss > Zz

j=0

M?r‘

Jj=0

[e.e]

Zs +z +r

]:

=1- (5(1 — ak*+1/ak*).

0

So for sufficiently small positive d > 0 one has that

8” — 8//(1 _ 5(1 — ak*+1/ak*))
T=0r"/(1-06(1 — apri1/ag))
2 =21 —0(1 — a1 /o))

form a feasible solution with a better objective function value.

Thus, one has Z?zo(l/oaj)sj =

Additionally, one necessarily

Z?:o z; for all K > 0 and hence (1/c;)s; = z; for all j.
has r; = (1/a;)z; for all j at optimum. Indeed, otherwise decreasing r;

does not violate any constraint and makes constraint 1 slack. Then rescaling variables to restore tightness of
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constraint 1 improves the objective function. Thus, we need to solve

[e.e]
P35 = maximize g Z;

7=0
S.t. (19)
Z(O&j + 1+ 1/()4j)2’j < 1
J
z>0
|

But Py is easy to analyze: there exists an optimum solution that sets all z; to zero except for a j that minimizes
(aj + 14 1/a; ). For all non-negative z, f(r) = 1+ x + 1/ is minimized when x = 1, and f(1) = 3. This
gives P; < 1/3,and hence A’ < 1/3,or ALG’ > (2/3)OPT’. Thus, we have proved

Theorem 38 For any bipartite graph G, = (P, Q, E1) there exists a subforest G of G such that for any
graph Go = (P, Q, E2) the maximum matching in G U G4 is a 2 /3-approximation of the maximum matching
in G1 U Gy; further, it suffices to choose G| to be the matching skeleton of G1.

Corollary 39 CC(},n) = O(n).
Theorem also implies that the matching skelton gives a linear size 1/2-cover of G.
Corollary 40 For any bipartite graph G = (P, Q, E), the matching skeleton G' is a %-cover of G.

Proof: We need to show that forany A C P, B C Q,|A|,|B| > n/2 such that there exists a perfect matching
between A and B in G one has E' N (A x B) # 0. Let Gy = (PU P',Q U Q', Mp U M) be a graph
that consists of a perfect matching from a new set of vertices P’ to @ \ B and a matching from a new set of
vertices Q' to P\ A. Then the maximum matching in G U G2 is of size (3/2)n.

By the max-flow min-cut theorem, the size of the matching in G’ U Gy is no larger than [P\ A| + |Q \
B| +|E' N (A x B)|. By Theorem [38]the approximation ratio is at least 2/3, and |P \ A| + |Q \ B| < n, so
it must be that |E' N (A x B)| > 0. [

E O(n) communication protocol for CC,(,n)

In this section we prove that CC,(e,n) = O(n) for all € < 1/4. In particular, we show that given a bipartite
graph G1 = (P, Q, E1), there exists a forest F' C Ej such that for any Gy = (P, @, F') that may share
nodes on the @ side with G but not on the P side, the maximum matching in G} UG} is a 3/4-approximation
of the maximum matching in G; U G2. The broad outline of the proof is similar to the previous section, but
we can now assume a special optimal matching using the assumption that (G2 may only share nodes with G
on the () side.

We first prove

Lemma 41 Let G = (P, Q, E) be a bipartite graph and let S C P be such that |T'(U)| > |U| forall U C S.
Then there exists a maximum matching in G that matches all vertices of S.

Proof: Let M be a maximum matching in G1 U G5 that leaves a nonempty set U C S of vertices exposed.
Let U be the largest subset of S exposed by M. We will show how to obtain a different maximum matching
M’ that leaves one fewer nodes exposed. Orient edges of the matching M from @ to P and orient all other
edges from P to . Denote the set of all nodes reachable from U by I'*(U). Suppose that no node outside S
is reachable in this directed graph. Then we have |I™*(U) N Q| = [I'™*(U) N P| — |U]|, a contradiction since
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1. I''(U) N P C S by assumption;
2. T*(U)NQ = [(T*(U) N P).

Thus, there exists an (even length) path in this directed graph from U to P \ S. Swapping edges in and
out of M along this path decreases the number of unmatched nodes in S by one while preserving the size of
the matching. Repeating the argument, we obtain a maximum matching in GG; U G5 that matches all of S.

|
We also need

Lemma 42 Let Gi = (P1,Q,E),G2 = (P, Q, E) and let G, be the matching skeleton of G. Let (A; U
By, As U By) be a saturating cut corresponding to a maximum matching in G, U Ga. Then,

1. forall j < 0 onehas S; N By = ;
2. forall j > 0 one has |I'p, (S; N A1) > (1/a;)]S; N A

3. for all edges e = (u,v) € (A1 X Ba) N Ey one has u € S; for some j > 0 and v € T; for some i,
0<i<j.

Proof: We start by showing part (1) of the lemma. By the choice of the cut (A; U By, A2 U Bs) all of Aj can
be matched to @ \ By in G} U G2. Let T* = I'; (S; N Bz). One has [T™[ > (1/e;)|S; N Bs|. Hence, since
vertices only arrive on the P side, one has [I'cryg, (T7) \ Bi| < «;|T*| < [T™|, which contradicts the choice
of the cut (41 U By, A2 U By).

Part (2) follows directly by Lemma [34] together with the assumption that (4; x By) N E = (. Now (3)
follows from (1) together with the fact that edges e € E; \ E7 that have one endpoint in 7,7 > 0 can only go
to S; for some j > 0 by construction of G/,. u

We now prove the main theorem of this section:

Theorem 43 Let G1 = (P1,Q, E1), Gy = (P2, Q, Es) be bipartite graphs that share the vertex set on one
side. Let G| be the matching skeleton of G1. Then the maximum matching in G UG is a 3 /4-approximation
of the maximum matching in G1 U Go.

Proof: Let (S;,7}),j = —o0,...,400 be the pairs from the definition of G’. Consider a saturating cut
(A1 UBy, Ay U BQ) in Gll U Gs. Recall that Ay, Ao C Py U Py, B1,By C Q, (Al X BQ) N (Ei U E2) =,
ALG = |By| + | A2
Let S := szo S;. Choose a maximum matching M in Gy U G2 such that M matches all of S, as
guaranteed by Lemma#1] Define
Kj = {U EFGQ(SJ‘)OBQ : M(’U) QS}
K]* ={v GFGE(Sj)ﬂBl : M(v) ¢ S}

By Lemma [#2]there are no edges in Gy from 7}, j < 0 to By. This implies that
((Al \ S) X BQ) N (E1 U Eg) = 0. (20)

This allows us to obtain the following bound on the size of the matching M, which we denote by OPT'. It
follows from [20| that a matching edge that has an endpoint in A; \ .S necessarily has the other endpoint either
in K7 for some j orin By \ I'g; (). Hence, we have

OPT <|S|+ > (IK;| + |K;|) + (IB1 \ Ty (S)] + A2\ (S U | M(K;)))). Q1)
Jj=0 j>0
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Indeed, if an edge € € M has an endpoint in .S, it is counted by the first term. Otherwise if e has an endpoint
in L' (S;) N By for some j, it is counted in Kjj; if e has an endpoint in I'g/ (S;) N By for some j, it is counted
in K]* Finally, if e satlsﬁes none of the above conditions, it must have one endpoint in either By \ Ler (S) or
A2\ (SUUj50 M(Kj)) by 20 . Note that an edge e € M may satisfy more than one of these condmons and
hence we are only gettmg an upper bound on O PT.

By definition of the cut (A; U By, A2 U Bsy) we also have

ALG =|By| + |Ag| = |S N Ag| + Y |M(K)| + [T () N By
j7>0

+(1Bi\ Ly (S)] + 42\ (S U [ M(K;)),

320

(22)

where we use the fact that M (K;) C Ay \ S by definition of K together with 20} Thus, since | M (K;)| =
| K|, it is sufficient to show that

|51 As| + D [K| + [T, (S) N Bl > (3/4)(IS] + Y 15| + K1)

Jj=0 j>0
Let

ALG' =S 0 Ag| + > K | + [T (S) N By

j=0
OPT' =S|+ ) |K;| +|Kj].
J=0
Letx; := |Sj|72j = |S] N A1|,w]' = |FG/1(SJ N Al)\,r;‘ = |K;|,’I"j = |K]’
We will derive relations between these variables using the properties of the matching skeleton. By con-
struction of G} we have

(Sz X T]) NE = @,Vi < J. (23)
Define canonical cuts (Uy, Wy,) as
k k
Ue=Usich.m=JTce 24
=0 j=0

By we have that (U x (Q \ W) N (Ey U Ey) = 0.
Since M matches all of S, we have using the fact that canonical cuts are empty that for each k > 0

k
Ukl < (Wil = > (15| + [KF)).
j=0
Since |T}| = «|S;| by definition of G} and since T are disjoint, this can be equivalently stated in terms of
the new variables as

[an
tvjw

((1/ay)x —T‘]—T‘ zj,Vk > 0. (25)
3=0 J=0
Thus, in terms of the new variables we have
o0 o0 o
OPT' =) zj+ > ri+ > 1 (26)
=0 =0 =0
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Similarly,

o0 o0 o0
ALG =) (wj—z) + Y wj+ > 75 27)
j=0 =0 =0

By Lemma2] (3), we have |T'p, (S; N A1) = w; > (1/0y)z;.
Thus, putting (26), (27), together, we have that it is sufficient to lower bound the solution of
obtaining a lower bound of P} on the ratio ALG’/OPT’, and hence on ALG/OPT.

o
* —_— 1 1 1 - - - -
P} = minimize E (xj —25) +wj+rj
=0
S.t.

=0

]k . (28)
Z((l/aj)x] —rj—r)) = ijka

j=0 j=0

i < wj

We now transform [28]in two steps to obtain bounds P; < Py < Py, and then show that P§ > 3/4.

First note that at the optimum one has » = 0 since decreasing r and scaling all variables appropriately
does not violate any constraints and only improves the solution. Next, we show that at the optimum, the third
constraint is necessarily tight for all k. Otherwise let k be such that the constraint is not tight and let £* be the

smallest such that k* > k and rp« > 0.
Let
=z
r* = 1r* 4 Sej, — deps
w = w + dep, — Sep-

2 =24+ Qe — QfpxCl .

Note that 2/, 7*', w', 2’ form a feasible solution if § > 0 is sufficiently small. Finally,

e

Il
o

) )
(l’j — Zj) + wj.

Z(x; —zi) +wj = Z(ﬂc] —zj) +wj | +0(—ag +oye) <

J=0 Jj=0 J

Also, for fixed *, z one can maximize z; pointwise, so 77 = (1/a;)z; for all j.
Thus, we have Py < Pf, where
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o0
Py = minimize 1 — E 2;
J=0
S.t.

M

<
Il
o

(zj + (1/aj)z) =1 (29)

] =

k
(1/aj = Da; > (1/aj)zj, Yk
=0

Il
=)

8 .
N

>0

)

Finally, we show that constraints in line 2 are necessarily tight at the optimum. Otherwise let k* be the

smallest such that constraint 2 is slack. Note that we necessarily have xx« > 0. Let
1/« — 1

¥ =x — ey + 5ek*+1/k7,
ok —1

which is feasible for sufficiently small 6 > 0 and makes constraint 2 satisfied for all k. Let

1oy — 1 1/ 41 — 1/ g
<1—/a’“ ):1—5/%“ [ar

oo
v = Tj+ojzj)=1-90
Z( J J ]) 1/0{k*+1 -1 ]./O(k;*_*_l -1

J=0

Now " = '/, 2" = z/~ are feasible solutions that improve the objective function.
Thus, we have z; = z;/(1 — «;) for all j > 0 (note that o = 0 at the optimum for the same reason as
r = 0). Thus, we get P < Pj, where

[e.e]
P35 = minimize 1 — Z 2
j=1
S.t.
(30)

o0

D (1/(1 =)+ 1ay)z =1

j=1
z2>0

In order to lower bound P4, it is sufficient to minimize f(a) = 1/(1 —«a) + 1/a overall o € (0, 1]. One
has f'(a) = 1/(1—a)? —1/a?, f'(1/2) = 0and f"(a) = 2/(1 — a)*+2/(1 — a)? > 0. Hence, the unique
minimum is attained at o« = 1/2.

Thus, we have z; = 1/4 for a; = 1/2 and zero otherwise. The objective value is 3/4, proving that
3/4 < P§ < Py < Pf,and hence ALG/OPT > 3/4. [ |

F One-pass streaming with vertex arrivals

Let G; = (P;,Q, E;) be a sequence of bipartite graphs, where P; N P; = () for ¢ # j. For a graph G, we
denote by SPARSIFY*(G) the matching skeleton of G' modified as follows: for each pair (S}, 7)), j < 0keep
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an arbitrary matching of S; to a subset of 7T}, discarding all other edges, and collect all these matchings into
the (Sp, Tp) pair. Note that we have S; C P, where P is the side of the graph that arrives in the stream. We
have

Lemmad44 Let G = (P,Q, E) be a bipartite graph. Let G' = SPARSIFY*(G). Let (S;,Tj),j =
0,...,+00 denote the set of expanding pairs. Then E N (S; x Tj) = () forall i < j.

Let

G = SPARSIFY*((}), and G, = SPARSIFY*(G/_, UG,). 31)

We will show that for each 7 > 0 the maximum matching in G, is at least a 1 — 1/e fraction of the
maximum matching in | J]_, G;. We will slightly abuse notation by denoting the set of expanding pairs in G-
by (Sa(7),Tw(7)). Recall that we have o € (0, 1], and |So(7)| = a|To(7)|. We need the following

Definition 45 For a vertex u € P define its level after time T, denoted by o, (T), as the value of o such that
u € Sy (7). Similarly, for a vertex v € Q define its level after time T, denoted by o, (7), as the value of «
such that w € T, (7). Note that for a vertex u is at level & = v, (T) the expansion of the pair (S, (), To (7))
that it belongs to is 1/ .

Before describing the formal proof, we give an outline of the main ideas. In our analysis, we track the
structure of the matching skeleton maintained by the algorithm over time. For the purposes of our analysis,
at each time 7, every vertex is characterized by two numbers: its initial level 3 when it first appeared in the
stream and its current level o at time 7 (we denote the set of such vertices at time 7 by S, (7)). Informally,
we first deduce that the matching edges that our algorithm misses may only connect a vertex in S, 5(7) to a
vertex in Tz () for 8’ > 3, and hence we are interested in the distribution of vertices among the sets S, (7).
We show that vertices that initially appeared at lower levels and then migrated to higher levels are essentially
the most detrimental to the approximation ratio. However, we prove that for every A € (0, 1], which can
be thought of as a ‘barrier’, the number of vertices that initially appeared at level 3 < X but migrated to a

level @ > A can never be larger than A Uﬂ/e[ A T»Y(T)‘ at any time 7. This leads to a linear program whose
optimum lower bounds the approximation ratio, and yields the (1 — 1/e) approximation guarantee.

Lemma 46 For all w € P and for all T, ou, (T + 1) > (7). Similarly for v € Q, a, (7 + 1) > ay (7).

Proof: We prove the statement by contradiction. Let 7 be the smallest such that 3o € (0, 1] such that
R:={u€ P:uec Sy(r),au(t+1) < ay(r)} # 0. Let o = minyer o (7 + 1) (We have a* < a by
assumption). Let R* = RN S, (7 + 1). Note that R* C S, (7). We have

Car (R = [T (BY)| = (1/a”)[RT[ > (1/e)|R7. 32)

Since [U'ar (Sa(7))| = (1/)|Sa(7)], (B2) implies that S, (1) \ R* # (). However, since |T'q: (Sa(7) \ R*)| >
(1/a)[Sa(T) \ B*],

Lar (Sa(T)\ B") NTa (RY) # 0.

This, however, contradicts the assumption that (S, (7) \ R*) N Su«(7 4+ 1) = () and the fact that G, | =
SPARSIFY*(G~, Gr41).
The same argument also proves the monotonicity of levels for v € Q). [ |

Let S, (7) denote the set of vertices in u € P such that

1. w e Sg(7’), where 7/ is the time when w arrived (i.e. u € P.), and
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2. u € Su(r).
Note that one necessarily has o > § by Lemma for all nonempty S, 3. We will need the following

Lemma 47 For all T one has for all X € (0, 1]

@\ U Tum)x J Sas(r) | n|JE =0
t=1

a€[A1] Be[N1]

Proof: A vertex u € S, g(7) with 5 > X that arrived at time 7,, could only have edges to v € T\/(7,) for
N > \. By Lemma @ such vertices v can only belong to T\ (7) for some \” > X' > 3 > X, and the
conclusion follows with the help of Lemma 4] [ |

Let to(7) = |Ta(7)|, 50,8(T) = |Sa,s(7)|. The quantities to(7), sq,g(7) are defined for o, € D =
{Ak : 0 < k < 1/A}, where 1/A is a sufficiently large integer (note that all relevant values of «,
are rational with denominators bounded by n). In what follows all summations over levels are assumed to
be over the set D. Then

Lemma 48 For all T and for all o € (0,1), the quantities to(T), So 5(T) satisfy

Yo Y spa(n) < (a—4) D ta(n). (33)

/BG[O’J} (SE(0,0!—A] 66[0671}
Proof: The proof is by induction on 7.
Base: 7 = 0 At 7 = 0 the lhs is zero, so the relation is satisfied.

Inductive step: 7 — 7+ 1 Fix a € (0,1). Forall v € (0, — A] let

Ry(m)=S,nn| |J Ss(r+1)
Bela]

We have [Ty (Ry(7))] = (1/9)| Ry ()] and Ty (Ry(7))  Upefa,) To(7 +1).
Also, we have by Lemma [46] that

U 7)) | u U Te® @) |c U T+,
BE[a,1] ~vE(0,a—A] BE[a,l]

Moreover, since I'¢x (R.,(7)) are disjoint for different  and disjoint from Ts(7), 8 € [a, 1], letting
T (T) = ’RV(T)\, we have

S ez S s+ Y o= Y tﬂ(7)+a_1A ST (). G4

BE[a,1] BeE(a,1] vE€(0,a—A] BeE[a,1] v€(0,a—A]

Furthermore, by Lemma

Yo Y sesr+)= 30 Y spa+ DL (7)) (35)

BE[a,1] 6€(0,0—A] BE[r1] 6€(0,0—A] ~e(0,a—A]
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Since by inductive hypothesis

> ta(n) > a_lA Yoo D speln). (36)

Bela,1] B€[a,1] 6€(0,a—A]

we have by combining (34), (33) and (36)

1
dotgr+1) = > ts(r) + —% 7 (T)
Bela,l] Be€la,1] v€(0,a—A]
1
NP ID DR D DD DI S EPC)
B€la,1] 6€(0,a—A] B€a,1] 6€(0,a—A]

= a—;A Z Z 8575(7'4- 1).

BEla,1] 6€(0,a—A]

|

In what follows we only consider sets S, g(7),To(7) for fixed 7, and omit 7 for brevity. Let S =

Ua7 53 Sa,s- Choose a maximum matching A in G that matches all of .S, as guaranteed by Lemma Let

denote the number of vertices in 7} that are matched outside of S by M (note that no vertices of 75, a € (0, 1)

are matched outside of S by lemma . For each a € (0, 1] let r,, < t, denote the number of vertices in Ty,
that are not matched by M. Then the following is immediate from lemma [47]

Lemma49 Forall N <1

Yota= Y sapt Y. Tatr 37)

acM\1] a€[M1],6€[M1] acM\1]
Proof: Follows from Lemma 47l ]
We also have
DD sse= . Bt (38)
B€[a,1] 6€(0,1] B€[a,1]

for all o« € (0, 1].
By Lemma {8 and Lemma 9] we get

ALG = 3 (ta—71a) + (1 — 71— 7)

a€(0,1)
OPT = ALG +~
t1 2 v+mr.

Thus, we need to minimize ALG /OPT subjectto t; > ri +7,tq, Sq,3 > 0 and

Vae (0,1]: > tg=v+ D> > spst >, s

BE[a,l1] BE[a,1] 6€[a,1] BE[a,1]
VO&G Z Z Sﬂ5< a—A Z tg (39)
BE[a,1] 6€(0,a—A] B€[a,1]
Yo € (0, 1] Z Z 88,8 = Z ,Btg.
B€[a,1] 6€(0,1] B€[a,1]
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We start by simplifying (39). First note that we can assume without loss of generality that r; = 0. Indeed, if
r1 > 0, we can decrease r; to 0 and increase v to keep ALG constant, without violating any constraints, only
increasing O PT. Furthermore, we have wlog that ¢; > 0 since otherwise ALG/OPT = 1. Finally, note that
setting ¢, = -y only makes the ratio ALG /OPT smaller, so it is sufficient to lower bound 3, ¢ ¢ 1)(fa — Ta)
in terms of -y, and for this purpose we can set v = 1 since this only fixes the scaling of all variables. Thus, it

is sufficient to lower bound the optimum of (40}, obtaining a lower bound of % on the ratio ALG/OPT.

P; = minimize Z (ta — Ta)
a€e(0,1)
S.t.
Va € (0,1] Z tg > 1+ Z Z 58,6 + Z 3.
Be€la,1] Bela,1] §€la1] B€a,1] 40)
Vae (0,1]: Y. Y sgs<(a—A) > tg
BEla,1] 6€(0,a—A] BEa,1]
Vae (0,1 Y Y spe= ) Big
B€la,1] 0€(0,1] BE[a,1]
ta, Sa,B > 0.

Combining constraints 2 and 3 of {@0), we get

1

1
d(l+a—-Atg>v+ ) Bt
B=«a B=«a

Thus, it is sufficient to lower bound the optimum of

P} = minimize Z (ta —Ta)
a€e(0,1)
S.t.
(41)
Va € (0,1] :Z(l—ﬁ+a—A)t52 1+ Z T
B>a B€[a,1)
ta > 0.

We first show that one has 7, = 0 for all a € [0, 1) at the optimum. Indeed, suppose that ro~ > 0 for
some o € (0, 1). Then since the coefficient of {4+ is (1 —a* +a—A) <1 -A < 1,5 =a* > «a, we can
decrease 7, by some § > 0 and also decrease ¢4+ by ﬁ < ¢, keeping all constraints satisfied and improving

the value of the objective function.
Thus, we arrive at the final LP, whose optimum we need to lower bound:

33



P; = minimize Z ta
a€e(0,1)
S.t.
Vo€ (0,1]:) (1-B+a—A)tg> 1.
Bza
to > 0.

(42)

We now show that all constraints are necessarily tight at the optimum. Let o* € [0, 1] be the largest such
that constraint 1 is not tight. Note that one necessarily has ¢, > 0. Let

t'=t— ey + Cat—A-

1+A

We now verify that all constrains are satisfied. For o > «* all constraints are satisfied since we did not
change ¢. For o = «*, the constraint is satisfied since it was slack for ¢ and ¢ is sufficiently small.
For a < a*,i.e. a < o™ — A since we are considering only a € D, we have

<1—(a*—A)+a—A

1-B4+a—-A)y=>» 1-B+a—-A)g+4 —(1-a"+a-A)
B

Bza Bza L+a
IA(a* —a—A)
=D (=fra-As+—————>> (1-f+a—-A)s> 1.
B>a B>«
Thus, at the optimum we have
> 1+ (a—B—A)tg=1,Ya € [0,1]. (43)

B>

Subtracting @3) for oo + A from @3) for a, we get
D (I+(@=B8-A)tg— > (I+(a+A—F—A)g

B>a B>a+A
=ty —A) tg=0.
B>a

(44)

In other words,
ta =AY tg ity >1. (45)
B>a

Letd = ﬁ. We now prove by induction that ¢;_;x = 6(1 + §)*~! for all & > 0.

Base:k =1 t1_A = 1% = 4.

A
Inductive step: £k — k+ 1

k
tena = A [ t_grna + 140> (146)7!
j=1
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Thus,

k
. 1— (14 6)*
_ 1| _ _ k
ti-ernya =0 [ 1+ 5;(1 +0) 1] =6 <1 + 51_(1”)) =6(1+ )"

Hence, one has

1/A 1/A

- 1— (14644 A _
> 146y t=g—— "% (a1 = (14" 1= (1-A)"VA_1
Zm_dZ(M) 5 iy (1+96) + 1A (1-A)
a€l0,1) j=1
Now, the size of the matching M is bounded by
OPT < ) ta+1.
a€(0,1)
On the other hand,
ALG > Z to.
«€[0,1)

Thus, we get

ALG Py 1 1 1A

— =1-——>1- >1-(1-A)Y2>1-1
OPT ~ Pr+1 Prr1- P4l (1-A)"z1-1/e

since (1 — A)Y/A < 1/e forall A > 0. We have now proved

Theorem 50 There exists a deterministic O(n) space 1-pass streaming algorithm for approximating the max-
imum matching in bipartite graphs in the vertex arrival model.

Proof: Run the algorithm given in (31)), letting | P;| = 1, i.e. sparsifying as soon as a new vertex comes in.
The algorithm only keeps a sparsifier G in memory, which takes space O(n). [ |

G Constructions of Ruzsa-Szemerédi graphs

In this section we give two extensions of constructions of Ruzsa-Szemerédi graphs from [7]]. The first con-
struction shows that for any constant € > 0 there exist (1/2 — ¢)-Ruzsa-Szemerédi graphs with superlinear
number of edges. We use this construction in sectionto prove that our bound on C'C'(e,n), e < 1/3 is tight.
The second construction that we present is a generalization to lop-sided graphs, which we use in section [Hto
prove that our bound on C'C,,(€,n), e < 1/4 is tight. Specifically, we show the following results:

Lemma 51 For any constant ¢ > O there exists a family of bipartite (1/2 — €)-Ruzsa-Szemerédi graphs with
111/ loglogn) edges.

Lemma 52 For any constant 6 > 0 there exists a family of bipartite Ruzsa-Szemerédi graphs G = (X,Y, E)
with | X| = n, |Y| = 2n such that (1) the edge set E is a union of n**(1/108187) indyced 2-matchings
My, ..., My of size at least (1/2 — O(0))|X|, and (2) for any j € [1 : k] the graph G contains a matching
M of size at least (1 — O(9))|X| that avoids Y \ (M; NY).

The proofs of these results are based on an adaptation of Theorem 16 in [7] (see also [[17]), which con-
structs bipartite 1/3-Ruzsa-Szemerédi graphs with superlinear number of edges. The main idea of the con-
struction, use of a large family of nearly orthogonal vectors derived from known families of error correcting
codes, is the same. A technical step is required to go from matchings of size 1/3 to matchings of size 1/2 — ¢
for any € > 0. Since the result does not follow directly from [7]], we give a complete proof in the full version.
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G.1 Balanced graphs

The following lemma is an adaptation of Theorem 16 in [7] (see also [17]), where bipartite 1/3-Ruzsa-
Szemerédi graphs with a superlinear number of edges are constructed. The main idea of the construction, i.e.
the use of a large family of nearly orthogonal vectors derived from known families of error correcting codes,
is the same. A technical step is required to go from matchings of size 1/3 to matchings of size 1/2 — ¢ for
any € > 0. Since the result does not follow directly from [7], we give the argument here.

Lemma 53 For any constant € > ( there exists a family of bipartite (1/2 — €)-Ruzsa-Szemerédi graphs with
111/ loglogn) edges.

Proof: Let X = Y = [m?]™ for some integer m > 0. We will refer to vertices in X and Y as points in
[m?]™. Matchings Mt will be indexed by subsets T' C [m].

Fix T C [m]. Let Ly = {x : ) ,cpx; = s}. Define red, white and blue strips as follows. Choose
w = 2(1+ 2/€¢)(em/6)and define

kw+(2/¢)(em/6)—1

Ry = U L,

s=kw
kw+(1+(2/€))(em/6)—1
Wi = U Ly
s=kw+(2/€¢)(em/6)
kw+(1+4/€)(em/6)—1
By = U Ly
s=kw+(142/€)(em/6)
(k+1)w—1
W]:; - U Ls
s=kw+(14+4/¢)(em/6)
Finally, define B = {J;, By, R = U, Re, W/ = U, W[, W = U, W.
For T' C [m] let 17 denote the characteristic vector of 7. The matching My is defined as follows. If a
blue point b € B has all coordinates greater than (2/¢ + 1), match it to the point 7 = b — (2/e + 1) - 17 in

RY . Note that 7 € R by the definition of B and R.
Following [[7]], we first note that

Lemma 54 |Mrp| > (1/2 — €)n — o(n)
Proof: The only points of B that are not matched by M7 are those in the set
S={z:3jeT,z; <(2/e+1)v;}.

However, |S| < M|X! 2/€+1 |X| = o(]X|). Hence, we have that |B| = (1 & o(1))|R).
Similarly, we have that |[IW| < (e/(1+¢€) £ o( ))|B] [ |

Now let 71, Ty be two sets in [m] of size (¢/6)m such that | T} N Ty| < (5/2)(e/6)*m. We show that no
edge of Mr, is induced by Mrp,. Let b be matched to r by T1,i.e. b —r = (2/e + 1)1p,. If the edge (b, 7) is
induced by M, then one of b, r is colored blue and the other is colored red in the coloring induced by 7. In
particular, b and r are separated by a white strip. Thus,

> bi— Y il = (e/6)m (46)

1€Tn 1€Tn
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On the other hand,

Zbi—Zm = Z(b—r)i = Z((2/€+1)1T1)i "

1€Th i€Th 1€Th i€Th
= (2/e+D)|TiNTo| < (2/e +1)(5/2)(¢/6)*m = (5/6)(1 + €/12)(¢/6)m,

a contradiction with (0] for any e < 1/2.

Now it suffices to exhibit a large family F of subsets of [m] of size (¢/6)m with intersection at most
(5/2)(¢/6)2. Following [7], we obtain such a family from an error-correcting code with weight w = (¢/6)m
and Hamming distance at least d = 2(¢/6) — (5/2)(¢/6)2. The Gilbert-Varshamov bound yields [13], for

d< Mﬂ;w), a family F such that

o1 () = 21 (55) - (1= 7)1 () o0

Letting § = ¢/3 and 7 = 5/4 for convenience, we have that w/m = ¢ and d/m = 26(1 — ~¢). This yields

2
%mgm zH(é)—6H(1—76)—(1—6)H(61j§ > ~o(1)

Using H(z) = H(1 — z) and strict convexity of H(z), we get

§ — 762
1-0

> <c(é,y)+H (752 +(1-9) (51__722» =c(d,7) + H (9)

5H(1—75)+(1—5)H<

where ¢(6,7) > 0 whenever vy # 1.
Hence, setting v = 5/4 and § = ¢/6 yields a family of codes with L log | F| > ¢(e/6,5/4) — o(1).
Thus, we have constructed a bipartite graph G = (X,Y, E) such that E = ;. My is a union of
induced matchings of size 1/2 — € — o(1). The number of nodes in the graph is m?™ and the number of
matchings is | F| = 2(c(¢/3:5/4)=o(1))m — 99(m) Thys, we get a graph on 7. = m?>" nodes that is a union of
28Um) — Se(1/loglogn) jnduced matchings of size 1/2 — e. |

G.2 Lop-sided graphs

We now extend this construction to lop-sided graphs, which will be important for showing optimality of our
bound on C'Cy (e, n).

Lemma 55 For any constant § > 0 there exists a family of bipartite Ruzsa-Szemerédi graphs G = (X,Y, E)

with | X| = n, |Y| = 2n such that
1. the edge set E is a union of n*(1/108187) jndyced 2-matchings M;, . .., My, of size at least (1/2 —
0(9))1X].

2. for any j € [1 : k] the graph G contains a matching M of size at least (1 — O(6))| X| that avoids
Y\ (M;nY).

Proof: Let X’ = Y = [m?]™ for some integer m > 0. Let X be a random subset of X" that contains each
element of X’ with probability 1/2. We will refer to vertices in X and Y as points in [m?]™. The matchings
My will be indexed by subsets T' C [m].
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Choose w = 2C(1 + 2/0)p for p and a constant C' > 0 to be specified later. Fix T C [m]. Let
Ly ={z:) ;crzi = s+ (w/2) - Qr}, where Qr is a Bernoulli 0/1 random variable with on probability
1/2. Define red, white and blue strips as follows. Define

kw+C(2/8)p—1
Rk = U L
s=kw
kw+C(1+(2/0))p—1
Wy, = U L,
s=kw+C(2/6)p
kw+C(1+4/6)p—1
By = U Ly
s=kw+C(14+2/0)p
(k+1)w—-1
wi= U L
s=kw+C(1+4/8)p

Define B = |, Br, R = U, Rie, W = U, W, W = U, Wk

Here we are assuming that 6 € (0, 1) is such that 2/4 is an integer.

Fix k. For two vertices u,v € By we say that u ~ v if u —v = A(1 + 2/4) - 11 for some A (note that
since u,v € By, we have A € [—C,C]). We write S, C Y to denote the equivalence class of v. Note that
|Sy| > C/2 for all v. Also, let

Ty,={ueX:u=w—-C(1+2/0)- -1p,w € Sy}.

Note that for any v € By one has T,, C Ry. Note that T}, is a random set (determined by the random choice
of X C X').

We now define a 2-matching from (a subset of) T}, to S,. First note that E[|T,|] = 3|S,|. Furthermore,
since X is obtained from X by independent sampling, the events {v € X} are independent conditional on
the value of Q7. Thus, standard concentration inequalities apply (see, e.g. [10]]) and we get

Pr||T,] ¢ (1+ 5%!&\ < e UDISIA = =CN6 < 5y

for C > 161n(4/8)/6%. We now classify points v € By, as good or bad depending on the how close |T,| is
to its expectation. In particular, mark v bad if |T,,| € (1 & 6)3|S,| and good otherwise. If v is good, let T,
denote an arbitrary subset of T}, of cardinality (1 — &)3|S,|. Similarly, let S, denote an arbitrary subset of .S,
of cardinality (1 — &)|S,|, so that |T})| = £|S,|. Next, choose an arbitrary 2-matching from 7}, to S.,. Note
that all matched edges are of the form (b, ), where r = b — A(1 + 2/6) - 17 for some A € (0,2C]. This
completes the definition of the 2-matching My for a fixed set 7.

We now argue that there cannot be too many bad classes in a fixed set 7. Note that there are Q(m>™)
equivalence classes (since they have constant size by construction). For a vertex v denote the event that
v’s equivalence class is bad by &,. Then, conditional on the value of ()7, these events are independent for
non-equivalent v’s. Hence, by Chernoff bounds the probability that the number of bad classes exceeds its
expectation by more than a factor of 4 is at most e~ m*™) We use the collection F constructed in the proof
of Lemma , and a union bound over 2°("™) gets T’ shows that there will be no more than a § fraction of bad
classes in any of sets T" with high probability.

We will also need a bound on the maximum degree of vertices in X and Y. First note that the definition
of the set of levels L, and the random variable Q7 amounts to flipping the role of the sets Ry and By
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independently with probability 1/2. Thus, for a fixed T, every vertex except for those in W U W', of which
there is only an O(¢) fraction, takes part in the matching with probability 1/2. Thus, the expected degree of a
fixed vertex v € Y is at most | F|/2, where F is the collection of almost orthogonal vectors that we use. Since
Q@ are independent for each 7', Chernoff bounds imply that the degree of any vertex v in Y in the graph that
we construct is at most (1 + §)|F|/2 with probability at least 1 — e =7 =1 — e~ In particular, a
union bound over all v € Y, of which there are m?™, shows that the degree cannot be larger than (1+6)|F|/2
for any v with high probability. Finally, we also note that the average degree is at least (1 — O(9))|F|/2 by
construction. A similar argument shows that the maximum degree of a vertex in X does not exceed (1+4)|F|
with high probability, and the average degree is at least (1 — O(9))|.F]|.

Essentially the same argument as in Lemma [53] together with the fact that for good sets 7" we have a
2-matching of at least (1 — O(6))|R| nodes by the argument above shows that the size of the matching is at
least (3 — O(3))|X|.

Now let T4, T be two sets in [m] of size p = (6/(8C))m such that | Ty N T| < (5/2)(5/(8C))*m. We
show that no edge of My, is induced by Mry,. Let b be matched to r by 71, i.e. b —r = j(2/5 + 1)1, for
some j € (0,2C]. If the edge (b, r) is induced by Mr,, then one of b,  is colored blue and the other is colored
red in the coloring induced by 75. In particular, b and r are separated by a white strip. Thus,

D b= | > (6/(8C))m. (48)

1€Tn 1€Tn

On the other hand,

Zbi—Zﬂ = Z(b—’l“)Z

i€y i€Ts €Ty

=2 (i(2/6 + Din); 49
1€T
2C(2/6 + 1)|Ty N Ty| < C(2/5 4 1)(5/2)(5/(8C))*
(5/6)(1+6/12)(6/8C)m
a contradiction with (@8)) for any § < 1/2. This completes the proof of (1).

It remains to show (2). Consider a fixed matching Mr. Let Ry = X N Mr C RX Br =YNMp C BY,

where we use the notation BX, BY, RX | RY to denote the set of blue and red points in X and Y respectively.
For a vertex u € X UY, denote by I'(u) its neighbors in G. Let

<
<

kw-+C(4/8)p—

Br =/ U Ls.

k s=kw+C(2+2/8)p

Note that By C By can be viewed as the ’interior’ of By. We write B%( and B}/ to denote the projection of
B onto X and Y respectively.

We first show that for all x € B%( one has I'(x) C By C Y. Since B%( is not matched by T, it suffices to
consider edges of M7+, T’ # T'. But any such edge has the form (z,y), where z = y + \(2/6 + 1) - 17+, so
by the argument above one has

D wi— Y vl < (8/(8C))m = p, (50)

1€Tn €T
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Figure 4: A 2-matching M

N L S

B

soy € BY.

Thus, for each z € Bj)f one has I'(z) C B%/ . We can now exhibit the required fractional matching.
Include edge (z,y),r € BX,y € BY. with weight W, and include all edges of the 2-matching Mp
with weight 1/2. Since the maximum degree of a node in By is at most (1 + 0)|F]|/2, and the maximum
degree of a node in Br is at most (1+ O(4))|F], this assignment yields a feasible fractional matching. Recall
that by construction, the average degree in X is at least (1 — O(6))|F|/2, hence the size of the fractional
matching is at least (1 — O(9))|X|.

By the integrality of the matching polytope, the fractional matching can be rounded to produce an integral
matching of size at least (1 — O(J))| X |, as required. Note that since we proved that for each z € B:¥ one has
['(y) C BY, the fractional matching that we constructed avoids Y \ Br = Y\ (Y N Mr), and hence so does
the integral matching. This completes the proof of (2).

Finally, we note that the number of edges in the graph is given by n

We note that the same techniques can be used to prove the following more general

14+05(1/loglogn) ' ag pefore. .

Lemma 56 For any fixed constants €,y > 0 and an arbitrarily small constant § > 0 there exists a family of
bipartite Ruzsa-Szemerédi graphs G = (X, Y, E) with | X| = n, |Y'| = n/e such that

1. the edge set E is a union of nSes~(1/102187) indyced %—matchings My, ..., My, of size at least
(v = 0)[X].

2. forevery j € [1 : k] the graph G contains a matching M} of size at least (1 — O(6))| X| that avoids
Y\ (M;NnY).

H Lower bounds on communication and one-pass streaming complexity

We show here that lower bounds on the size of Ruzsa-Szemerédi graphs yield lower bounds on the (random-
ized) communication complexity, and hence for one-pass streaming complexity.

In the edge model, we show that C'C’ (% —6,(2— e)n) = Q(Uz(e,n)) forall e,6 > 0. In particular,
combined with the constructions of (1/2 + §;)-Ruzsa-Szemerédi graphs for any constant 6 > 0 (Lemmal[53)
this proves that CC(e,n) = nl+®(1/loglogn) for ¢ < 1/3. Thus our O(n) upper bound on CC(3,n) in

section [D] is optimal in the sense that any better approximation requires super-linear communication. As a
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corollary, we also get that super-linear space is necessary to achieve better than 2/3-approximation in the
one-pass streaming model.

In the vertex model, using the construction of Ruzsa-Szemerédi graphs from Lemma [52] we show that
CCyle,n) = n!t@(1/loglogn) for all ¢ < 1/4. This proves optimality of our construction in section
and also shows that super-linear space is necessary to achieve better than 3/4-approximation in the one-pass
streaming model even in the vertex arrival setting.

We note that our lower bounds for both the edge and vertex arrival case apply to randomized algorithms.
The proofs of these results appear in the full version.

H.1 Edge arrivals

Lemma 57 Foranye > 0and§ > 0, CC (2(21__:) —-94,(2—- e)n> = Q(Ur(e, n)).

Proof: For any 0 > 0, we will construct a distribution over bipartite graphs with (2 — €)n vertices on each side
such that each graph in the distribution contains a matching of size at least (2 — €)n — dn. On the other hand,
we will define a partition of the edge set F of the graph into £ = F; U E5 and show that any for deterministic
communication protocol using message size s = o(Us (e, n)), the expected size of the matching computed is
bounded by 2(1 — €)n + o(n). Using Yao’s minmax principle, we get the desired performance bound for any
protocol with o(Ur (e, n)) communication.

Let G = (P, Q, E) be an €-RS graph with n vertices on each side and Uy (¢, n) edges. By definition, E can
be partitioned into k induced matchings Mj, ..., My, where |M;| = enfor 1 <i < k,and k = U(e,n)/(en).
We generate a random bipartite graph G’ = (P, U Py, Q1 U Q2, E1 U E3) with (2 — €)n vertices on each side,
as follows:

1. Weset P = P and Q1 = Q. Also, let P, and ()2 be a set of (1 — €)n vertices each that are disjoint
from P and Q.

2. Foreach M;, i = 1,..., k, let M be a uniformly at random chosen subset of M; of size (1 — §)n. We
set By = UF_ M.

3. Choose a uniformly random r € [1 : k]. Let M{ be an arbitrary perfect matching between P» and
Q \ Q1(M,), and let M3 be an arbitrary perfect matching between Q2 and P \ P;(M,). We set
Ey = Mik U M;

The instance G’ is partitioned between Alice and Bob as follows: Alice is given all edges in G1 (P1, Q1, E1)
(first phase), and Bob is given all edges in Gio(Ps, QQ2, E2) (second phase). Clearly, any optimal matching in
G’ has size at least (2 — €)n — dn; consider, for instance, the matching M, U M U M.

We now show that for any deterministic communication protocol using communication at most s =
o(Ur(e,m)), with probability at least (1 — o(1)), number of edges in M. retained by the algorithm at the end
of the first phase is o(n). Assuming this claim, we get that with probability at least (1 — o(1)), the size of the
matching output by Bob is bounded by 2(1 — €)n + o(n). Hence the expected size of the matching output by
Bob is bounded by 2(1 — €)n + o(n). We now establish the preceding claim.

We start by observing that the number of distinct first phase graphs is at least (assume § < €/2)

Ur(en)

k
en\" _ (en\ T _ oatien)
n n ’

for some positive « bounded away from 0. Let G denote the set of all possible first phase graphs, and let
¢ : G — {0, 1}*® be the mapping used by Alice to map graphs in G to a message of size s = o(U;(e,n)). For
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any graph H € G, letI'(H) = {H' | $(H') = ¢(H)}. Then note that for any graph H € G, Bob can output
an edge e in the solution iff e occurs in every graph H' € I'(H). For any subset F' of G, let G denote the
unique graph obtained by intersection of all graphs in F’ (i.e. the graph G r contains an edge e iff e is present
in every graph in the family F).

Claim 58 Forany 0 < € < § and any subset F of G, let I C {1,2, ..., k} be the set of indices such that G
contains at least €'n edges from M; for each i € I. Then if |F| > 20—eM)Ur(en) 1| = o(k).

Proof: Let |I| = k1. Then the number of graphs that can be in F' is bounded by

(e — e\ [en kiklz o—S(em) (€1 M olen kik1:279(k1(eln)) en k'
on on on on on

It then follows that if k; = Q(k), we have |F| < 20-1)Ui(en) | contradicting our assumption on the
size of F'. [ |
To conclude the proof, we note that a simple counting argument shows that for a uniformly at random
chosen graph H € G, with probability at least 1 — o(1), we have |I'(H)| > 20r—e()Ui(en) - Conditioned
on this event, it follows from Claim that for a randomly chosen index r € [1..k], with probability at least
1 — o(1), the graph Gr(g7) contains at most €'n edges from M,.. [ ]
In particular, we get

Corollary 59 For any § > 0, CC(2/3 + 6,n) = n!+%s(1/loglogn)

Proof: Follows by putting together Lemma [53]and Lemma [ |
Lower bounds on communication complexity translate directly into bounds on one-pass streaming com-
plexity:

Corollary 60 For any constant 5 > 0 any (possibly randomized) one-pass streaming algorithm that achieves

approximation factor % + 0 must use Q(U;(€,n)) space. In particular, any one-pass streaming algorithm

1+Q5(1/loglogn)

that achieves approximation factor 2/3 + 0 must use n space.

Proof: Follows by Lemma 53] and Lemma [ |

H.2 Vertex arrivals

We now prove a lower bound on the communication complexity in the vertex arrival model using the con-
struction of lop-sided Ruzsa-Szemerédi graphs from Lemma The bound implies that our upper bound
from section [E]is tight. Moreover, the bound yields the first lower bound on the streaming complexity in the
vertex arrival model.

Lemma 61 For any constant § > 0, CCL(3/4 + §,n) = n!+?(1/loglogn),

Proof: For sufficiently small 6 > 0, we will construct a distribution over bipartite graphs with (2 + d)n
vertices on each side such that each graph in the distribution contains a matching of size at least (2 — O(9))n.
On the other hand, we will show that for any deterministic protocol using space s = nlto(l/loglogn) he
expected size of the matching computed is bounded by (3/2+ O(d))n + o(n). Using Yao’s minmax principle
we get the desired performance bound for any n!*+e(1/l0glogn) _space randomized protocol.

Let G = (P,Q, E) be an (1/2 — §)-RS graph with |P| = n,|Q| = 2n and n'T?(1/1eglogn) edges, as
guaranteed by Lemma 53] By definition, E can be partitioned into & induced 2-matchings M, ..., M}, where
|M;| > (1/2 — &")nfor 1 < i < k, and k = n®¥(1/1oglogn) and some & = O(5). We generate a random
bipartite graph G’ = (P U P, Q, E1 U Es) with (2 + §’)n vertices on each side, as follows:
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1. Weset P; = P and let P, be a set of (1 + ¢')n vertices that are disjoint from P.

2. For each M;, i = 1,..., k, let M/ be a uniformly at random chosen subset of M; of size (1/2 — 2§")n.
We set By = UF_| M.

3. Choose a uniformly random r € [1 : k|. Let M™* be an arbitrary perfect matching between P, and
Q\ Q(M,). We set 5 = M*.

Let Alice hold the graph G 4(P1, Q1, E1) and let Bob hold the graph G2 = (P2, Q, E2). By Lemma[52]
there exists a matching M,* that matches at least a (1 — ¢') fraction of X and avoids @ \ Q(M,.). Thus, any
optimal matching in G 4 U G has size at least (2 — O(9))n; consider, for instance, the matching M," U M*.

However, no deterministic space protocol can output more than a §” = O(¢’) fraction of the edges in M
if it uses nltos(1/loglogn) space by the same argument as in Hence, the size of the matching output by
the protocol is bounded above by (1/2 + O(6))|P1| + || = (3/2 + O(6))n. [ |

We immediately get

Corollary 62 For any constant § > 0 any (possibly randomized) one-pass streaming algorithm that achieves
approximation factor 3/4 + § must use nlt9%s(1/loglogn) ¢ ce.

I Matching covers versus Ruzsa-Szemerédi graphs

In this section we prove that the size of the smallest possible matching cover is essentially the same as the
number of edges in the largest Ruzsa-Szemerédi graph with appropriate parameters.

We are now ready to state the two theorems that use induced matchings to bound the size of matching
covers. The lower bound is easy, and is proved first. The upper bound is more intricate, and is presented in

section

Theorem 63 [Lower bound] For any § > 0, Lo(e,n) > Ur ((1 +0)e,n) - (1%5).
Proof of Theorem Let c = 1+ 9. By definition, there exists an undirected bipartite graph G = (P, Q, F)
with |E| = Uz(ee,n), |P| = |Q| = n, and an induced partition F of G such that every set in the partition is
of size at least ecn. Consider the smallest e-matching-cover H of G, and any set F' € F. Recall that by the
definition of an induced matching, the edges in F' are the only edges between P(F') and Q(F). Since F'is a
matching between P(F') and Q(F'), and the size of F is at least ecn, the intersection of H and F' must be of
size at least |F'| — en, which is at least | F| - (C;CI) Summing over all sets F in the partition F, we get that
|H| > |E| - (<21), which proves the theorem. [ |
In particular, choosing § = 1, we get Lo (e,n) > Ur(2¢,n)/2. The upper bound is more complicated; we
first state a simplified version (Theorem[64), and then the full version (Theorem [65)). The simple version is a
corollary of the full version; the full version is proved in section |1

Theorem 64 [Simplified upper bound] Assume 0 < € < 2/3,0 < § < 1, and en > 3. Then, Lc(n,e) <
Ur((1 = )e,n) - O (50).
Theorem 65 [Upper bound] Assume en > 3, and 0 < § < 1. Then,

8en

Le(n,e) < UL((1—d)e,n) - (m ! 1) : <1 +log(1/e) + 102&?) : (5(11_ 5)) .

We state the full expression in the above theorem as opposed to using asymptotic notation since the constants
are simple, and it is conceivable that one may choose to apply it in regimes where ¢ is arbitrarily close to 1.
Choosing § = 1/2 in Theorem [64] we get the interesting special case, Lo (n, €) = O(Ur(e/2,n) log(1/e)).
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I.1 Proof of the Upper Bound

We will now prove Theorem Assume we are given an arbitrary undirected bipartite graph G = (P, Q, E)
with |P| = |Q| = n. Assume that en is an integer. Also assume that en is at least 3 (of course the most
interesting case is when € > 0 is some constant). Before proceeding, we need another definition:

Definition 66 A pair (A, B), where A C P and B C Q, is said to be “critical” if |A| = |B| = Mg(A, B) =
en, i.e. A, B are both of size en and there is a perfect matching between them. Let C denote the set of all
critical pairs in G.

We will now consider a primal-dual pair of Linear Programs. By strong duality, the optimum objective
value for both LPs is the same; denote this value as Z*. We label the constraints in the primal with the
corresponding variable in the dual, and vice versa, for clarity.

PRIMAL: Z* = minimize ) .
eck
Subject to:
Y(A,B) eC: > oz > 1 [Aa,B]
e€EN(AXB)
r > 0
DUAL: Z* = maximize ), AAB
(A,B)eC
Subject to:
V(e) S Z A(A,B) <1 [‘Te}
(A,B)eC:e€cEN(AXB)
A >0

We will relate the size of an e-matching-cover of G to the primal and the size of an e-induced partition of
G to the dual. In particular, in the next two subsections, we will prove the following two lemmas:

Lemma 67 The graph G has an e-matching-cover of size at most

en —

( o 1) - (2en(1 +log(1/€)) + log(en)) - Z*.
Lemma 68 There exists a graph G' = (P, Q, E") with E' C E such that |E'| > Z*6(1 — §)en/4 edges, and

G’ has a (1 — 0)e-induced partition. Hence, Ur(n, (1 — d)e) > Z*6(1 — d)en/4.

Theorem [63]is immediate from these two lemmas.

I.1.1 Proof of Lemma[67]

A set of edges F' C F is said to satisfy a pair (A, B) if |[F'N (A x B)| > 0. We will further break down the
proof of Lemmal67in two parts.

Lemma 69 If F satisfies all critical pairs, then F' is an e-matching-cover.

Proof: The proof is by contradiction. Suppose F' satisfies all critical pairs, but there exists a pair (A4, B) such
that A C P, B C Q, and Mp(A, B) < Mg(A, B) — en. Consider an arbitrary maximum matching in the
graph (A, B, EN (A x B)), say H. Discard all vertices from A and B that are not incident on an edge in H,
to obtain A’ C A, B’ C B. It s still true that Mp(A’, B") < Mg(A’, B") — en, but now we also know that
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Mg(A',B") = |H| = |A’| = |B'|. Consider the graph G’ = (A’, B’, F'). By Hall’s theorem, there exists a
set A” C A’ and another set B” C B’ such that (a) |A”| > |B”| + en, and (b) |[F' N (A” x (B'\ B"))| = 0.
Since H is perfect matching in the graph (A’, B’, E), there must exist at least en edges of H that go from
A" to B\ B”; let H' denote an arbitrary set of en edges of H that go from A” to B’ \ B”. Let C denote
the endpoints of these edges in P and D denote the endpoints of these edges in Q. Then, |C| = |D| = en
and there is a perfect matching between C' and D in E, i.e., the pair (C, D) is critical. But there is no edge
between C' and D in F' (by construction), and hence F' does not satisfy all critical pairs, which contradicts our
assumption. [ |

Lemma 70 There exists a set F of size at most

(ﬂ;i 1) - (2en(1 4+ log(1/€)) + log(en)) - Z*

that satisfies all critical pairs.

Proof: First note that the number of critical pairs is at most (;)2 < ( %)QEH = g2en(1+log(1/6))

We will now define a simple randomized rounding procedure for the solution x of the primal LP. For
convenience, let y denote the quantity (2en(1 4 log(1/¢)) + log(en)). For each edge e, let Z. denote a
Bernoulli random variable which takes the value 1 with probability p. = min{1,~z.}, and let all Z.’s be

independent. Let F' denote the set of edges e for which Z, = 1.

We will now define two bad events: Let &; denote the event that |F'| > vZ* (
event that F' does not satisfy all critical sets.

By construction, E[|F|] = E[>__%.] < v)> .z = vZ*. Hence, by Markov’s inequality, Pr[¢;] <
=l —1—1/(en).

Fix an arbitrary critical set (A, B). If there exists an edge e € E N (A x B) such that p. = 1 then (A, B)
is deterministically satisfied by F'. Else, it must be that p, = ~yx. for every edge e € E N (A x B), and the
probability that ' does not satisfy (A, B) is at most

H (1 _Vxe)

e€EN(AxB)

en—1

) Let &, denote the

<e 7 ZeeEn(AxB) Te

<e [From feasibility of the fractional solution].

Using the union bound over all critical pairs, we get Pr[¢y] < e~ 1°8(") = 1/(en). Using the union bound
over the two bad events, we get Pr[¢; U &»] < 1. Hence, (using the probabilistic method), there must exist a
’11) -(2en(1 + log(1/€)) + log(en)) - Z*.

|

set of edges F’ that satisfies all critical pairs and has size at most (ﬂf
This concludes the proof of Lemma [67]

I.1.2 Proof of Lemma[6S]

This proof is also via randomized rounding, this time applied to the optimum solution of the dual LP. For
every relevant pair (A, B) choose \ A,B to be one with probability 6\ 4 B /2 and 0 otherwise; further choose
the values of different \ 4 .B’s independently. If A .B = 1 then we say that the pair (A, B) has been selected.
Initialize H to be E; we will remove edges from H till the graph (P, ), H) has an e-induced partition.
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Step 1: Getting an induced partition.  First, fix an arbitrary perfect matching (in E) between each selected
pair, and (a) remove all edges from H that do not belong to any of these perfect matchings. Then, (b) remove
all edges that belong to more than one of the graphs induced by the selected pairs. Let the new set of edges
be called H;.

Step 2: Pruning small induced sets. At this point, the collection of sets of edges {(A x B)NHy : Aap =
1} forms an induced partition of the graph (P, @, H1). The only problem is that some of the sets in this
partition may be too small. We will count a selected pair (A, B) as “good” if it induces at least (1 — §)en
edges in H;, and “bad” otherwise. Remove all edges from H; that are induced by a bad selected pair to
obtain the set Hy. The set (P, @, H2) now has a ((1 — d)e)-induced partition. Let k& denote the number of
good selected pairs; then | Hs| (and hence Uy (n, (1 — d)e)) is at least k(1 — 0)en.

We will now show that Pr{k > §Z*/4] > 0. Consider a relevant pair (A, B) with Ay g > 0. Now,
Pr[S\ A.B = 1] = 6A4 /2. Consider the perfect matching F' chosen between this pair (arbitrarily) in step 1
and consider any edge e in this matching. This edge will not be pruned away in step 1(a). By the feasibility
constraint in the dual,

Z A ABr < 1.

(A/,B")EC:(A,B)#£(A",B'),e€ EN(A'x B')

Hence, the probability that this edge will belong to a selected pair other than (A, B) is less than 6/2. Thus,
the expected number of edges in H; N (A x B) is more than (1 — §/2)en. The maximum number of edges in
Hy N (A x B) is en. Applying Markov’s inequality to the random variable en — |H1 N (A x B)|, we get:

Pr[|H, N (Ax B)|> (1 —68)en|ap=1]>1/2.
Multiplying with the probability that A A,B = 1, we obtain:
Pr[A relevant pair (A, B) is both selected and good] > A4 p/4.

Summing over all relevant pairs (A, B), we get E[k] > §Z*/4, and hence (using the probabilistic method
again), there must exist a set of choices for A A, which make k > 6Z* /4. For this choice, we know that Hy
(and hence Ur(n, (1 — d)e)) is at least Z*6(1 — §)en /4.

This concludes the proof of Lemma [68]

Finally, we note that an upper bound on the size of e-covers directly yields an upper bound on the com-
munication complexity of achieving an additive en error approximation to bipartite matching, denoted by
CC_|. (6, n) .

Lemma 71 CC.(e,n) < Lo(e,n).

Proof: Let G; = (P1,Q1, E1) denote the bipartite graph with |P| = |Q| = n that Alice holds and
let Go = (P2, Q2, E3) be the graph that Bob holds. Let G} be a e-matching cover of G;. Consider an
empty cut (A; U By, Ay U By) corresponding to a maximum matching M’ in (G} U G2), i.e. such that
|M'| = |B1| + |A2|. Let M* denote a maximum matching in (A1 x B2) N Fj. Since G is an e-matching
cover, we have that | M*| < en.

Thus, since the maximum matching M in G; U G is bounded by | By | + | A2| + | M*| we have

[ M| = [M'| < (IB1] + |Az| + [M7]) = (IB1] + |Az2]) < en.
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