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Abstract

Consider the following communication problem. Alice holds a graphGA = (P,Q,EA) and Bob holds
a graph GB = (P,Q,EB), where |P | = |Q| = n. Alice is allowed to send Bob a message m that depends
only on the graph GA. Bob must then output a matching M ⊆ EA ∪ EB . What is the minimum message
size of the messagem that Alice sends to Bob that allows Bob to recover a matching of size at least (1− ε)
times the maximum matching in GA ∪GB? The minimum message length is the one-round communica-
tion complexity of approximating bipartite matching. It is easy to see that the one-round communication
complexity also gives a lower bound on the space needed by a one-pass streaming algorithm to compute a
(1−ε)-approximate bipartite matching. The focus of this work is to understand one-round communication
complexity and one-pass streaming complexity of maximum bipartite matching. In particular, how well
can one approximate these problems with linear communication and space? Prior to our work, only a
1
2 -approximation was known for both these problems.

In order to study these questions, we introduce the concept of an ε-matching cover of a bipartite graph
G, which is a sparse subgraph of the original graph that preserves the size of maximum matching between
every subset of vertices to within an additive εn error. We give a polynomial time construction of a 1

2 -
matching cover of size O(n) with some crucial additional properties, thereby showing that Alice and Bob
can achieve a 2

3 -approximation with a message of size O(n). While we do not provide bounds on the size
of ε-matching covers for ε < 1/2, we prove that in general, the size of the smallest ε-matching cover of
a graph G on n vertices is essentially equal to the size of the largest so-called ε-Ruzsa Szemerédi graph
on n vertices. We use this connection to show that for any δ > 0, a ( 2

3 + δ)-approximation requires a
communication complexity of n1+Ω(1/ log log n).

We also consider the natural restriction of the problem in which GA and GB are only allowed to share
vertices on one side of the bipartition, which is motivated by applications to one-pass streaming with vertex
arrivals. We show that a 3

4 -approximation can be achieved with a linear size message in this case, and this
result is best possible in that super-linear space is needed to achieve any better approximation.

Finally, we build on our techniques for the restricted version above to design one-pass streaming al-
gorithm for the case when vertices on one side are known in advance, and the vertices on the other side
arrive in a streaming manner together with all their incident edges. This is precisely the setting of the cele-
brated (1− 1

e )-competitive randomized algorithm of Karp-Vazirani-Vazirani (KVV) for the online bipartite
matching problem [13]. We present here the first deterministic one-pass streaming (1− 1

e )-approximation
algorithm using O(n) space for this setting.
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1 Introduction

We study the communication and streaming complexity of the maximum bipartite matching problem. Con-
sider the following scenario. Alice holds a graphGA = (P,Q,EA) and Bob holds a graphGB = (P,Q,EB),
where |P | = |Q| = n. Alice is allowed to send Bob a message m that depends only on the graph GA. Bob
must then output a matching M ⊆ EA ∪EB . What is the minimum size of the message m that Alice sends to
Bob that allows Bob to recover a matching of size at least 1− ε of the maximum matching in GA ∪GB? The
minimum message length is the one-round communication complexity of approximating bipartite matching,
and is denoted by CC(ε, n). It is easy to see that the quantity CC(ε, n) also gives a lower bound on the space
needed by a one-pass streaming algorithm to compute a (1− ε)-approximate bipartite matching. To see this,
consider the graphGA∪GB revealed in a streaming manner with edge setEA revealed first (in some arbitrary
order), followed by the edge set EB . It is clear that any non-trivial approximation to the bipartite matching
problem requires Ω(n) communication and Ω(n) space, respectively, for the one–round communication and
one-pass streaming problems described above. The central question considered in this work is how well can
we approximate the bipartite matching problem when only Õ(n) communication/space is allowed.

Matching Covers: We show that a study of these questions is intimately connected to existence of sparse
“matching covers” for bipartite graphs. An ε-matching cover or simply an ε-cover, of a graph G(P,Q,E)
is a subgraph G′(P,Q,E′) such that for any pairs of sets A ⊆ P and B ⊆ Q, the graph G′ preserves the
size of the largest A to B matching to within an additive error of εn. The notion of matching sparsifiers may
be viewed as a natural analog of the notion of cut-preserving sparsifiers which have played a very important
role in the study of network design and connectivity problems [12, 4]. It is easy to see that if there exists an
ε-cover of size f(ε, n) for some function f , then Alice can just send a message of size f(ε, n) to allow Bob
to compute an additive εn error approximation to bipartite matching (and (1 − ε)-approximation whenever
GA ∪GB contains a perfect matching). However, we show that the question of constructing efficient ε-covers
is essentially equivalent to resolving a long-standing problem on a family of graphs known as the Ruzsa-
Szemerédi graphs. A bipartite graph G(P,Q,E) is an ε-Ruzsa-Szemerédi graph if E can be partitioned into
a collection of induced matchings of size at least εn each. Ruzsa-Szemerédi graphs have been extensively
studied as they arise naturally in property testing, PCP constructions and additive combinatorics [7, 11, 19].
A major open problem is to determine the maximum number of edges possible in an ε-Ruzsa-Szemerédi graph.
In particular, do there exist dense graphs with large locally sparse regions (i.e. large induced subgraphs are
perfect matchings)? We establish the following somewhat surprising relationship between matching covers
and Ruzsa-Szemerédi graphs: for any ε > 0 the smallest possible size of an ε-matching cover is essentially
equal to the largest possible number of edges in an ε-Ruzsa-Szemerédi graph.

Constructing dense ε-Ruzsa-Szemerédi graphs for general ε and proving upper bounds on their size ap-
pears to be a difficult problem [9]. To our knowledge, there are two known constructions in the literature.
The original construction due to Ruzsa and Szemerédi yields a collection of n/3 induced matchings of size
n/2O(

√
logn) using Behrend’s construction of a large subset of {1, . . . , n} without three-term arithmetic pro-

gressions [3, 19]. Constructions of a collection of nc/ log logn induced matchings of size n/3−o(n) were given
in [7, 17]. We use the ideas of [7, 17] to construct (1

2 − δ)-Ruzsa-Szemerédi graphs with n1+Ωδ(1/ log logn)

edges and a more general construction for the vertex arrival case. To the best of our knowledge, the only
known upper bound on the size of ε-Ruzsa-Szemerédi graphs for constant ε < 1

2 isO(n2/ log∗ n) that follows
from the bound used in an elementary proof of Roth’s theorem [19].

One-round Communication: We show that in fact CC(ε, n) ≤ 2n − 1 for all ε ≥ 1
3 , i.e. a message of

linear size suffices to get a 2
3 -approximation to the maximum matching in GA ∪GB . We establish this result

by constructing an O(n) size 1
2 -cover of the input graph that satisfies certain additional properties which

allows Bob to recover a 2
3 -approximation1. We refer to this particular 1

2 -cover as a matching skelton of the

1We note here that a maximum matching in a graph is only a 2
3

-cover.
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input graph, and give a polynomial time algorithm for constructing it. Next, building on the above-mentioned
connection between matching covers and Ruzsa-Szemerédi graphs, we show the following two results: (a)
our construction of 1

2 -cover implies that for any δ > 0, there do not exist (1
2 + δ)-Ruzsa-Szemerédi graph

with more than O(n/δ) edges, and (b) our 2
3 -approximation result is best possible when only linear amount

of communication is allowed. In particular, Alice needs to send n1+Ω(1/ log logn) bits to achieve a (2
3 + δ)-

approximation, for any constant δ > 0, even when randomization is allowed.
We then study the one round communication complexity CCv(ε, n) of (1 − ε)-approximate maximum

matching in the restricted model when the graphs GA and GB are only allowed to share vertices on one
side of the bipartition. This model is motivated by application to one-pass streaming computations when the
vertices of the graph arrive together with all incident edges. We obtain a stronger approximation result in this
model, namely, using the preceding 1

2 -cover construction we show that CCv(ε, n) ≤ 2n − 1 for ε ≥ 1/4.
Thus a 3

4 -approximation can be obtained with linear communication complexity, and as before, we show that
obtaining a better approximation requires a communication complexity of n1+Ω(1/ log logn) bits.

One-pass Streaming: We build on our techniques for one-round communication to design a one-pass stream-
ing algorithm for the case when vertices on one side are known in advance, and the vertices on the other side
arrive in a streaming manner together with all their incident edges. This is precisely the setting of the cele-
brated (1 − 1

e )-competitive randomized algorithm of Karp-Vazirani-Vazirani (KVV) for the online bipartite
matching problem [13]. We give a deterministic one-pass streaming algorithm that matches the (1 − 1

e )-
approximation guarantee of KVV using only O(n) space. Prior to our work, the only known deterministic
algorithm for matching in one-pass streaming model, even under the assumption that vertices arrive together
with all their edges, is the trivial algorithm that keeps a maximal matching, achieving a factor of 1

2 . We
note that in the online setting, randomization is crucial as no deterministic online algorithm can achieve a
competitive ratio better than 1

2 .

Related work: The streaming complexity of maximum bipartite matching has received significant attention
recently. Space-efficient algorithms for approximating maximum matchings to factor (1 − ε) in a number of
passes that only depends on 1/ε have been developed. The work of [16] gave the first space-efficient algorithm
for finding matchings in general (non-bipartite) graphs that required a number of passes dependent only on
1/ε, although the dependence was exponential. This dependence was improved to polynomial in [5], where
(1−ε)-approximation was obtain inO(1/ε8) passes. In a recent work, [1] obtained a significant improvement,
achieving (1− ε)-approximation in O(log log(1/ε)/ε2) passes (their techniques also yield improvements for
the weighted version of the problem). Further improvements for the non-bipartite version of the problem have
been obtained in [2]. Despite the large body of work on the problem, the only known algorithm for one pass
is the trivial algorithm that keeps a maximal matching. No non-trivial lower bounds on the space complexity
of obtaining constant factor approximation to maximum bipartite matching in one pass were known prior to
our work (for exact computation, an Ω(n2) lower bound was shown in [6]).

Organization: We start by introducing relevant definitions in section 2. In section 3 we give the construction
of the matching skeleton, which we use later in section 4 to prove that CC(1/3, n) = O(n), as well as
show that the matching skeleton forms a 1/2-cover. In section 5 we deduce using the matching skeleton that
CCv(1/4, n) = O(n). In section 6 we use these techniques to obtain a deterministic one-pass (1− 1/e)
approximation to maximum matching in O(n) space in the vertex arrival model. We extend the construction
of Ruzsa-Szemerédi graphs from [7, 17] in section 7. We use these extensions in section 8 to show that our
upper bounds on CC(ε, n) and CCv(ε, n) are best possible, as well as to prove lower bounds on the space
complexity of one-pass algorithms for approximating maximum bipartite matching. Finally, in section 9 we
prove the correspondence between the size of the smallest ε-matching cover of a graph on n nodes and the
size of the largest ε-Ruzsa-Szemerédi graph on n nodes.
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2 Preliminaries

We start by defining bipartite matching covers, which are matchings-preserving graph sparsifiers.

Definition 1 Given an undirected bipartite graph G = (P,Q,E), and sets A ⊆ P,B ⊆ Q, and H ⊆ E, let
MH(A,B) denote the size of the largest matching in the graph G′ = (A,B, (A×B) ∩H).

Given an undirected bipartite graph G = (P,Q,E) with |P | = |Q| = n, a set of edges H ⊆ E is said to
be an ε-matching-cover of G if for all A ⊆ P,B ⊆ Q, we have MH(A,B) ≥ME(A,B)− εn.

Definition 2 Define LC(ε, n) to be the smallest number m′ such that any undirected bipartite graph G =
(P,Q,E) with P = Q = n has an ε-matching-cover of size at most m′.

We next define induced matchings and Ruzsa-Szemerédi graphs.

Definition 3 Given an undirected bipartite graph G = (P,Q,E) and a set of edges F ⊆ E, let P (F ) ⊆ P
denote the set of vertices in P which are incident on at least one edge in F , and analogously, let Q(F ) denote
the set of vertices inQ which are incident on at least one edge in F . Let E(F ), called the set of edges induced
by F , denote the set of edges E ∩ (P (F )×Q(F )). Note that E(F ) may be much larger than F in general.

Given an undirected bipartite graph G = (P,Q,E), a set of edges F ⊆ E is said to be an induced
matching if no two edges in F share an endpoint, and E(F ) = F . Given an undirected bipartite graph
G = (P,Q,E) and a partition F of E, the partition is said to be an induced partition of G if every set F ∈ F
is an induced matching. An undirected bipartite graph G = (P,Q,E) with P = Q = n is said to have an
ε-induced partition if there exists an induced partition of G such every set in the partition is of size at least
εn. Following [7], we refer to graphs that have an ε-induced partition as ε-Ruzsa-Szemerédi graphs.

Definition 4 Let UI(ε, n) denote the largest number m such that there exists an undirected bipartite graph
G = (P,Q,E) with |E| = m, |P | = |Q| = n, and with an ε-induced partition.

Note that for any 0 < ε1 < ε2 < 1, any ε2-induced partition of a graph is also an ε1-induced partition, and
hence, UI(ε, n) is a non-increasing function of ε. Analogously, any ε1-matching-cover is also an ε2-matching
cover, and hence, LC(ε, n) is also a non-increasing function of ε.

3 Matching Skeletons

LetG = (P,Q,E) be a bipartite graph. We now define a subgraphG′ = (P,Q,E′) ofG that contains at most
(|P | + |Q| − 1) edges, and encodes useful information about matchings in G. We refer to this subgraph G′

as a matching skeleton of G, and this construction will serve as a building block for our algorithms. Among
other things, we will show later that G′ is a 1

2 -cover of G.
We present the construction of G′ in two steps. We first consider the case when P is hypermatchable,

that is, for every vertex v ∈ Q there exists a perfect matching of the P side that does not include v. We then
extend the construction to the general case using the Edmonds-Gallai decomposition [18].

3.1 P is hypermatchable in G

We note that since P is hypermatchable, by Hall’s theorem [18], we have that |Γ(A)| > |A| for all A ⊆ P .
For a parameter α ∈ (0, 1], let RG(α) = {A ⊆ P : |ΓG(A)| ≤ (1/α)|A|}. Note that as the parameter α
decreases, the expansion requirement in the definition above increases. We will omit the subscript G when G
is fixed, as in the next lemma.
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Lemma 5 Let α ∈ (0, 1] be such that R(α + ε) = ∅ for any ε > 0, i.e. G supports an 1
α+ε -matching of the

P -side for any ε > 0. Then for any two A1 ∈ R(α), A2 ∈ R(α) one has A1 ∪A2 ∈ R(α).

We now define a collection of sets (Sj , Tj), j = 1, . . . ,+∞, where Sj ⊆ P, Tj ⊆ Q,Si ∩ Sj = ∅, i 6= j.

1. Set j := 1, G0 := G,α0 := 1. We haveRG0(α0) = ∅.

2. Let β < αj−1 be the largest real such thatRGj−1(β) 6= ∅.

3. Let Sβ =
⋃
A∈R(β)A, and Tβ = Γ(Sβ). We have Sβ ∈ RRj−1(β) by Lemma 5.

4. Let Gj := Gj−1 \ (Sβ ∪ Tβ). We refer to the value of α at which a pair (Sα, Tα) gets removed from
the graph as the expansion of the pair. Set Sj := Sβ, Tj := Tβ, αj := β. If Gj 6= ∅, let j := j + 1 and
go to (2).

The following lemma is an easy consequence of the above construction.

Lemma 6 1. For each U ⊆ Sj one has |ΓGj (U)| ≥ (1/αj)|U |.

2. For every k > 0,
((⋃

j≤k Sj

)
×
(
Q \

⋃
j≤k Tj

))
∩ E = ∅.

To complete the definition of the matching skeleton, we now identify the set of edges of G that our
algorithm keeps. For a parameter γ ≥ 1 and subsets S ⊆ P , T ⊆ Q we refer to a (fractional) matching
M that saturates each vertex in S exactly γ times (fractionally) and each vertex in T at most once as a γ-
matching of S in (S, T, (S × T ) ∩ E). By Lemma 6 there exists a (fractional) (1/αj)-matching of Sj in
(Sj , Tj , (Sj × Tj) ∩ E). Moreover, one can ensure that the matching is supported on the edges of a forest by
rerouting flow along cycles. Let Mj be a fractional (1/αj)-matching in (Sj , Tj) that is a forest.

3.2 General bipartite graphs

We now extend the construction to general bipartite graphs using the Edmonds-Gallai decomposition of
G(P,Q,E), which essentially allows us to partition the vertices of G into sets AP (G), DP (G), CP (G),
AQ(G), DQ(G), and CQ(G) such that AP (G) is hypermatchable to DQ(G), AQ is hypermatchable to
DP (G), and there is a perfect matching between CP (G) and CQ(G).

Using the above partition, we can now define a matching skeleton ofG using the above partition. Let S0 =
CP (G), T0 = CQ(G), and let M0 be a perfect matching between S0 and T0. Let (S1, T1), . . ., (Sj , Tj) be the
expanding pairs obtained by the construction in the previous section on the graph induced byAP (G)∪DQ(G).
Let (S−j , T−j), . . ., (S−1, T−1) be the expanding pairs obtained by the construction in the previous section
from the Q side on the graph induced by AQ(G) ∪DP (G).

Definition 7 For a bipartite graph G = (P,Q,E) we define the matching skeleton G′ of G as the union of
pairs (Sj , Tj), j = −∞, . . . ,+∞, with corresponding (fractional) matchings Mj . Note that G′ contains at
most |P |+ |Q| − 1 edges.

As before, we can show the following:

Lemma 8 1. For each U ⊆ Sj , one has |Tj ∩ ΓG′(U)| ≥ (1/αj)|U |.

2. For every k > 0,
((
P \

⋃
j≥k Sj

)
×
(⋃

j≥k Tj

))
∩E = ∅, and

((
Q \

⋃
j≤−k Sj

)
×
(⋃

j≤−k Tj

))
∩

E = ∅.

We note that the formulation of property (2) in Lemma 8 is slightly different from property (2) in Lemma 6.
However, one can see that these formulations are equivalent when there are no (Sj , Tj) pairs for negative j,
as is the case in Lemma 6.
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4 O(n) communication protocol for CC(1
3 , n)

In this section, we prove that for any two bipartite graphs G1, G2, the maximum matching in the graph
G′1 ∪ G2 is at least 2/3 of the maximum matching in G1 ∪ G2, where G′1 is the matching skeleton of G1.
Thus, CC(ε, n) = O(n) for all ε ≥ 1/3; Alice sends the matching skeleton G′A of her graph, and Bob
computes a maximum matching in the graph G′A ∪GB .

Before proceeding, we establish some notation used for the next several sections. Denote by (Sj , Tj), j =
−∞, . . . ,+∞ the set of pairs from the definition of G′. Recall that Sj ⊆ P when j ≥ 0 and Sj ⊆ Q
when j < 0. Also, given a maximum matching M in a bipartite graph G = (P,Q,E), a saturating cut
corresponding to M is a pair of disjoint sets (A1 ∪ B1, A2 ∪ B2) such that A1 ∪ A2 = P,B1 ∪ B2 = Q, all
vertices in A2 ∪ B1 are matched by M , there are no matching edges between A2 and B1, and no edges at all
between A1 and B2. The existence of a saturating cut follows from the max-flow min-cut theorem. Let ALG
denote the size of the maximum matching in G′1∪G2 and let OPT denote the size of the maximum matching
in G1 ∪G2.

Consider a maximum matching M in (G′1 ∪G2) and a corresponding saturating cut (A1 ∪B1, A2 ∪B2);
note that ALG = |B1| + |A2|. Let M∗ be a maximum matching in E1 ∩ (A1 × B2). Note that we have
OPT ≤ |B1|+ |A2|+ |M∗|.

We start by describing the intuition behind the proof. Suppose for simplicity that the matching skeleton
G′1 of G1 consists of only one (Sj , Tj) pair for some j ≥ 0, such that |Tj | = (1/αj)|Sj |. We first note
that since the matching M∗ is not part of the matching skeleton, it must be that edges of M∗ go from Sj
to Tj . We will abuse notation slightly by writing M∗ ∩ X to denote, for X ⊆ P ∪ Q, the subset of nodes
of X that are matched by M∗. Since all edges of M∗ go from Sj to Tj , we have M∗ ∩ A1 ⊆ Sj ∩ A1

and M∗ ∩ B2 ⊆ Tj ∩ B2. This allows us to obtain a lower bound on |B1| and |A2| in terms of |M∗|
if we lower bound |B1| and |A2| in terms of |Sj ∩ A1| and |Tj ∩ B2| respectively. First, we have that
|B1| ≥ |ΓG′1(Sj ∩ A1)| ≥ (1/αj)|Sj ∩ A1| ≥ (1/αj)|M∗|, where we used the fact that the saturating cut
is empty in G′1 ∪ G2 and Lemma 8 . Next, we prove that |ΓG′1(Sj ∩ A2) ∩ B2| ≤ (1/αj)|Sj ∩ A2| (this is
proved in Lemma 10 below). This, together with the fact that M∗ ∩ B2 ⊆ Tj ∩ B2 = ΓG′1(Sj ∩ A2) ∩ B2,
implies that |A2| ≥ αj |M∗|. Thus, we always have |A2| + |B1| ≥ (αj + 1/αj)|M∗|, and hence the worst
case happens at αj = 1, i.e. when the matching skeleton G′1 of G1 consists of only the (S0, T0) pair, yielding
a 2/3 approximation. The proof sketch that we just gave applies when the matching skeleton only contains
one pair (Sj , Tj). In the general case, we use Lemma 8 to control the distribution of M∗ among different
(Sj , Tj) pairs. More precisely, we use the fact that edges of M∗ may go from Sj ∩A1 to Ti∩B2 only if i ≤ j.
Another aspect that adds complications to the formal proof is the presence of (Sj , Tj) pairs for negative j.

We will use the notation

Zj ⊆
{
Sj ∩A1, j > 0
Sj ∩B2, j < 0.

and Wj ⊆
{
Tj ∩B2, j > 0
Tj ∩A1, j < 0

for the vertices in P and Q that are matched by M∗ (see Fig. 2(a) in the appendix). Further, let Z∗ denote
the set of vertices in S0 ∩ A1 that are matched by M∗ to B2 ∩ T0, and let W ∗ = M∗(Z∗) ⊆ B2 ∩ T0.
Let W 1

0 ⊆ S0 ∩ A1 denote the vertices in S0 ∩ A1 that are matched by M∗ outside of T0. Similarly, let
W 2

0 ⊆ T0 ∩ B2 denote the vertices in T0 ∩ B2 that are matched by M∗ outside of S0 (see Fig. 2(b) in the
appendix). Let

B′1 := B1 ∩

ΓG′1(Z∗) ∪ ΓG′1(W 1
0 ) ∪

⋃
j>0

(
ΓG′1(Zj) ∪ S−j

)
A′2 := A2 ∩

ΓG′1(W ∗) ∪ ΓG′1(W 2
0 ) ∪

⋃
j<0

(
ΓG′1(Zj) ∪ S−j

) .
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Then since

OPT ≤ |B′1|+ |A′2|+ |M∗|+ (|B1 \B′1|+ |A2 \A′2|)
ALG = |B′1|+ |A′2|+ (|B1 \B′1|+ |A2 \A′2|),

it is sufficient to prove that (|B′1| + |A′2|) ≥ (2/3)(|B′1| + |A′2| + |M∗|). Let OPT ′ = |B′1| + |A′2| + |M∗|
and ALG′ = |B′1|+ |A′2|. Define ∆′ = (OPT ′ −ALG′)/OPT ′. We will now define variables to represent
the sizes of the sets used in defining B′1, A′2:

w1
0 = |W 1

0 |, w2
0 = |W 2

0 |, z∗ = |Z∗|, w∗ = |W ∗|, (Note that z∗ = w∗)

zj = |Zj |, wj = |Wj |, rj = |ΓG′1(Zj)|, sj =

{
|Sj ∩A2| j > 0
|Sj ∩B1| j < 0

.

Lemma 9 expresses the size of B′1 and A′2 in terms of the new variables defined above.

Lemma 9 ALG′ =
∑

j 6=0(sj + rj) + (z∗+w1
0) + (w∗+w2

0), and OPT ′ ≤ z∗+ (z∗+w1
0) + (w∗+w2

0) +∑
j 6=0(sj + zj + rj).

The proof is deferred to the full version. The main idea is that most of the sets in the definitions of B′1 and
A′2 are disjoint, allowing us to represent sizes of unions of these sets by sums of sizes of individual sets.

For ALG′, recall that ΓG′1(Sj) = Tj and hence, the sets ΓG′1(Sj) are all disjoint. Further, the sets Sj are
all disjoint, by construction, and disjoint with all the Tj’s. Thus, |A′1| + |B′2| = |ΓG′1(W ∗) ∪ ΓG′1(W 2

0 )| +
|ΓG′1(Z∗) ∪ ΓG′1(W 1

0 )| +
∑

j 6=0(sj + rj). The sets W ∗ and W 2
0 are disjoint. Further, they are subsets of T0

(corresponding to α = 1), and hence nodes in these sets have a single unique neighbor in G′1; consequently
|ΓG′1(W ∗) ∪ ΓG′1(W 2

0 )| = w∗ +w2
0. Similarly, |ΓG′1(Z∗) ∪ ΓG′1(W 1

0 )| = z∗ +w1
0. This completes the proof

of the lemma for ALG′.
We have OPT ′ = ALG′ + |M∗|. Consider any edge (u, v) ∈ M∗. This edge is not in G′1 and hence

must go from an Sj to a Tj′ where 0 ≤ j′ ≤ j or 0 ≥ j′ ≥ j. The number of edges in M∗ that go from S0 to
T0 is precisely z∗ by definition; the number of remaining edges is precisely

∑
j 6=0 zj . We now derive linear

constraints on the size variables, leading to a simple linear program. We have by Lemma 8 that for all k > 0P \ ⋃
j≥k

Zj

×
⋃
j≥k

Wj

∩E1 = ∅, and

Q \ ⋃
j≤−k

Zj

×
 ⋃
j≤−k

Wj

∩E1 = ∅. (1)

The existence of M∗ together with (1)yields

+∞∑
j=k

zj ≥
+∞∑
j=k

wj ,∀k > 0, and
−k∑

j=−∞
zj ≥

−k∑
j=−∞

wj , ∀k > 0. (2)

Furthermore, we have by definition of W 1
0 together with (1)that

w1
0 ≤

∑
j<0

zj −
∑
j<0

wj and w2
0 ≤

∑
j>0

zj −
∑
j>0

wj . (3)

Also, we have ∑
j<0

zj = w1
0 +

∑
j<0

wj and
∑
j>0

zj = w2
0 +

∑
j>0

wj . (4)

Next, by Lemma 8, we have rj ≥ (1/αj)zj . We also need
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Lemma 10 (1) |ΓG′1(Sj ∩ A2) ∩ B2| ≤ (1/αj)|Sj ∩ A2| for all j > 0, and (2) |ΓG′1(Sj ∩ B1) ∩ A1| ≤
(1/αj)|Sj ∩B1| for all j < 0.

Proof: We prove (1). The proof of (2) is analogous. Suppose that |ΓG′1(Sj ∩ A2) ∩ B2| > (1/αj)|Sj ∩ A2|.
Then using the assumption that (A1 ×B2) ∩ E′ = ∅, we get

|Tj | = |Tj ∩B2|+ |Tj ∩B1| ≥ |ΓG′1(Sj ∩A2) ∩B2|+ |ΓG′1(Sj ∩A1)|
> (1/αj)|Sj ∩A2|+ (1/αj)|Sj ∩A1| > (1/αj)|Sj |,

a contradiction to the definition of the matching skeleton.
We will now bound ∆′ = (OPT ′ − ALG′)/OPT ′ using a sequence of linear programs, described in

figures 1(a)-1(c). We will overload notation to use P ∗1 , P
∗
2 , P

∗
3 , respectively, to refer to these linear programs

as well as their optimum objective function value. By Lemma 10 one has for all j 6= 0 that (1/αj)sj ≥ wj .
We combine this with equations 2, 3, and 4 to obtain the first of our linear programs, P ∗1 , in figure 1(a).
Bounding ∆′ is equivalent to bounding this LP (i.e. ∆′ ≤ P ∗1 ). Note that we have implicitly rescaled the
variables so that OPT ′ ≤ 1.

P ∗1 = maximize z∗ +
∑
j 6=0

zj s.t.

z∗ + (z∗ + w1
0) + (w∗ + w2

0) +
∑
j 6=0

sj + zj + rj ≤ 1

∀k > 0,

+∞∑
j=k

zj ≥
+∞∑
j=k

wj ,

∀k > 0,

−k∑
j=−∞

zj ≥
−k∑

j=−∞
wj

∀j 6= 0, (1/αj)sj ≥ wj
∀j 6= 0, rj ≥ (1/αj)zj∑

j<0

zj = w1
0 +

∑
j<0

wj∑
j>0

zj = w2
0 +

∑
j>0

wj

z∗ = w∗

s, z, w, r, z∗, w∗, w1
0, w

2
0 ≥ 0

P ∗2 = maximize
+∞∑
j=0

zj s.t.

+∞∑
j=0

sj + zj + rj ≤ 1

∀k ≥ 0,
k∑
j=0

wj ≥
k∑
j=0

zj

(1/αj)sj ≥ wj , j ≥ 0

rj ≥ (1/αj)zj , j ≥ 0

x, z, w, r ≥ 0

P ∗3 = maximize
∞∑
j=0

zj s.t.

∑
j

(αj + 1 + 1/αj)zj ≤ 1

z ≥ 0

Figure 1: The linear programs for lower bounding ALG/OPT .

We now symmetrize the LP P ∗1 by collecting the variables for cases when j is positive, negative, and 0
to obtain LP P ∗2 in figure 1(b). Finally, we relax LP P ∗2 by combining the second and third constraints, and
then establish that the remaining constraints are all tight. This gives us the LP P ∗3 in figure 1(c). Again,
details are in full version where we also prove: P ∗1 ≤ P ∗2 ≤ P ∗3 . But P ∗3 is easy to analyze: there exists an
optimum solution that sets all zj to zero except for a j that minimizes (αj + 1 + 1/αj). For all non-negative
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x, f(x) = 1 + x+ 1/x is minimized when x = 1, and f(1) = 3. This gives P ∗3 ≤ 1/3, and hence ∆′ ≤ 1/3,
or ALG′ ≥ (2/3)OPT ′. Thus, we have proved

Theorem 11 For any bipartite graph G1 = (P,Q,E1) there exists a subforest G′1 of G such that for any
graph G2 = (P,Q,E2) the maximum matching in G′1∪G2 is a 2/3-approximation of the maximum matching
in G1 ∪G2; further, it suffices to choose G′1 to be the matching skeleton of G1.

Corollary 12 CC(1
3 , n) = O(n).

Theorem 11 also implies that the matching skelton gives a linear size 1/2-cover of G; the proof of the
following corollary is in the full version.

Corollary 13 For any bipartite graph G = (P,Q,E), the matching skeleton G′ is a 1
2 -cover of G.

5 O(n) communication protocol for CCv(
1
4 , n)

In this section we prove that CCv(ε, n) = O(n) for all ε < 1/4. In particular, we show that given a bipartite
graph G1 = (P1, Q,E1), there exists a forest F ⊆ E1 such that for any G2 = (P2, Q,E) that may share
nodes on theQ side withG1 but not on the P side, the maximum matching inG′1∪G2 is a 3/4-approximation
of the maximum matching in G1 ∪ G2. The broad outline of the proof is similar to the previous section, but
we can now assume a special optimal matching using the assumption that G2 may only share nodes with G1

on the Q side. The proof uses the simple lemma below; we state it here since it is also needed in section 6.

Lemma 14 Let G = (P,Q,E) be a bipartite graph and let S ⊆ P be such that |Γ(U)| ≥ |U | for all U ⊆ S.
Then there exists a maximum matching in G that matches all vertices of S.

We now state the main theorem of this section. The proof is deferred to the full version of the paper.

Theorem 15 Let G1 = (P1, Q,E1), G2 = (P2, Q,E2) be bipartite graphs that share the vertex set on one
side. Let G′1 be the matching skeleton of G1. Then the maximum matching in G′1∪G2 is a 3/4-approximation
of the maximum matching in G1 ∪G2.

6 One-pass streaming with vertex arrivals

Let Gi = (Pi, Q,Ei) be a sequence of bipartite graphs, where Pi ∩ Pj = ∅ for i 6= j. For a graph G, we
denote by SPARSIFY∗(G) the matching skeleton ofGmodified as follows: for each pair (Sj , Tj), j < 0 keep
an arbitrary matching of Sj to a subset of Tj , discarding all other edges, and collect all these matchings into
the (S0, T0) pair. Note that we have Sj ⊆ P , where P is the side of the graph that arrives in the stream. Let

G′1 = SPARSIFY∗(G1), and G′i = SPARSIFY∗(G′i−1 ∪Gi). (5)

We will show that for each τ > 0 the maximum matching in G′τ is at least a 1 − 1/e fraction of the
maximum matching in

⋃τ
i=1Gi. We will slightly abuse notation by denoting the set of expanding pairs in G′τ

by (Sα(τ), Tα(τ)). Recall that we have α ∈ (0, 1], and |Sα(τ)| = α|Tα(τ)|. We need the following

Definition 16 For a vertex u ∈ P define its level after time τ , denoted by αu(τ), as the value of α such that
u ∈ Sα(τ). Similarly, for a vertex v ∈ Q define its level after time τ , denoted by αv(τ), as the value of α
such that u ∈ Tα(τ). Note that for a vertex u is at level α = αu(τ) the expansion of the pair (Sα(τ), Tα(τ))
that it belongs to is 1/α.
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Before describing the formal proof, we give an outline of the main ideas. In our analysis, we track the
structure of the matching skeleton maintained by the algorithm over time. For the purposes of our analysis,
at each time τ , every vertex is characterized by two numbers: its initial level β when it first appeared in the
stream and its current level α at time τ (we denote the set of such vertices at time τ by Sα,β(τ)). Informally,
we first deduce that the matching edges that our algorithm misses may only connect a vertex in Sα,β(τ) to a
vertex in Tβ′(τ) for β′ ≥ β, and hence we are interested in the distribution of vertices among the sets Sα,β(τ).
We show that vertices that initially appeared at lower levels and then migrated to higher levels are essentially
the most detrimental to the approximation ratio. However, we prove that for every λ ∈ (0, 1], which can
be thought of as a ‘barrier’, the number of vertices that initially appeared at level β < λ but migrated to a
level α ≥ λ can never be larger than λ

∣∣∣⋃γ∈[λ,1] Tγ(τ)
∣∣∣ at any time τ . This leads to a linear program whose

optimum lower bounds the approximation ratio, and yields the (1− 1/e) approximation guarantee.

Lemma 17 For all u ∈ P and for all τ , αu(τ + 1) ≥ αu(τ). Similarly for v ∈ Q, αv(τ + 1) ≥ αv(τ).

Let Sα,β(τ) denote the set of vertices in u ∈ P such that (1) u ∈ Sβ(τ ′), where τ ′ is the time when
u arrived (i.e. u ∈ Pτ ′), and (2) u ∈ Sα(τ). Note that one necessarily has α ≥ β by Lemma 17 for all
nonempty Sα,β . Combining this with properties of the matching skeleton construction we obtain

∀τ,∀λ ∈ (0, 1] :

(Q \
⋃

α∈[λ,1]

Tα(τ))×
⋃

β∈[λ,1]

Sα,β(τ)

 ∩ τ⋃
t=1

Et = ∅. (6)

Details are in the attached full version, where this statement is stated and proved as lemma 47. Let
tα(τ) = |Tα(τ)|, sα,β(τ) = |Sα,β(τ)|. The quantities tα(τ), sα,β(τ) are defined for α, β ∈ D = {∆k : 0 <
k ≤ 1/∆}, where 1/∆ is a sufficiently large integer (note that all relevant values of α, β are rational with de-
nominators bounded by n). In what follows all summations over levels are assumed to be over the setD. Then

Lemma 18 For all τ and for all α ∈ (0, 1], we have
∑

β∈[α,1]

∑
δ∈(0,α−∆] sβ,δ(τ) ≤ (α−∆)

∑
β∈[α,1] tβ(τ).

The proof is by induction on τ , and an easy consequence of lemma 17; details are in the attached full version.
In what follows we only consider sets Sα,β(τ), Tα(τ) for fixed τ , and omit τ for brevity. Let S =

⋃
α,β Sα,β .

Choose a maximum matching M in Gτ that matches all of S, as guaranteed by Lemma 14. Let γ denote
the number of vertices in T1 that are matched outside of S by M (note that no vertices of Tα, α ∈ (0, 1) are
matched outside of S by (6)). For each α ∈ (0, 1] let rα ≤ tα denote the number of vertices in Tα that are not
matched by M . Then the following is immediate from (6).

Lemma 19 For all λ ≤ 1 ,
∑

α∈[λ,1] tα ≥
∑

α∈[λ,1],β∈[λ,1] sα,β +
∑

α∈[λ,1] rα + γ.

We also have
∑

β∈[α,1]

∑
δ∈(0,1] sβ,δ =

∑
β∈[α,1] βtβ for allα ∈ (0, 1]. By Lemma 18 and Lemma 19, we get

ALG =
∑

α∈(0,1)

(tα − rα) + (t1 − r1 − γ), OPT = ALG+ γ, t1 ≥ γ + r1.

Thus, we need to minimize ALG/OPT subject to t1 ≥ r1 + γ, tα, sα,β ≥ 0 and

∀α ∈ (0, 1] :
∑

β∈[α,1]

tβ ≥ γ +
∑

β∈[α,1]

∑
δ∈[α,1]

sβ,δ +
∑

β∈[α,1]

rβ.

∀α ∈ (0, 1] :
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ ≤ (α−∆)
∑

β∈[α,1]

tβ

∀α ∈ (0, 1]
∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ.

(7)
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This is almost a linear program. After a series of simplifications of the type presented in section 4, we show
that ALG/OPT ≥ P ∗/(1 + P ∗), where P ∗ is the LP

P ∗ = minimize
∑

α∈(0,1)

tα s.t.

∀α ∈ (0, 1] :
∑
β≥α

(1− β + α−∆)tβ = 1.

tα ≥ 0.

(8)

It is relatively straightforward to show that the optimum value of this LP is at least (1−∆)−1/∆ − 1. Details
of the simplification steps and the analysis are in the attached full version. Thus, we get

ALG

OPT
≥ P ∗

P ∗ + 1
= 1− 1

P ∗ + 1
≥ 1− (1−∆)1/∆ ≥ 1− 1/e

since (1−∆)1/∆ ≤ 1/e for all ∆ ≥ 0. We have now proved

Theorem 20 There exists a deterministicO(n) space 1-pass streaming algorithm for approximating the max-
imum matching in bipartite graphs in the vertex arrival model.

Proof: Run the algorithm given in (5), letting |Pi| = 1, i.e. sparsifying as soon as a new vertex comes in. The
algorithm only keeps a sparsifier G′i in memory, which takes space O(n).

7 Constructions of Ruzsa-Szemerédi graphs

In this section we give two extensions of constructions of Ruzsa-Szemerédi graphs from [7]. The first con-
struction shows that for any constant ε > 0 there exist (1/2 − ε)-Ruzsa-Szemerédi graphs with superlinear
number of edges. We use this construction in section 8 to prove that our bound on CC(ε, n), ε < 1/3 is tight.
The second construction that we present is a generalization to lop-sided graphs, which we use in section 8 to
prove that our bound on CCv(ε, n), ε < 1/4 is tight. Specifically, we show the following results:

Lemma 21 For any constant ε > 0 there exists a family of bipartite (1/2− ε)-Ruzsa-Szemerédi graphs with
n1+Ω(1/ log logn) edges.

Lemma 22 For any constant δ > 0 there exists a family of bipartite Ruzsa-Szemerédi graphs G = (X,Y,E)
with |X| = n, |Y | = 2n such that (1) the edge set E is a union of nΩδ(1/ log logn) induced 2-matchings
M1, . . . ,Mk of size at least (1/2 − O(δ))|X|, and (2) for any j ∈ [1 : k] the graph G contains a matching
M∗j of size at least (1−O(δ))|X| that avoids Y \ (Mj ∩ Y ).

The proofs of these results are based on an adaptation of Theorem 16 in [7] (see also [17]), which con-
structs bipartite 1/3-Ruzsa-Szemerédi graphs with superlinear number of edges. The main idea of the con-
struction, use of a large family of nearly orthogonal vectors derived from known families of error correcting
codes, is the same. A technical step is required to go from matchings of size 1/3 to matchings of size 1/2− ε
for any ε > 0. Since the result does not follow directly from [7], we give a complete proof in the full version.

8 Lower bounds on communication and one-pass streaming complexity

We show here that lower bounds on the size of Ruzsa-Szemerédi graphs yield lower bounds on the (random-
ized) communication complexity, and hence for one-pass streaming complexity.
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In the edge model, we show that CC
(

2(1−ε)
2−ε − δ, n

)
= Ω(UI(ε, n/2)) for all ε, δ > 0. In particular,

combined with the constructions of (1/2 + δ0)-Ruzsa-Szemerédi graphs for any constant δ0 > 0 (Lemma 21)
this proves that CC(ε, n) = n1+Ω(1/ log logn) for ε < 1/3. Thus our O(n) upper bound on CC(1

3 , n) in
section 4 is optimal in the sense that any better approximation requires super-linear communication. As a
corollary, we also get that super-linear space is necessary to achieve better than 2/3-approximation in the
one-pass streaming model.

In the vertex model, using the construction of Ruzsa-Szemerédi graphs from Lemma 22, we show that
CCv(ε, n) = n1+Ω(1/ log logn) for all ε < 1/4. This proves optimality of our construction in section 5, and also
shows that super-linear space is necessary to achieve better than 3/4-approximation in the one-pass streaming
model even in the vertex arrival setting.

We note that our lower bounds for both the edge and vertex arrival case apply to randomized algorithms.
The proofs of these results appear in the full version.

9 Matching covers versus Ruzsa-Szemerédi graphs

In this section we prove that the size of the smallest possible matching cover is essentially the same as the
number of edges in the largest Ruzsa-Szemerédi graph with appropriate parameters.

The first theorem below shows that the size of the matching cover is at least as large as the size of a
Ruzsa-Szemerédi graph with appropriate parameters. The proof of this result is straightforward.

Theorem 23 [Lower bound] For any δ > 0, LC(ε, n) ≥ UI ((1 + δ)ε, n) ·
(

δ
1+δ

)
.

The theorem below gives a simplified version of the complementary upper bound result.

Theorem 24 [Simplified upper bound] Assume 0 < ε < 2/3, 0 < δ < 1, and εn ≥ 3. Then, LC(ε, n) ≤
UI((1− δ)ε, n) ·O

(
log(1/ε)
δ(1−δ)

)
.

The proof of the upper bound is more intricate. We describe briefly the main idea of the proof, deferring
the complete details to the full version. We formulate a linear program to minimize the number of edges
needed in an ε-cover of a given graph G, and show that if the optimal value of the fractional cover is Z∗, there
exists an integral cover of size at most εnZ∗ (roughly speaking). On the other hand, we show using the dual
linear program (whose optimum is also Z∗ by strong duality), that for any 0 < δ < 1, the graph G contains a
subgraph G′ of size roughly εnZ∗ such that the edges of G′ can be partitioned into induced matchings of size
(1− δ)εn. These two results together imply the upper bound in the theorem above.
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A Introduction

We study the communication and streaming complexity of the maximum bipartite matching problem. Con-
sider the following scenario. Alice holds a graphGA = (P,Q,EA) and Bob holds a graphGB = (P,Q,EB),
where |P | = |Q| = n. Alice is allowed to send Bob a message m that depends only on the graph GA. Bob
must then output a matching M ⊆ EA ∪EB . What is the minimum size of the message m that Alice sends to
Bob that allows Bob to recover a matching of size at least 1− ε of the maximum matching in GA ∪GB? The
minimum message length is the one-round communication complexity of approximating bipartite matching,
and is denoted by CC(ε, n). It is easy to see that the quantity CC(ε, n) also gives a lower bound on the space
needed by a one-pass streaming algorithm to compute a (1− ε)-approximate bipartite matching. To see this,
consider the graphGA∪GB revealed in a streaming manner with edge setEA revealed first (in some arbitrary
order), followed by the edge set EB . It is clear that any non-trivial approximation to the bipartite matching
problem requires Ω(n) communication and Ω(n) space, respectively, for the one–round communication and
one-pass streaming problems described above. The central question considered in this work is how well can
we approximate the bipartite matching problem when only Õ(n) communication/space is allowed.

Matching Covers: We show that a study of these questions is intimately connected to existence of sparse
“matching covers” for bipartite graphs. An ε-matching cover or simply an ε-cover, of a graph G(P,Q,E)
is a subgraph G′(P,Q,E′) such that for any pairs of sets A ⊆ P and B ⊆ Q, the graph G′ preserves the
size of the largest A to B matching to within an additive error of εn. The notion of matching sparsifiers may
be viewed as a natural analog of the notion of cut-preserving sparsifiers which have played a very important
role in the study of network design and connectivity problems [12, 4]. It is easy to see that if there exists an
ε-cover of size f(ε, n) for some function f , then Alice can just send a message of size f(ε, n) to allow Bob
to compute an additive εn error approximation to bipartite matching (and (1 − ε)-approximation whenever
GA ∪GB contains a perfect matching). However, we show that the question of constructing efficient ε-covers
is essentially equivalent to resolving a long-standing problem on a family of graphs known as the Ruzsa-
Szemerédi graphs. A bipartite graph G(P,Q,E) is an ε-Ruzsa-Szemerédi graph if E can be partitioned into
a collection of induced matchings of size at least εn each. Ruzsa-Szemerédi graphs have been extensively
studied as they arise naturally in property testing, PCP constructions and additive combinatorics [7, 11, 19].
A major open problem is to determine the maximum number of edges possible in an ε-Ruzsa-Szemerédi graph.
In particular, do there exist dense graphs with large locally sparse regions (i.e. large induced subgraphs are
perfect matchings)? We establish the following somewhat surprising relationship between matching covers
and Ruzsa-Szemerédi graphs: for any ε > 0 the smallest possible size of an ε-matching cover is essentially
equal to the largest possible number of edges in an ε-Ruzsa-Szemerédi graph.

Constructing dense ε-Ruzsa-Szemerédi graphs for general ε and proving upper bounds on their size ap-
pears to be a difficult problem [9]. To our knowledge, there are two known constructions in the literature.
The original construction due to Ruzsa and Szemerédi yields a collection of n/3 induced matchings of size
n/2O(

√
logn) using Behrend’s construction of a large subset of {1, . . . , n} without three-term arithmetic pro-

gressions [3, 19]. Constructions of a collection of nc/ log logn induced matchings of size n/3−o(n) were given
in [7, 17]. We use the ideas of [7, 17] to construct (1

2 − δ)-Ruzsa-Szemerédi graphs with n1+Ωδ(1/ log logn)

edges and a more general construction for the vertex arrival case. To the best of our knowledge, the only
known upper bound on the size of ε-Ruzsa-Szemerédi graphs for constant ε < 1

2 isO(n2/ log∗ n) that follows
from the bound used in an elementary proof of Roth’s theorem [19].

One-round Communication: We show that in fact CC(ε, n) ≤ 2n − 1 for all ε ≥ 1
3 , i.e. a message of

linear size suffices to get a 2
3 -approximation to the maximum matching in GA ∪GB . We establish this result

by constructing an O(n) size 1
2 -cover of the input graph that satisfies certain additional properties which

allows Bob to recover a 2
3 -approximation2. We refer to this particular 1

2 -cover as a matching skelton of the

2We note here that a maximum matching in a graph is only a 2
3

-cover.
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input graph, and give a polynomial time algorithm for constructing it. Next, building on the above-mentioned
connection between matching covers and Ruzsa-Szemerédi graphs, we show the following two results: (a)
our construction of 1

2 -cover implies that for any δ > 0, there do not exist (1
2 + δ)-Ruzsa-Szemerédi graph

with more than O(n/δ) edges, and (b) our 2
3 -approximation result is best possible when only linear amount

of communication is allowed. In particular, Alice needs to send n1+Ω(1/ log logn) bits to achieve a (2
3 + δ)-

approximation, for any constant δ > 0, even when randomization is allowed.
We then study the one round communication complexity CCv(ε, n) of (1 − ε)-approximate maximum

matching in the restricted model when the graphs GA and GB are only allowed to share vertices on one
side of the bipartition. This model is motivated by application to one-pass streaming computations when the
vertices of the graph arrive together with all incident edges. We obtain a stronger approximation result in this
model, namely, using the preceding 1

2 -cover construction we show that CCv(ε, n) ≤ 2n − 1 for ε ≥ 1/4.
Thus a 3

4 -approximation can be obtained with linear communication complexity, and as before, we show that
obtaining a better approximation requires a communication complexity of n1+Ω(1/ log logn) bits.

One-pass Streaming: We build on our techniques for one-round communication to design a one-pass stream-
ing algorithm for the case when vertices on one side are known in advance, and the vertices on the other side
arrive in a streaming manner together with all their incident edges. This is precisely the setting of the cele-
brated (1 − 1

e )-competitive randomized algorithm of Karp-Vazirani-Vazirani (KVV) for the online bipartite
matching problem [13]. We give a deterministic one-pass streaming algorithm that matches the (1 − 1

e )-
approximation guarantee of KVV using only O(n) space. Prior to our work, the only known deterministic
algorithm for matching in one-pass streaming model, even under the assumption that vertices arrive together
with all their edges, is the trivial algorithm that keeps a maximal matching, achieving a factor of 1

2 . We
note that in the online setting, randomization is crucial as no deterministic online algorithm can achieve a
competitive ratio better than 1

2 .

Related work: The streaming complexity of maximum bipartite matching has received significant attention
recently. Space-efficient algorithms for approximating maximum matchings to factor (1 − ε) in a number of
passes that only depends on 1/ε have been developed. The work of [16] gave the first space-efficient algorithm
for finding matchings in general (non-bipartite) graphs that required a number of passes dependent only on
1/ε, although the dependence was exponential. This dependence was improved to polynomial in [5], where
(1−ε)-approximation was obtain inO(1/ε8) passes. In a recent work, [1] obtained a significant improvement,
achieving (1− ε)-approximation in O(log log(1/ε)/ε2) passes (their techniques also yield improvements for
the weighted version of the problem). Further improvements for the non-bipartite version of the problem have
been obtained in [2]. Despite the large body of work on the problem, the only known algorithm for one pass
is the trivial algorithm that keeps a maximal matching. No non-trivial lower bounds on the space complexity
of obtaining constant factor approximation to maximum bipartite matching in one pass were known prior to
our work (for exact computation, an Ω(n2) lower bound was shown in [6]).

Organization: We start by introducing relevant definitions in section B. In section C we give the construction
of the matching skeleton, which we use later in section D to prove that CC(1/3, n) = O(n), as well as
show that the matching skeleton forms a 1/2-cover. In section E we deduce using the matching skeleton that
CCv(1/4, n) = O(n). In section F we use these techniques to obtain a deterministic one-pass (1− 1/e)
approximation to maximum matching in O(n) space in the vertex arrival model. We extend the construction
of Ruzsa-Szemerédi graphs from [7, 17] in section G. We use these extensions in section H to show that our
upper bounds on CC(ε, n) and CCv(ε, n) are best possible, as well as to prove lower bounds on the space
complexity of one-pass algorithms for approximating maximum bipartite matching. Finally, in section I we
prove the correspondence between the size of the smallest ε-matching cover of a graph on n nodes and the
size of the largest ε-Ruzsa-Szemerédi graph on n nodes.
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B Preliminaries

We start by defining bipartite matching covers, which are matchings-preserving graph sparsifiers.

Definition 25 Given an undirected bipartite graph G = (P,Q,E), and sets A ⊆ P,B ⊆ Q, and H ⊆ E, let
MH(A,B) denote the size of the largest matching in the graph G′ = (A,B, (A×B) ∩H).

Given an undirected bipartite graph G = (P,Q,E) with |P | = |Q| = n, a set of edges H ⊆ E is said to
be an ε-matching-cover of G if for all A ⊆ P,B ⊆ Q, we have MH(A,B) ≥ME(A,B)− εn.

Definition 26 Define LC(ε, n) to be the smallest number m′ such that any undirected bipartite graph G =
(P,Q,E) with P = Q = n has an ε-matching-cover of size at most m′.

We next define induced matchings and Ruzsa-Szemerédi graphs.

Definition 27 Given an undirected bipartite graph G = (P,Q,E) and a set of edges F ⊆ E, let P (F ) ⊆ P
denote the set of vertices in P which are incident on at least one edge in F , and analogously, let Q(F ) denote
the set of vertices inQ which are incident on at least one edge in F . Let E(F ), called the set of edges induced
by F , denote the set of edges E ∩ (P (F )×Q(F )). Note that E(F ) may be much larger than F in general.

Given an undirected bipartite graph G = (P,Q,E), a set of edges F ⊆ E is said to be an induced
matching if no two edges in F share an endpoint, and E(F ) = F . Given an undirected bipartite graph
G = (P,Q,E) and a partition F of E, the partition is said to be an induced partition of G if every set F ∈ F
is an induced matching. An undirected bipartite graph G = (P,Q,E) with P = Q = n is said to have an
ε-induced partition if there exists an induced partition of G such every set in the partition is of size at least
εn. Following [7], we refer to graphs that have an ε-induced partition as ε-Ruzsa-Szemerédi graphs.

Definition 28 Let UI(ε, n) denote the largest number m such that there exists an undirected bipartite graph
G = (P,Q,E) with |E| = m, |P | = |Q| = n, and with an ε-induced partition.

Note that for any 0 < ε1 < ε2 < 1, any ε2-induced partition of a graph is also an ε1-induced partition, and
hence, UI(ε, n) is a non-increasing function of ε. Analogously, any ε1-matching-cover is also an ε2-matching
cover, and hence, LC(ε, n) is also a non-increasing function of ε.

C Matching Skeletons

LetG = (P,Q,E) be a bipartite graph. We now define a subgraphG′ = (P,Q,E′) ofG that contains at most
(|P | + |Q| − 1) edges, and encodes useful information about matchings in G. We refer to this subgraph G′

as a matching skeleton of G, and this construction will serve as a building block for our algorithms. Among
other things, we will show later that G′ is a 1

2 -cover of G.
We present the construction of G′ in two steps. We first consider the case when P is hypermatchable,

that is, for every vertex v ∈ Q there exists a perfect matching of the P side that does not include v. We then
extend the construction to the general case using the Edmonds-Gallai decomposition [18].

C.1 P is hypermatchable in G

We note that since P is hypermatchable, by Hall’s theorem [18], we have that |Γ(A)| > |A| for all A ⊆ P .
For a parameter α ∈ (0, 1], let RG(α) = {A ⊆ P : |ΓG(A)| ≤ (1/α)|A|}. Note that as the parameter α
decreases, the expansion requirement in the definition above increases. We will omit the subscript G when G
is fixed, as in the next lemma.
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Lemma 29 Let α ∈ (0, 1] be such that R(α+ ε) = ∅ for any ε > 0, i.e. G supports an 1
α+ε -matching of the

P -side for any ε > 0. Then for any two A1 ∈ R(α), A2 ∈ R(α) one has A1 ∪A2 ∈ R(α).

Proof: LetB1 = Γ(A1) andB2 = Γ(A2). First, since (A1×(Q\B1))∩E = ∅ and (A2×(Q\B2))∩E = ∅,
we have that (A1 ∩ A2) × (Q \ (B1 ∩ B2)) = ∅. Furthermore, since R(α + ε) = ∅, one has |B1 ∩ B2| ≥
(1/α)|A1 ∩A2|. Also, we have |Bi| ≤ |Ai|/α, i = 1, 2. Hence,

|B1 ∪B2| = |B1|+ |B2| − |B1 ∩B2| ≤ (1/α)(|A1|+ |A2| − |A1 ∩A2|) = (1/α)|A1 ∪A2|,

and thus (A1 ∪A2) ∈ R(α) as required.
We now define a collection of sets (Sj , Tj), j = 1, . . . ,+∞, where Sj ⊆ P, Tj ⊆ Q,Si ∩ Sj = ∅, i 6= j.

1. Set j := 1, G0 := G,α0 := 1. We haveRG0(α0) = ∅.

2. Let β < αj−1 be the largest real such thatRGj−1(β) 6= ∅.

3. Let Sβ =
⋃
A∈R(β)A, and Tβ = Γ(Sβ). We have Sβ ∈ RRj−1(β) by Lemma 29.

4. Let Gj := Gj−1 \ (Sβ ∪ Tβ). We refer to the value of α at which a pair (Sα, Tα) gets removed from
the graph as the expansion of the pair. Set Sj := Sβ, Tj := Tβ, αj := β. If Gj 6= ∅, let j := j + 1 and
go to (2).

The following lemma is an easy consequence of the above construction.

Lemma 30 1. For each U ⊆ Sj one has |ΓGj (U)| ≥ (1/αj)|U |.

2. For every k > 0,
((⋃

j≤k Sj

)
×
(
Q \

⋃
j≤k Tj

))
∩ E = ∅.

Proof: We prove (1) by contradiction. When j = 1, (1) follows immediately since we are choosing the
largest β such thatR(β) 6= ∅. Otherwise suppose that there exists U ⊆ PGj such that |ΓGj (U)| < (1/αj)|U |.
Then first observe that |ΓGj (U)| > (1/αj−1)|U |. If not then

|ΓGj−1(Sj−1 ∪ U)| = |Tj−1|+ |ΓGj (U)| ≤ 1

αj−1
(|Sj−1|+ |U |) ≤

1

αj−1
(|Sj−1 ∪ U |),

since Sj−1 ∩PGj = ∅ by construction. Now as αj < αj−1 is chosen to be the largest real for which there
exists some subset U ′ ⊆ PGj with |ΓGj (U ′)| ≤ (1/αj)|U ′|, it follows that for every U ⊆ PGj , we must have
|ΓGj (U)| ≥ (1/αj)|U |.

(2) follows by construction.

To complete the definition of the matching skeleton, we now identify the set of edges of G that our
algorithm keeps. For a parameter γ ≥ 1 and subsets S ⊆ P , T ⊆ Q we refer to a (fractional) matching
M that saturates each vertex in S exactly γ times (fractionally) and each vertex in T at most once as a γ-
matching of S in (S, T, (S × T ) ∩ E). By Lemma 30 there exists a (fractional) (1/αj)-matching of Sj in
(Sj , Tj , (Sj × Tj) ∩ E). Moreover, one can ensure that the matching is supported on the edges of a forest by
rerouting flow along cycles. Let Mj be a fractional (1/αj)-matching in (Sj , Tj) that is a forest.

Interestingly, the fractional matching corresponding to the matching skeleton is identical to a 1-majorized
fractional allocation of unit-sized jobs to (1 −∞) machines [14, 8]; as a result, the fractional matchings xe
simultaneously minimize all convex functions of the xe’s subject to the constraint that every node in P is
matched exactly once.
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C.2 General bipartite graphs

We now extend the construction to general bipartite graphs using the Edmonds-Gallai decomposition of
G(P,Q,E), which essentially allows us to partition the vertices of G into sets AP (G), DP (G), CP (G),
AQ(G), DQ(G), and CQ(G) such that AP (G) is hypermatchable to DQ(G), AQ is hypermatchable to
DP (G), and there is a perfect matching between CP (G) and CQ(G).

The Edmonds-Gallai decomposition theorem is as follows.

Theorem 31 (Edmonds-Gallai decomposition, [18]) Let G = (V,E) be a graph. Then V can be partitioned
into the union of sets D(G), A(G), C(G) such that

D(G) = {v ∈ V |there exists a maximum matching missing v}
A(G) = Γ(D(G))

C(G) = V \ (D(G) ∪A(G)).

Moreover, every maximum matching contains a perfect matching inside C(G).

Applying Edmonds-Gallai decomposition to bipartite graphs, we get

Corollary 32 LetG = (P,Q,E) be a graph. Then V can be partitioned into the union of setsDP (G), DQ(G),
AP (G), AQ(G), CP (G), CQ(G) such that

DP (G) = {v ∈ P |there exists a maximum matching missing v}
DQ(G) = {v ∈ Q|there exists a maximum matching missing v}

AP (G) = Γ(DQ(G))

AQ(G) = Γ(DP (G))

CP (G) = P \ (DP (G) ∪AP (G))

CQ(G) = Q \ (DQ(G) ∪AQ(G)).

Moreover,

1. there exists a perfect matching between CP (G) and CQ(G)

2. for every U ⊆ AP (G) one has |Γ(U) ∩DQ(G)| > |U |

3. for every U ⊆ AQ(G) one has |Γ(U) ∩DP (G)| > |U |.

Proof: (1) is part of the statement of Theorem 31. To show (2), note that by definition of DQ(G) for each
vertex v ∈ DQ(G) there exists a maximum matching that misses v. Thus, |Γ(U) ∩DQ(G)| > |U | for every
set U .

Using the above partition, we can now define a matching skeleton ofG using the above partition. Let S0 =
CP (G), T0 = CQ(G), and let M0 be a perfect matching between S0 and T0. Let (S1, T1), . . ., (Sj , Tj) be the
expanding pairs obtained by the construction in the previous section on the graph induced byAP (G)∪DQ(G).
Let (S−j , T−j), . . ., (S−1, T−1) be the expanding pairs obtained by the construction in the previous section
from the Q side on the graph induced by AQ(G) ∪DP (G).

Definition 33 For a bipartite graph G = (P,Q,E) we define the matching skeleton G′ of G as the union of
pairs (Sj , Tj), j = −∞, . . . ,+∞, with corresponding (fractional) matchings Mj . Note that G′ contains at
most |P |+ |Q| − 1 edges.

As before, we can show the following:
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Lemma 34 1. For each U ⊆ Sj , one has |Tj ∩ ΓG′(U)| ≥ (1/αj)|U |.

2. For every k > 0,
((
P \

⋃
j≥k Sj

)
×
(⋃

j≥k Tj

))
∩E = ∅, and

((
Q \

⋃
j≤−k Sj

)
×
(⋃

j≤−k Tj

))
∩

E = ∅.

Proof: Follows by construction of G′.
We note that the formulation of property (2) in Lemma 8 is slightly different from property (2) in Lemma 6.
However, one can see that these formulations are equivalent when there are no (Sj , Tj) pairs for negative j,
as is the case in Lemma 6.

D O(n) communication protocol for CC(1
3 , n)

In this section, we prove that for any two bipartite graphs G1, G2, the maximum matching in the graph
G′1 ∪ G2 is at least 2/3 of the maximum matching in G1 ∪ G2, where G′1 is the matching skeleton of G1.
Thus, CC(ε, n) = O(n) for all ε ≥ 1/3; Alice sends the matching skeleton G′A of her graph, and Bob
computes a maximum matching in the graph G′A ∪GB .

Before proceeding, we establish some notation used for the next several sections. Denote by (Sj , Tj), j =
−∞, . . . ,+∞ the set of pairs from the definition of G′. Recall that Sj ⊆ P when j ≥ 0 and Sj ⊆ Q
when j < 0. Also, given a maximum matching M in a bipartite graph G = (P,Q,E), a saturating cut
corresponding to M is a pair of disjoint sets (A1 ∪ B1, A2 ∪ B2) such that A1 ∪ A2 = P,B1 ∪ B2 = Q, all
vertices in A2 ∪ B1 are matched by M , there are no matching edges between A2 and B1, and no edges at all
between A1 and B2. The existence of a saturating cut follows from the max-flow min-cut theorem. Let ALG
denote the size of the maximum matching in G′1∪G2 and let OPT denote the size of the maximum matching
in G1 ∪G2.

Consider a maximum matching M in (G′1 ∪G2) and a corresponding saturating cut (A1 ∪B1, A2 ∪B2);
note that ALG = |B1| + |A2|. Let M∗ be a maximum matching in E1 ∩ (A1 × B2). Note that we have
OPT ≤ |B1|+ |A2|+ |M∗|.

We start by describing the intuition behind the proof. Suppose for simplicity that the matching skeleton
G′1 of G1 consists of only one (Sj , Tj) pair for some j ≥ 0, such that |Tj | = (1/αj)|Sj |. We first note
that since the matching M∗ is not part of the matching skeleton, it must be that edges of M∗ go from Sj
to Tj . We will abuse notation slightly by writing M∗ ∩ X to denote, for X ⊆ P ∪ Q, the subset of nodes
of X that are matched by M∗. Since all edges of M∗ go from Sj to Tj , we have M∗ ∩ A1 ⊆ Sj ∩ A1

and M∗ ∩ B2 ⊆ Tj ∩ B2. This allows us to obtain a lower bound on |B1| and |A2| in terms of |M∗|
if we lower bound |B1| and |A2| in terms of |Sj ∩ A1| and |Tj ∩ B2| respectively. First, we have that
|B1| ≥ |ΓG′1(Sj ∩ A1)| ≥ (1/αj)|Sj ∩ A1| ≥ (1/αj)|M∗|, where we used the fact that the saturating cut
is empty in G′1 ∪ G2 and Lemma 8 . Next, we prove that |ΓG′1(Sj ∩ A2) ∩ B2| ≤ (1/αj)|Sj ∩ A2| (this is
proved in Lemma 10 below). This, together with the fact that M∗ ∩ B2 ⊆ Tj ∩ B2 = ΓG′1(Sj ∩ A2) ∩ B2,
implies that |A2| ≥ αj |M∗|. Thus, we always have |A2| + |B1| ≥ (αj + 1/αj)|M∗|, and hence the worst
case happens at αj = 1, i.e. when the matching skeleton G′1 of G1 consists of only the (S0, T0) pair, yielding
a 2/3 approximation. The proof sketch that we just gave applies when the matching skeleton only contains
one pair (Sj , Tj). In the general case, we use Lemma 8 to control the distribution of M∗ among different
(Sj , Tj) pairs. More precisely, we use the fact that edges of M∗ may go from Sj ∩A1 to Ti∩B2 only if i ≤ j.
Another aspect that adds complications to the formal proof is the presence of (Sj , Tj) pairs for negative j.

We will use the notation

Zj ⊆
{
Sj ∩A1, j > 0
Sj ∩B2, j < 0.

and Wj ⊆
{
Tj ∩B2, j > 0
Tj ∩A1, j < 0
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for the vertices in P and Q that are matched by M∗ (see Fig. 2(a)). Further, let Z∗ denote the set of vertices
in S0 ∩ A1 that are matched by M∗ to B2 ∩ T0, and let W ∗ = M∗(Z∗) ⊆ B2 ∩ T0. Let W 1

0 ⊆ S0 ∩ A1

denote the vertices in S0 ∩A1 that are matched by M∗ outside of T0. Similarly, let W 2
0 ⊆ T0 ∩B2 denote the

vertices in T0 ∩B2 that are matched by M∗ outside of S0 (see Fig. 2(b)). Let

B′1 := B1 ∩

ΓG′1(Z∗) ∪ ΓG′1(W 1
0 ) ∪

⋃
j>0

(
ΓG′1(Zj) ∪ S−j

)
A′2 := A2 ∩

ΓG′1(W ∗) ∪ ΓG′1(W 2
0 ) ∪

⋃
j<0

(
ΓG′1(Zj) ∪ S−j

) .

Then since

OPT ≤ |B′1|+ |A′2|+ |M∗|+ (|B1 \B′1|+ |A2 \A′2|)
ALG = |B′1|+ |A′2|+ (|B1 \B′1|+ |A2 \A′2|),

it is sufficient to prove that (|B′1| + |A′2|) ≥ (2/3)(|B′1| + |A′2| + |M∗|). Let OPT ′ = |B′1| + |A′2| + |M∗|
and ALG′ = |B′1|+ |A′2|. Define ∆′ = (OPT ′ −ALG′)/OPT ′. We will now define variables to represent
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(a) Distribution of (Sj , Tj) pairs across the cut
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(b) Matching of the (S0, T0) pair

Figure 2: The structure of the saturating cut
.

the sizes of the sets used in defining B′1, A′2:

w1
0 = |W 1

0 |, w2
0 = |W 2

0 |, z∗ = |Z∗|, w∗ = |W ∗|, (Note that z∗ = w∗)

zj = |Zj |, wj = |Wj |, rj = |ΓG′1(Zj)|, sj =

{
|Sj ∩A2| j > 0
|Sj ∩B1| j < 0

.

Lemma 35 expresses the size of B′1 and A′2 in terms of the new variables defined above.

Lemma 35 ALG′ =
∑

j 6=0(sj + rj) + (z∗+w1
0) + (w∗+w2

0), and OPT ′ ≤ z∗+ (z∗+w1
0) + (w∗+w2

0) +∑
j 6=0(sj + zj + rj).

. Proof: The main idea is that most of the sets in the definitions of B′1 and A′2 are disjoint, allowing us to
represent sizes of unions of these sets by sums of sizes of individual sets.

For ALG′, recall that ΓG′1(Sj) = Tj and hence, the sets ΓG′1(Sj) are all disjoint. Further, the sets Sj are
all disjoint, by construction, and disjoint with all the Tj’s. Thus, |A′1| + |B′2| = |ΓG′1(W ∗) ∪ ΓG′1(W 2

0 )| +
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|ΓG′1(Z∗) ∪ ΓG′1(W 1
0 )| +

∑
j 6=0(sj + rj). The sets W ∗ and W 2

0 are disjoint. Further, they are subsets of T0

(corresponding to α = 1), and hence nodes in these sets have a single unique neighbor in G′1; consequently
|ΓG′1(W ∗) ∪ ΓG′1(W 2

0 )| = w∗ +w2
0. Similarly, |ΓG′1(Z∗) ∪ ΓG′1(W 1

0 )| = z∗ +w1
0. This completes the proof

of the lemma for ALG′.
We have OPT ′ = ALG′+ |M∗|. Consider any edge (u, v) ∈M∗. This edge is not in G′1 and hence must

go from an Sj to a Tj′ where 0 ≤ j′ ≤ j or 0 ≥ j′ ≥ j. The number of edges in M∗ that go from S0 to T0 is
precisely z∗ by definition; the number of remaining edges is precisely

∑
j 6=0 zj .

We now derive linear constraints on the size variables, leading to a simple linear program. We have by
Lemma 34 that for all k > 0P \ ⋃

j≥k
Zj

×
⋃
j≥k

Wj

∩E1 = ∅, and

Q \ ⋃
j≤−k

Zj

×
 ⋃
j≤−k

Wj

∩E1 = ∅. (9)

The existence of M∗ together with (9)yields

+∞∑
j=k

zj ≥
+∞∑
j=k

wj ,∀k > 0, and
−k∑

j=−∞
zj ≥

−k∑
j=−∞

wj , ∀k > 0. (10)

Furthermore, we have by definition of W 1
0 together with (9)that

w1
0 ≤

∑
j<0

zj −
∑
j<0

wj and w2
0 ≤

∑
j>0

zj −
∑
j>0

wj . (11)

Also, we have ∑
j<0

zj = w1
0 +

∑
j<0

wj and
∑
j>0

zj = w2
0 +

∑
j>0

wj . (12)

Next, by Lemma 34, we have rj ≥ (1/αj)zj . We also need

Lemma 36 (1) |ΓG′1(Sj ∩ A2) ∩ B2| ≤ (1/αj)|Sj ∩ A2| for all j > 0, and (2) |ΓG′1(Sj ∩ B1) ∩ A1| ≤
(1/αj)|Sj ∩B1| for all j < 0.

Proof: We prove (1). The proof of (2) is analogous. Suppose that |ΓG′1(Sj ∩ A2) ∩ B2| > (1/αj)|Sj ∩ A2|.
Then using the assumption that (A1 ×B2) ∩ E′ = ∅, we get

|Tj | = |Tj ∩B2|+ |Tj ∩B1| ≥ |ΓG′1(Sj ∩A2) ∩B2|+ |ΓG′1(Sj ∩A1)|
> (1/αj)|Sj ∩A2|+ (1/αj)|Sj ∩A1| > (1/αj)|Sj |,

a contradiction to the definition of the matching skeleton.
We will now bound ∆′ = (OPT ′ − ALG′)/OPT ′ using a sequence of linear programs, described in

figures 3(a)-3(c). We will overload notation to use P ∗1 , P
∗
2 , P

∗
3 , respectively, to refer to these linear programs

as well as their optimum objective function value. By Lemma 36 one has for all j 6= 0 that (1/αj)sj ≥ wj .
We combine this with equations 10, 11, and 12 to obtain the first of our linear programs, P ∗1 , in figure 3(a).
Bounding ∆′ is equivalent to bounding this LP (i.e. ∆′ ≤ P ∗1 ). Note that we have implicitly rescaled the
variables so that OPT ′ ≤ 1.
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P ∗1 = maximize z∗ +
∑
j 6=0

zj s.t.

z∗ + (z∗ + w1
0) + (w∗ + w2

0) +
∑
j 6=0

sj + zj + rj ≤ 1

∀k > 0,
+∞∑
j=k

zj ≥
+∞∑
j=k

wj ,

∀k > 0,

−k∑
j=−∞

zj ≥
−k∑

j=−∞
wj

∀j 6= 0, (1/αj)sj ≥ wj
∀j 6= 0, rj ≥ (1/αj)zj∑

j<0

zj = w1
0 +

∑
j<0

wj∑
j>0

zj = w2
0 +

∑
j>0

wj

z∗ = w∗

s, z, w, r, z∗, w∗, w1
0, w

2
0 ≥ 0

P ∗2 = maximize
+∞∑
j=0

zj s.t.

+∞∑
j=0

sj + zj + rj ≤ 1

∀k ≥ 0,
k∑
j=0

wj ≥
k∑
j=0

zj

(1/αj)sj ≥ wj , j ≥ 0

rj ≥ (1/αj)zj , j ≥ 0

x, z, w, r ≥ 0

P ∗3 = maximize
∞∑
j=0

zj s.t.

∑
j

(αj + 1 + 1/αj)zj ≤ 1

z ≥ 0

Figure 3: The linear programs for lower bounding ALG/OPT .

We now symmetrize the LP P ∗1 by collecting the variables for cases when j is positive, negative, and 0
to obtain LP P ∗2 in figure 3(b). Finally, we relax LP P ∗2 by combining the second and third constraints, and
then establish that the remaining constraints are all tight. This gives us the LP P ∗3 in figure 3(c). Details of
the construction are embedded in the proof of the following lemma.

Lemma 37 P ∗1 ≤ P ∗2 ≤ P ∗3 .

Proof:

From P ∗1 to P ∗2

We will show that the optimum of the LP P ∗2 in figure 3(b) is an upper bound for the optimum of P ∗1 in
figure 3(a). First increase the set {αj}∞j=−∞ to ensure that αj = α−j(this can only improve the objective
function). Now, we define

s′j = sj + s−j , j > 0

r′j = rj + r−j , j > 0

z′j = zj + z−j , j > 0

w′j = wj + w−j , j > 0

w′0 = w∗ + w1
0 + w2

0

s′0 = w∗ + w1
0 + w2

0

z′0 = z∗

r′0 = z∗.

(13)
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We will show that if s, r, z, w, z∗, w∗, w1
0, w

2
0 are feasible for P ∗1 , then s′, r′, z′, w′ are feasible for P ∗2 with

the same objective function value.
First, the objective function is exactly the same by inspection. Constraints 3 and 4 of P ∗2 for j > 0 are

linear in the respective variables and are hence satisfied. Furthermore, one has

(1/α0)s′0 = w∗ + w1
0 + w2

0 = w′0

and
r′0 = z∗ = z′0.

Hence, constraints 3 and 4 are satisfied for all j ≥ 0.
To verify that constraint 1 is satisfied, we calculate

+∞∑
j=0

s′j + z′j + r′j = s′0 + z′0 + r′0 +
+∞∑
j=1

(s′j + z′j + r′j)

= (w∗ + w1
0 + w2

0) + z∗ + z∗ +
∑
j 6=0

(sj + zj + rj)

= z∗ + (z∗ + w1
0) + (z∗ + w2

0) +
∑
j 6=0

(sj + zj + rj) ≤ 1.

We now verify that constraint 2 of P ∗2 is satisfied. First, for k = 0 one has

w′0 = w∗ + w1
0 + w2

0 ≥ w∗ = z∗ = z′0.

Next, note that by adding constraints 2,3 of P ∗1 we get∑
|j|≥k

zj ≥
∑
|j|≥k

wj (14)

for all k > 0. Adding constraints 6 and 7 of P ∗1 , we get∑
j 6=0

zj = w1
0 + w2

0 +
∑
j 6=0

wj . (15)

Subtracting (15) from (14), we get

k∑
|j|=1

zj ≤ w1
0 + w2

0 +
k∑
|j|=1

wj . (16)

Adding z∗ to both sides and using the fact that z′0 = z∗ and w′0 = z∗ + w1
0 + w2

0, we get

k∑
j=0

zj ≤
k∑
j=0

wj . (17)

This completes the proof of the first half of lemma 37.
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From P ∗2 to P ∗3

We now bound P ∗2 . First we relax the constraints by adding constraint 3 of over j from 0 to k and adding to
constraint 2:

maximize
∞∑
j=0

zj

s.t.
∞∑
j=0

sj + zj + rj ≤ 1

k∑
j=0

(1/αj)sj ≥
k∑
j=0

zj ,∀k ≥ 0

rj ≥ (1/αj)zj , ∀j ≥ 0

x, z, w, r ≥ 0

(18)

Note that the first constraint is necessarily tight at the optimum. Otherwise scaling all variables to make
the constraint tight increases the objective function. We now show that all of the constraints in the second line
of (18) are necessarily tight at the optimum. Indeed, let k∗ ≥ 0 be the smallest such that

∑k∗

j=0(1/αj)sj >∑k∗

j=0 zj . Note that one necessarily has sk∗ > 0. Let

s′ = s− δek∗ + (αk∗+1/αk∗)δek∗+1

r′ = r, z′ = z,

where ej denotes the vector of all zeros with 1 in position j. Then

k∑
j=0

(1/αj)s
′
j ≥

k∑
j=0

z′j

for all k and
∞∑
j=0

(s′j + z′j + r′j) = 1− δ(1− αk∗+1/αk∗).

So for sufficiently small positive δ > 0 one has that

s′′ = s′/(1− δ(1− αk∗+1/αk∗))

r′′ = r′/(1− δ(1− αk∗+1/αk∗))

z′′ = z′/(1− δ(1− αk∗+1/αk∗))

form a feasible solution with a better objective function value.
Thus, one has

∑k
j=0(1/αj)sj =

∑k
j=0 zj for all k ≥ 0 and hence (1/αj)sj = zj for all j.

Additionally, one necessarily has rj = (1/αj)zj for all j at optimum. Indeed, otherwise decreasing rj
does not violate any constraint and makes constraint 1 slack. Then rescaling variables to restore tightness of
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constraint 1 improves the objective function. Thus, we need to solve

P ∗3 = maximize
∞∑
j=0

zj

s.t.∑
j

(αj + 1 + 1/αj)zj ≤ 1

z ≥ 0

(19)

But P ∗3 is easy to analyze: there exists an optimum solution that sets all zj to zero except for a j that minimizes
(αj + 1 + 1/αj). For all non-negative x, f(x) = 1 + x+ 1/x is minimized when x = 1, and f(1) = 3. This
gives P ∗3 ≤ 1/3, and hence ∆′ ≤ 1/3, or ALG′ ≥ (2/3)OPT ′. Thus, we have proved

Theorem 38 For any bipartite graph G1 = (P,Q,E1) there exists a subforest G′1 of G such that for any
graph G2 = (P,Q,E2) the maximum matching in G′1∪G2 is a 2/3-approximation of the maximum matching
in G1 ∪G2; further, it suffices to choose G′1 to be the matching skeleton of G1.

Corollary 39 CC(1
3 , n) = O(n).

Theorem 38 also implies that the matching skelton gives a linear size 1/2-cover of G.

Corollary 40 For any bipartite graph G = (P,Q,E), the matching skeleton G′ is a 1
2 -cover of G.

Proof: We need to show that for any A ⊆ P,B ⊆ Q, |A|, |B| > n/2 such that there exists a perfect matching
between A and B in G one has E′ ∩ (A × B) 6= ∅. Let G2 = (P ∪ P ′, Q ∪ Q′,MP ∪MQ) be a graph
that consists of a perfect matching from a new set of vertices P ′ to Q \ B and a matching from a new set of
vertices Q′ to P \A. Then the maximum matching in G ∪G2 is of size (3/2)n.

By the max-flow min-cut theorem, the size of the matching in G′ ∪ G2 is no larger than |P \ A| + |Q \
B|+ |E′ ∩ (A×B)|. By Theorem 38 the approximation ratio is at least 2/3, and |P \A|+ |Q \B| < n, so
it must be that |E′ ∩ (A×B)| > 0.

E O(n) communication protocol for CCv(
1
4 , n)

In this section we prove that CCv(ε, n) = O(n) for all ε < 1/4. In particular, we show that given a bipartite
graph G1 = (P1, Q,E1), there exists a forest F ⊆ E1 such that for any G2 = (P2, Q,E) that may share
nodes on theQ side withG1 but not on the P side, the maximum matching inG′1∪G2 is a 3/4-approximation
of the maximum matching in G1 ∪ G2. The broad outline of the proof is similar to the previous section, but
we can now assume a special optimal matching using the assumption that G2 may only share nodes with G1

on the Q side.
We first prove

Lemma 41 Let G = (P,Q,E) be a bipartite graph and let S ⊆ P be such that |Γ(U)| ≥ |U | for all U ⊆ S.
Then there exists a maximum matching in G that matches all vertices of S.

Proof: LetM be a maximum matching inG1∪G2 that leaves a nonempty set U ⊆ S of vertices exposed.
Let U be the largest subset of S exposed by M . We will show how to obtain a different maximum matching
M ′ that leaves one fewer nodes exposed. Orient edges of the matching M from Q to P and orient all other
edges from P to Q. Denote the set of all nodes reachable from U by Γ∗(U). Suppose that no node outside S
is reachable in this directed graph. Then we have |Γ∗(U) ∩Q| = |Γ∗(U) ∩ P | − |U |, a contradiction since
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1. Γ∗(U) ∩ P ⊆ S by assumption;

2. Γ∗(U) ∩Q = Γ(Γ∗(U) ∩ P ).

Thus, there exists an (even length) path in this directed graph from U to P \ S. Swapping edges in and
out of M along this path decreases the number of unmatched nodes in S by one while preserving the size of
the matching. Repeating the argument, we obtain a maximum matching in G1 ∪G2 that matches all of S.

We also need

Lemma 42 Let G1 = (P1, Q,E), G2 = (P2, Q,E) and let G′1 be the matching skeleton of G1. Let (A1 ∪
B1, A2 ∪B2) be a saturating cut corresponding to a maximum matching in G′1 ∪G2. Then,

1. for all j < 0 one has Sj ∩B2 = ∅;

2. for all j ≥ 0 one has |ΓB1(Sj ∩A1)| ≥ (1/αj)|Sj ∩A1|

3. for all edges e = (u, v) ∈ (A1 × B2) ∩ E1 one has u ∈ Sj for some j ≥ 0 and v ∈ Ti for some i,
0 ≤ i ≤ j.

Proof: We start by showing part (1) of the lemma. By the choice of the cut (A1 ∪B1, A2 ∪B2) all of A2 can
be matched to Q \B1 in G′1 ∪G2. Let T ∗ = ΓG′1(Sj ∩B2). One has |T ∗| ≥ (1/αj)|Sj ∩B2|. Hence, since
vertices only arrive on the P side, one has |ΓG′1∪G2

(T ∗) \B1| ≤ αj |T ∗| < |T ∗|, which contradicts the choice
of the cut (A1 ∪B1, A2 ∪B2).

Part (2) follows directly by Lemma 34 together with the assumption that (A1 × B2) ∩ E = ∅. Now (3)
follows from (1) together with the fact that edges e ∈ E1 \E′1 that have one endpoint in Ti, i ≥ 0 can only go
to Sj for some j ≥ 0 by construction of G′1.

We now prove the main theorem of this section:

Theorem 43 Let G1 = (P1, Q,E1), G2 = (P2, Q,E2) be bipartite graphs that share the vertex set on one
side. Let G′1 be the matching skeleton of G1. Then the maximum matching in G′1∪G2 is a 3/4-approximation
of the maximum matching in G1 ∪G2.

Proof: Let (Sj , Tj), j = −∞, . . . ,+∞ be the pairs from the definition of G′. Consider a saturating cut
(A1 ∪ B1, A2 ∪ B2) in G′1 ∪G2. Recall that A1, A2 ⊆ P1 ∪ P2, B1, B2 ⊆ Q, (A1 × B2) ∩ (E′1 ∪ E2) = ∅,
ALG = |B1|+ |A2|.

Let S :=
⋃
j≥0 Sj . Choose a maximum matching M in G1 ∪ G2 such that M matches all of S, as

guaranteed by Lemma 41. Define

Kj = {v ∈ ΓG′1(Sj) ∩B2 : M(v) 6∈ S}
K∗j = {v ∈ ΓG′1(Sj) ∩B1 : M(v) 6∈ S}

By Lemma 42 there are no edges in G1 from Tj , j < 0 to B2. This implies that

((A1 \ S)×B2) ∩ (E1 ∪ E2) = ∅. (20)

This allows us to obtain the following bound on the size of the matching M , which we denote by OPT . It
follows from 20 that a matching edge that has an endpoint in A1 \ S necessarily has the other endpoint either
in K∗j for some j or in B1 \ ΓG′1(S). Hence, we have

OPT ≤|S|+
∑
j≥0

(|Kj |+ |K∗j |) + (|B1 \ ΓG′1(S)|+ |A2 \ (S ∪
⋃
j≥0

M(Kj))|). (21)
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Indeed, if an edge ε ∈M has an endpoint in S, it is counted by the first term. Otherwise if e has an endpoint
in ΓG′1(Sj)∩B2 for some j, it is counted inKj ; if e has an endpoint in ΓG′1(Sj)∩B1 for some j, it is counted
in K∗j . Finally, if e satisfies none of the above conditions, it must have one endpoint in either B1 \ ΓG′1(S) or
A2 \ (S ∪

⋃
j≥0M(Kj)) by 20. Note that an edge e ∈M may satisfy more than one of these conditions, and

hence we are only getting an upper bound on OPT .
By definition of the cut (A1 ∪B1, A2 ∪B2) we also have

ALG =|B1|+ |A2| = |S ∩A2|+
∑
j≥0

|M(Kj)|+ |ΓG′1(S) ∩B1|

+ (|B1 \ ΓG′1(S)|+ |A2 \ (S ∪
⋃
j≥0

M(Kj))|),
(22)

where we use the fact that M(Kj) ⊆ A2 \ S by definition of Kj together with 20. Thus, since |M(Kj)| =
|Kj |, it is sufficient to show that

|S ∩A2|+
∑
j≥0

|Kj |+ |ΓG′1(S) ∩B1| ≥ (3/4)(|S|+
∑
j≥0

|Kj |+ |K∗j |)

Let

ALG′ = |S ∩A2|+
∑
j≥0

|Kj |+ |ΓG′1(S) ∩B1|

OPT ′ = |S|+
∑
j≥0

|Kj |+ |K∗j |.

Let xj := |Sj |, zj = |Sj ∩A1|, wj := |ΓG′1(Sj ∩A1)|, r∗j := |K∗j |, rj := |Kj |.
We will derive relations between these variables using the properties of the matching skeleton. By con-

struction of G′1 we have
(Si × Tj) ∩ E1 = ∅, ∀i < j. (23)

Define canonical cuts (Uk,Wk) as

Uk =
k⋃
j=0

Sj ⊆ P1,Wk =
k⋃
j=0

Tj ⊆ Q. (24)

By (23) we have that (Uk × (Q \Wk)) ∩ (E1 ∪ E2) = ∅.
Since M matches all of S, we have using the fact that canonical cuts are empty that for each k ≥ 0

|Uk| ≤ |Wk| −
k∑
j=0

(|Kj |+ |K∗j |).

Since |Tj | = αj |Sj | by definition of G′1 and since Tj are disjoint, this can be equivalently stated in terms of
the new variables as

k∑
j=0

((1/αj)xj − rj − r∗j ) ≥
k∑
j=0

xj ,∀k ≥ 0. (25)

Thus, in terms of the new variables we have

OPT ′ =
∞∑
j=0

xj +
∞∑
j=0

rj +
∞∑
j=0

r∗j . (26)
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Similarly,

ALG′ =

∞∑
j=0

(xj − zj) +

∞∑
j=0

wj +

∞∑
j=0

rj (27)

By Lemma 42, (3), we have |ΓB1(Sj ∩A1)| = wj ≥ (1/αj)zj .
Thus, putting (26), (27), (25) together, we have that it is sufficient to lower bound the solution of 28,

obtaining a lower bound of P ∗1 on the ratio ALG′/OPT ′, and hence on ALG/OPT .

P ∗1 = minimize
∞∑
j=0

(xj − zj) + wj + rj

s.t.
∞∑
j=0

(xj + rj + r∗j ) ≥ 1

k∑
j=0

((1/αj)xj − rj − r∗j ) ≥
k∑
j=0

xj , ∀k

r∗j ≤ wj
wj ≥ (1/αj)zj

x, z, w, r, r∗ ≥ 0

(28)

We now transform 28 in two steps to obtain bounds P ∗3 ≤ P ∗2 ≤ P ∗1 , and then show that P ∗3 ≥ 3/4.
First note that at the optimum one has r ≡ 0 since decreasing r and scaling all variables appropriately

does not violate any constraints and only improves the solution. Next, we show that at the optimum, the third
constraint is necessarily tight for all k. Otherwise let k be such that the constraint is not tight and let k∗ be the
smallest such that k∗ > k and rk∗ > 0.

Let

x′ = x

r∗′ = r∗ + δek − δek∗
w′ = w + δek − δek∗
z′ = z + αkek − αk∗ek∗ .

Note that x′, r∗′, w′, z′ form a feasible solution if δ > 0 is sufficiently small. Finally,

∞∑
j=0

(x′j − z′j) + w′j =

 ∞∑
j=0

(xj − zj) + wj

+ δ(−αk + αk∗) <
∞∑
j=0

(xj − zj) + wj .

Also, for fixed r∗, x one can maximize zj pointwise, so r∗j = (1/αj)zj for all j.
Thus, we have P ∗2 ≤ P ∗1 , where
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P ∗2 = minimize 1−
∞∑
j=0

zj

s.t.
∞∑
j=0

(xj + (1/αj)zj) = 1

k∑
j=0

(1/αj − 1)xj ≥
k∑
j=0

(1/αj)zj ,∀k

x, z ≥ 0

(29)

Finally, we show that constraints in line 2 are necessarily tight at the optimum. Otherwise let k∗ be the
smallest such that constraint 2 is slack. Note that we necessarily have xk∗ > 0. Let

x′ = x− δek∗ + δek∗+1
1/αk∗ − 1

1/αk∗+1 − 1
,

which is feasible for sufficiently small δ > 0 and makes constraint 2 satisfied for all k. Let

γ =
∞∑
j=0

(xj + αjzj) = 1− δ
(

1− 1/αk∗ − 1

1/αk∗+1 − 1

)
= 1− δ1/αk∗+1 − 1/αk∗

1/αk∗+1 − 1
< 1.

Now x′′ = x′/γ, z′′ = z/γ are feasible solutions that improve the objective function.
Thus, we have xj = zj/(1 − αj) for all j > 0 (note that x0 = 0 at the optimum for the same reason as

r ≡ 0). Thus, we get P ∗3 ≤ P ∗2 , where

P ∗3 = minimize 1−
∞∑
j=1

zj

s.t.
∞∑
j=1

(1/(1− αj) + 1/αj)zj = 1

z ≥ 0

(30)

In order to lower bound P ∗3 , it is sufficient to minimize f(α) = 1/(1− α) + 1/α over all α ∈ (0, 1]. One
has f ′(α) = 1/(1−α)2− 1/α2, f ′(1/2) = 0 and f ′′(α) = 2/(1−α)3 + 2/(1−α)3 > 0. Hence, the unique
minimum is attained at α = 1/2.

Thus, we have zj = 1/4 for αj = 1/2 and zero otherwise. The objective value is 3/4, proving that
3/4 ≤ P ∗3 ≤ P ∗2 ≤ P ∗1 , and hence ALG/OPT ≥ 3/4.

F One-pass streaming with vertex arrivals

Let Gi = (Pi, Q,Ei) be a sequence of bipartite graphs, where Pi ∩ Pj = ∅ for i 6= j. For a graph G, we
denote by SPARSIFY∗(G) the matching skeleton ofGmodified as follows: for each pair (Sj , Tj), j < 0 keep
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an arbitrary matching of Sj to a subset of Tj , discarding all other edges, and collect all these matchings into
the (S0, T0) pair. Note that we have Sj ⊆ P , where P is the side of the graph that arrives in the stream. We
have

Lemma 44 Let G = (P,Q,E) be a bipartite graph. Let G′ = SPARSIFY ∗(G). Let (Sj , Tj), j =
0, . . . ,+∞ denote the set of expanding pairs. Then E ∩ (Si × Tj) = ∅ for all i < j.

Let

G′1 = SPARSIFY∗(G1), and G′i = SPARSIFY∗(G′i−1 ∪Gi). (31)

We will show that for each τ > 0 the maximum matching in G′τ is at least a 1 − 1/e fraction of the
maximum matching in

⋃τ
i=1Gi. We will slightly abuse notation by denoting the set of expanding pairs in G′τ

by (Sα(τ), Tα(τ)). Recall that we have α ∈ (0, 1], and |Sα(τ)| = α|Tα(τ)|. We need the following

Definition 45 For a vertex u ∈ P define its level after time τ , denoted by αu(τ), as the value of α such that
u ∈ Sα(τ). Similarly, for a vertex v ∈ Q define its level after time τ , denoted by αv(τ), as the value of α
such that u ∈ Tα(τ). Note that for a vertex u is at level α = αu(τ) the expansion of the pair (Sα(τ), Tα(τ))
that it belongs to is 1/α.

Before describing the formal proof, we give an outline of the main ideas. In our analysis, we track the
structure of the matching skeleton maintained by the algorithm over time. For the purposes of our analysis,
at each time τ , every vertex is characterized by two numbers: its initial level β when it first appeared in the
stream and its current level α at time τ (we denote the set of such vertices at time τ by Sα,β(τ)). Informally,
we first deduce that the matching edges that our algorithm misses may only connect a vertex in Sα,β(τ) to a
vertex in Tβ′(τ) for β′ ≥ β, and hence we are interested in the distribution of vertices among the sets Sα,β(τ).
We show that vertices that initially appeared at lower levels and then migrated to higher levels are essentially
the most detrimental to the approximation ratio. However, we prove that for every λ ∈ (0, 1], which can
be thought of as a ‘barrier’, the number of vertices that initially appeared at level β < λ but migrated to a
level α ≥ λ can never be larger than λ

∣∣∣⋃γ∈[λ,1] Tγ(τ)
∣∣∣ at any time τ . This leads to a linear program whose

optimum lower bounds the approximation ratio, and yields the (1− 1/e) approximation guarantee.

Lemma 46 For all u ∈ P and for all τ , αu(τ + 1) ≥ αu(τ). Similarly for v ∈ Q, αv(τ + 1) ≥ αv(τ).

Proof: We prove the statement by contradiction. Let τ be the smallest such that ∃α ∈ (0, 1] such that
R := {u ∈ P : u ∈ Sα(τ), αu(τ + 1) < αu(τ)} 6= ∅. Let α∗ = minu∈R αu(τ + 1) (we have α∗ < α by
assumption). Let R∗ = R ∩ Sα∗(τ + 1). Note that R∗ ⊆ Sα(τ). We have

|ΓG′τ (R∗)| ≥ |ΓG′τ+1
(R∗)| ≥ (1/α∗)|R∗| > (1/α)|R∗|. (32)

Since |ΓG′τ (Sα(τ))| = (1/α)|Sα(τ)|, (32) implies that Sα(τ)\R∗ 6= ∅. However, since |ΓG′τ (Sα(τ)\R∗)| ≥
(1/α)|Sα(τ) \R∗|, one has

ΓG′τ (Sα(τ) \R∗) ∩ ΓG′τ (R∗) 6= ∅.

This, however, contradicts the assumption that (Sα(τ) \ R∗) ∩ Sα∗(τ + 1) = ∅ and the fact that G′τ+1 =
SPARSIFY∗(G′τ , Gτ+1).

The same argument also proves the monotonicity of levels for v ∈ Q.
Let Sα,β(τ) denote the set of vertices in u ∈ P such that

1. u ∈ Sβ(τ ′), where τ ′ is the time when u arrived (i.e. u ∈ Pτ ′), and

30



2. u ∈ Sα(τ).

Note that one necessarily has α ≥ β by Lemma 46 for all nonempty Sα,β . We will need the following

Lemma 47 For all τ one has for all λ ∈ (0, 1](Q \
⋃

α∈[λ,1]

Tα(τ))×
⋃

β∈[λ,1]

Sα,β(τ)

 ∩ τ⋃
t=1

Et = ∅.

Proof: A vertex u ∈ Sα,β(τ) with β ≥ λ that arrived at time τu could only have edges to v ∈ Tλ′(τu) for
λ′ ≥ λ. By Lemma 46, such vertices v can only belong to Tλ′′(τ) for some λ′′ ≥ λ′ ≥ β ≥ λ, and the
conclusion follows with the help of Lemma 44.

Let tα(τ) = |Tα(τ)|, sα,β(τ) = |Sα,β(τ)|. The quantities tα(τ), sα,β(τ) are defined for α, β ∈ D =
{∆k : 0 < k ≤ 1/∆}, where 1/∆ is a sufficiently large integer (note that all relevant values of α, β
are rational with denominators bounded by n). In what follows all summations over levels are assumed to
be over the set D. Then

Lemma 48 For all τ and for all α ∈ (0, 1], the quantities tα(τ), sα,β(τ) satisfy∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ) ≤ (α−∆)
∑

β∈[α,1]

tβ(τ). (33)

Proof: The proof is by induction on τ .

Base: τ = 0 At τ = 0 the lhs is zero, so the relation is satisfied.

Inductive step: τ → τ + 1 Fix α ∈ (0, 1). For all γ ∈ (0, α−∆] let

Rγ(τ) = Sγ(τ) ∩

 ⋃
β∈[α,1]

Sβ(τ + 1)

 .

We have |ΓG′τ (Rγ(τ))| ≥ (1/γ)|Rγ(τ)| and ΓG′τ (Rγ(τ)) ⊆
⋃
β∈[α,1] Tβ(τ + 1).

Also, we have by Lemma 46 that ⋃
β∈[α,1]

Tβ(τ)

 ∪
 ⋃
γ∈(0,α−∆]

ΓG′τ (Rγ(τ))

 ⊆ ⋃
β∈[α,1]

Tβ(τ + 1).

Moreover, since ΓG′τ (Rγ(τ)) are disjoint for different γ and disjoint from Tβ(τ), β ∈ [α, 1], letting
rγ(τ) = |Rγ(τ)|, we have∑
β∈[α,1]

tβ(τ + 1) ≥
∑

β∈[α,1]

tβ(τ) +
∑

γ∈(0,α−∆]

1

γ
rγ(τ) ≥

∑
β∈[α,1]

tβ(τ) +
1

α−∆

∑
γ∈(0,α−∆]

rγ(τ). (34)

Furthermore, by Lemma 46∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ + 1) =
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ) +
∑

γ∈(0,α−∆]

rγ(τ) (35)
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Since by inductive hypothesis∑
β∈[α,1]

tβ(τ) ≥ 1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ). (36)

we have by combining (34), (35) and (36)

∑
β∈[α,1]

tβ(τ + 1) ≥
∑

β∈[α,1]

tβ(τ) +
1

α−∆

∑
γ∈(0,α−∆]

rγ(τ)

≥ 1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ) +
1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

(sβ,δ(τ + 1)− sβ,δ(τ))

=
1

α−∆

∑
β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ(τ + 1).

In what follows we only consider sets Sα,β(τ), Tα(τ) for fixed τ , and omit τ for brevity. Let S =⋃
α,β Sα,β . Choose a maximum matching M in Gτ that matches all of S, as guaranteed by Lemma 41. Let γ

denote the number of vertices in T1 that are matched outside of S byM (note that no vertices of Tα, α ∈ (0, 1)
are matched outside of S by lemma 47). For each α ∈ (0, 1] let rα ≤ tα denote the number of vertices in Tα
that are not matched by M . Then the following is immediate from lemma 47.

Lemma 49 For all λ ≤ 1 ∑
α∈[λ,1]

tα ≥
∑

α∈[λ,1],β∈[λ,1]

sα,β +
∑

α∈[λ,1]

rα + γ. (37)

Proof: Follows from Lemma 47.
We also have ∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ (38)

for all α ∈ (0, 1].
By Lemma 48 and Lemma 49, we get

ALG =
∑

α∈(0,1)

(tα − rα) + (t1 − r1 − γ)

OPT = ALG+ γ

t1 ≥ γ + r1.

Thus, we need to minimize ALG/OPT subject to t1 ≥ r1 + γ, tα, sα,β ≥ 0 and

∀α ∈ (0, 1] :
∑

β∈[α,1]

tβ ≥ γ +
∑

β∈[α,1]

∑
δ∈[α,1]

sβ,δ +
∑

β∈[α,1]

rβ.

∀α ∈ (0, 1] :
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ ≤ (α−∆)
∑

β∈[α,1]

tβ

∀α ∈ (0, 1]
∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ.

(39)
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We start by simplifying (39). First note that we can assume without loss of generality that r1 = 0. Indeed, if
r1 > 0, we can decrease r1 to 0 and increase γ to keep ALG constant, without violating any constraints, only
increasing OPT . Furthermore, we have wlog that t1 > 0 since otherwise ALG/OPT = 1. Finally, note that
setting t1 = γ only makes the ratio ALG/OPT smaller, so it is sufficient to lower bound

∑
α∈(0,1)(tα − rα)

in terms of γ, and for this purpose we can set γ = 1 since this only fixes the scaling of all variables. Thus, it
is sufficient to lower bound the optimum of (40), obtaining a lower bound of P ∗1

P ∗1 +1 on the ratio ALG/OPT .

P ∗1 = minimize
∑

α∈(0,1)

(tα − rα)

s.t.

∀α ∈ (0, 1] :
∑

β∈[α,1]

tβ ≥ 1 +
∑

β∈[α,1]

∑
δ∈[α,1]

sβ,δ +
∑

β∈[α,1]

rβ.

∀α ∈ (0, 1] :
∑

β∈[α,1]

∑
δ∈(0,α−∆]

sβ,δ ≤ (α−∆)
∑

β∈[α,1]

tβ

∀α ∈ (0, 1]
∑

β∈[α,1]

∑
δ∈(0,1]

sβ,δ =
∑

β∈[α,1]

βtβ

tα, sα,β ≥ 0.

(40)

Combining constraints 2 and 3 of (40), we get

1∑
β=α

(1 + α−∆)tβ ≥ γ +
1∑

β=α

βtβ.

Thus, it is sufficient to lower bound the optimum of

P ∗2 = minimize
∑

α∈(0,1)

(tα − rα)

s.t.

∀α ∈ (0, 1] :
∑
β≥α

(1− β + α−∆)tβ ≥ 1 +
∑

β∈[α,1)

rα.

tα ≥ 0.

(41)

We first show that one has rα = 0 for all α ∈ [0, 1) at the optimum. Indeed, suppose that rα∗ > 0 for
some α∗ ∈ (0, 1). Then since the coefficient of tα∗ is (1− α∗ + α−∆) ≤ 1−∆ < 1, β = α∗ ≥ α, we can
decrease r∗α by some δ > 0 and also decrease tα∗ by δ

1−∆ < δ, keeping all constraints satisfied and improving
the value of the objective function.

Thus, we arrive at the final LP, whose optimum we need to lower bound:
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P ∗3 = minimize
∑

α∈(0,1)

tα

s.t.

∀α ∈ (0, 1] :
∑
β≥α

(1− β + α−∆)tβ ≥ 1.

tα ≥ 0.

(42)

We now show that all constraints are necessarily tight at the optimum. Let α∗ ∈ [0, 1] be the largest such
that constraint 1 is not tight. Note that one necessarily has tα∗ > 0. Let

t′ = t− δeα∗ +
δ

1 + ∆
eα∗−∆.

We now verify that all constrains are satisfied. For α > α∗ all constraints are satisfied since we did not
change t. For α = α∗, the constraint is satisfied since it was slack for t and δ is sufficiently small.

For α < α∗, i.e. α ≤ α∗ −∆ since we are considering only α ∈ D, we have∑
β≥α

(1− β + α−∆)t′β =
∑
β≥α

(1− β + α−∆)tβ + δ

(
1− (α∗ −∆) + α−∆

1 + ∆
− (1− α∗ + α−∆)

)

=
∑
β≥α

(1− β + α−∆)tβ +
δ∆(α∗ − α−∆)

1 + ∆
≥
∑
β≥α

(1− β + α−∆)tβ ≥ 1.

Thus, at the optimum we have∑
β≥α

(1 + (α− β −∆))tβ = 1, ∀α ∈ [0, 1]. (43)

Subtracting (43) for α+ ∆ from (43) for α, we get∑
β≥α

(1 + (α− β −∆))tβ −
∑

β≥α+∆

(1 + (α+ ∆− β −∆)tβ

= tα −∆
∑
β≥α

tβ = 0.
(44)

In other words,
tα = ∆

∑
β≥α

tβ, t1 ≥ 1. (45)

Let δ = ∆
1−∆ . We now prove by induction that t1−k∆ = δ(1 + δ)k−1 for all k > 0.

Base:k = 1 t1−∆ = ∆
1−∆ = δ.

Inductive step: k → k + 1

t1−(k+1)∆ = ∆

t1−(k+1)∆ + 1 + δ

k∑
j=1

(1 + δ)j−1
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Thus,

t1−(k+1)∆ = δ

1 + δ

k∑
j=1

(1 + δ)j−1

 = δ

(
1 + δ

1− (1 + δ)k

1− (1 + δ)

)
= δ(1 + δ)k.

Hence, one has

∑
α∈[0,1)

tα ≥ δ
1/∆∑
j=1

(1+δ)j−1 = δ
1− (1 + δ)1/∆

1− (1 + δ)
= (1+δ)1/∆−1 =

(
1 +

∆

1−∆

)1/∆

−1 = (1−∆)−1/∆−1

Now, the size of the matching M is bounded by

OPT ≤
∑

α∈[0,1)

tα + 1.

On the other hand,
ALG ≥

∑
α∈[0,1)

tα.

Thus, we get

ALG

OPT
=

P ∗1
P ∗1 + 1

= 1− 1

P ∗1 + 1
≥ 1− 1

P ∗3 + 1
≥ 1− (1−∆)1/∆ ≥ 1− 1/e

since (1−∆)1/∆ ≤ 1/e for all ∆ ≥ 0. We have now proved

Theorem 50 There exists a deterministicO(n) space 1-pass streaming algorithm for approximating the max-
imum matching in bipartite graphs in the vertex arrival model.

Proof: Run the algorithm given in (31), letting |Pi| = 1, i.e. sparsifying as soon as a new vertex comes in.
The algorithm only keeps a sparsifier G′i in memory, which takes space O(n).

G Constructions of Ruzsa-Szemerédi graphs

In this section we give two extensions of constructions of Ruzsa-Szemerédi graphs from [7]. The first con-
struction shows that for any constant ε > 0 there exist (1/2 − ε)-Ruzsa-Szemerédi graphs with superlinear
number of edges. We use this construction in section H to prove that our bound on CC(ε, n), ε < 1/3 is tight.
The second construction that we present is a generalization to lop-sided graphs, which we use in section H to
prove that our bound on CCv(ε, n), ε < 1/4 is tight. Specifically, we show the following results:

Lemma 51 For any constant ε > 0 there exists a family of bipartite (1/2− ε)-Ruzsa-Szemerédi graphs with
n1+Ω(1/ log logn) edges.

Lemma 52 For any constant δ > 0 there exists a family of bipartite Ruzsa-Szemerédi graphs G = (X,Y,E)
with |X| = n, |Y | = 2n such that (1) the edge set E is a union of nΩδ(1/ log logn) induced 2-matchings
M1, . . . ,Mk of size at least (1/2 − O(δ))|X|, and (2) for any j ∈ [1 : k] the graph G contains a matching
M∗j of size at least (1−O(δ))|X| that avoids Y \ (Mj ∩ Y ).

The proofs of these results are based on an adaptation of Theorem 16 in [7] (see also [17]), which con-
structs bipartite 1/3-Ruzsa-Szemerédi graphs with superlinear number of edges. The main idea of the con-
struction, use of a large family of nearly orthogonal vectors derived from known families of error correcting
codes, is the same. A technical step is required to go from matchings of size 1/3 to matchings of size 1/2− ε
for any ε > 0. Since the result does not follow directly from [7], we give a complete proof in the full version.
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G.1 Balanced graphs

The following lemma is an adaptation of Theorem 16 in [7] (see also [17]), where bipartite 1/3-Ruzsa-
Szemerédi graphs with a superlinear number of edges are constructed. The main idea of the construction, i.e.
the use of a large family of nearly orthogonal vectors derived from known families of error correcting codes,
is the same. A technical step is required to go from matchings of size 1/3 to matchings of size 1/2 − ε for
any ε > 0. Since the result does not follow directly from [7], we give the argument here.

Lemma 53 For any constant ε > 0 there exists a family of bipartite (1/2− ε)-Ruzsa-Szemerédi graphs with
n1+Ω(1/ log logn) edges.

Proof: Let X = Y = [m2]m for some integer m > 0. We will refer to vertices in X and Y as points in
[m2]m. Matchings MT will be indexed by subsets T ⊆ [m].

Fix T ⊆ [m]. Let Ls = {x :
∑

i∈T xi = s}. Define red, white and blue strips as follows. Choose
w = 2(1 + 2/ε)(εm/6)and define

Rk =

kw+(2/ε)(εm/6)−1⋃
s=kw

Ls

Wk =

kw+(1+(2/ε))(εm/6)−1⋃
s=kw+(2/ε)(εm/6)

Ls

Bk =

kw+(1+4/ε)(εm/6)−1⋃
s=kw+(1+2/ε)(εm/6)

Ls

W ′k =

(k+1)w−1⋃
s=kw+(1+4/ε)(εm/6)

Ls

Finally, define B =
⋃
k Bk, R =

⋃
k Rk,W

′ =
⋃
kW

′
k,W =

⋃
kWk.

For T ⊆ [m] let 1T denote the characteristic vector of T . The matching MT is defined as follows. If a
blue point b ∈ BX has all coordinates greater than (2/ε+ 1), match it to the point r = b− (2/ε+ 1) · 1T in
RY . Note that r ∈ RY by the definition of B and R.

Following [7], we first note that

Lemma 54 |MT | ≥ (1/2− ε)n− o(n)

Proof: The only points of B that are not matched by MT are those in the set

S = {x : ∃j ∈ T, xj < (2/ε+ 1)vj}.

However, |S| ≤ (m/6)(2/ε+1)
m2 |X| = (2/ε+1)

6m |X| = o(|X|). Hence, we have that |B| = (1 ± o(1))|R|.
Similarly, we have that |W | ≤ (ε/(1 + ε)± o(1))|B|

Now let T1, T2 be two sets in [m] of size (ε/6)m such that |T1 ∩ T2| ≤ (5/2)(ε/6)2m. We show that no
edge of MT1 is induced by MT2 . Let b be matched to r by T1, i.e. b− r = (2/ε+ 1)1T1 . If the edge (b, r) is
induced by MT2 , then one of b, r is colored blue and the other is colored red in the coloring induced by T2. In
particular, b and r are separated by a white strip. Thus,∣∣∣∣∣∣

∑
i∈T2

bi −
∑
i∈T2

ri

∣∣∣∣∣∣ ≥ (ε/6)m. (46)
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On the other hand, ∣∣∣∣∣∣
∑
i∈T2

bi −
∑
i∈T2

ri

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈T2

(b− r)i

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈T2

((2/ε+ 1)1T1)i

∣∣∣∣∣∣
= (2/ε+ 1)|T1 ∩ T2| < (2/ε+ 1)(5/2)(ε/6)2m = (5/6)(1 + ε/12)(ε/6)m,

(47)

a contradiction with (46) for any ε ≤ 1/2.
Now it suffices to exhibit a large family F of subsets of [m] of size (ε/6)m with intersection at most

(5/2)(ε/6)2. Following [7], we obtain such a family from an error-correcting code with weight w = (ε/6)m
and Hamming distance at least d = 2(ε/6) − (5/2)(ε/6)2. The Gilbert-Varshamov bound yields [15], for
d ≤ 2w(m−w)

m , a family F such that

1

m
log |F| ≥ H

(w
m

)
− w

m
H

(
d

2w

)
−
(

1− w

m

)
H

(
d

2(m− w)

)
− o(1)

Letting δ = ε/3 and γ = 5/4 for convenience, we have that w/m = δ and d/m = 2δ(1− γδ). This yields

1

m
log |F| ≥ H (δ)− δH (1− γδ)− (1− δ)H

(
δ − γδ2

1− δ

)
− o(1)

Using H(x) = H(1− x) and strict convexity of H(x), we get

δH (1− γδ) + (1− δ)H
(
δ − γδ2

1− δ

)
≤ c(δ, γ) +H

(
γδ2 + (1− δ)

(
δ − γδ2

1− δ

))
= c(δ, γ) +H (δ)

where c(δ, γ) > 0 whenever γ 6= 1.
Hence, setting γ = 5/4 and δ = ε/6 yields a family of codes with 1

m log |F| ≥ c(ε/6, 5/4)− o(1).
Thus, we have constructed a bipartite graph G = (X,Y,E) such that E =

⋃
T∈FMT is a union of

induced matchings of size 1/2 − ε − o(1). The number of nodes in the graph is m2m and the number of
matchings is |F| = 2(c(ε/3,5/4)−o(1))m = 2Ω(m). Thus, we get a graph on n = m2m nodes that is a union of
2Ω(m) = nΩε(1/ log logn) induced matchings of size 1/2− ε.

G.2 Lop-sided graphs

We now extend this construction to lop-sided graphs, which will be important for showing optimality of our
bound on CCv(ε, n).

Lemma 55 For any constant δ > 0 there exists a family of bipartite Ruzsa-Szemerédi graphs G = (X,Y,E)
with |X| = n, |Y | = 2n such that

1. the edge set E is a union of nΩδ(1/ log logn) induced 2-matchings M1, . . . ,Mk of size at least (1/2 −
O(δ))|X|.

2. for any j ∈ [1 : k] the graph G contains a matching M∗j of size at least (1 − O(δ))|X| that avoids
Y \ (Mj ∩ Y ).

Proof: LetX ′ = Y = [m2]m for some integerm > 0. LetX be a random subset ofX ′ that contains each
element of X ′ with probability 1/2. We will refer to vertices in X and Y as points in [m2]m. The matchings
MT will be indexed by subsets T ⊆ [m].
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Choose w = 2C(1 + 2/δ)p for p and a constant C > 0 to be specified later. Fix T ⊆ [m]. Let
Ls = {x :

∑
i∈T xi = s + (w/2) · QT }, where QT is a Bernoulli 0/1 random variable with on probability

1/2. Define red, white and blue strips as follows. Define

Rk =

kw+C(2/δ)p−1⋃
s=kw

Ls

Wk =

kw+C(1+(2/δ))p−1⋃
s=kw+C(2/δ)p

Ls

Bk =

kw+C(1+4/δ)p−1⋃
s=kw+C(1+2/δ)p

Ls

W ′k =

(k+1)w−1⋃
s=kw+C(1+4/δ)p

Ls

Define B =
⋃
k Bk, R =

⋃
k Rk,W

′ =
⋃
kW

′
k,W =

⋃
kWk.

Here we are assuming that δ ∈ (0, 1) is such that 2/δ is an integer.
Fix k. For two vertices u, v ∈ Bk we say that u ∼ v if u − v = λ(1 + 2/δ) · 1T for some λ (note that

since u, v ∈ Bk, we have λ ∈ [−C,C]). We write Sv ⊆ Y to denote the equivalence class of v. Note that
|Sv| ≥ C/2 for all v. Also, let

Tv = {u ∈ X : u = w − C(1 + 2/δ) · 1T , w ∈ Sv}.

Note that for any v ∈ Bk one has Tv ⊆ Rk. Note that Tv is a random set (determined by the random choice
of X ⊂ X ′).

We now define a 2-matching from (a subset of) Tv to Sv. First note that E[|Tv|] = 1
2 |Sv|. Furthermore,

since X is obtained from X by independent sampling, the events {v ∈ X} are independent conditional on
the value of QT . Thus, standard concentration inequalities apply (see, e.g. [10]) and we get

Pr
[
|Tv| 6∈ (1± δ)1

2
|Sv|

]
≤ e−δ2(1/2)|Sv |/4 = e−δ

2C/16 ≤ δ/4

for C > 16 ln(4/δ)/δ2. We now classify points v ∈ Bk as good or bad depending on the how close |Tv| is
to its expectation. In particular, mark v bad if |Tv| 6∈ (1 ± δ)1

2 |Sv| and good otherwise. If v is good, let T ′v
denote an arbitrary subset of Tv of cardinality (1− δ)1

2 |Sv|. Similarly, let S′v denote an arbitrary subset of Sv
of cardinality (1 − δ)|Sv|, so that |T ′v| = 1

2 |S
′
v|. Next, choose an arbitrary 2-matching from T ′v to S′v. Note

that all matched edges are of the form (b, r), where r = b − λ(1 + 2/δ) · 1T for some λ ∈ (0, 2C]. This
completes the definition of the 2-matching MT for a fixed set T .

We now argue that there cannot be too many bad classes in a fixed set T . Note that there are Ω(m2m)
equivalence classes (since they have constant size by construction). For a vertex v denote the event that
v’s equivalence class is bad by Ev. Then, conditional on the value of QT , these events are independent for
non-equivalent v’s. Hence, by Chernoff bounds the probability that the number of bad classes exceeds its
expectation by more than a factor of 4 is at most e−Ω(m2m). We use the collection F constructed in the proof
of Lemma 53, and a union bound over 2O(m) sets T shows that there will be no more than a δ fraction of bad
classes in any of sets T with high probability.

We will also need a bound on the maximum degree of vertices in X and Y . First note that the definition
of the set of levels Ls and the random variable QT amounts to flipping the role of the sets Rk and Bk
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independently with probability 1/2. Thus, for a fixed T , every vertex except for those in W ∪W ′, of which
there is only an O(δ) fraction, takes part in the matching with probability 1/2. Thus, the expected degree of a
fixed vertex v ∈ Y is at most |F|/2, where F is the collection of almost orthogonal vectors that we use. Since
QT are independent for each T , Chernoff bounds imply that the degree of any vertex v in Y in the graph that
we construct is at most (1 + δ)|F|/2 with probability at least 1− e−Ω(|F|) = 1− e−Ω(2Ω(m)). In particular, a
union bound over all v ∈ Y , of which there arem2m, shows that the degree cannot be larger than (1+δ)|F|/2
for any v with high probability. Finally, we also note that the average degree is at least (1 − O(δ))|F|/2 by
construction. A similar argument shows that the maximum degree of a vertex inX does not exceed (1+δ)|F|
with high probability, and the average degree is at least (1−O(δ))|F|.

Essentially the same argument as in Lemma 53 together with the fact that for good sets T we have a
2-matching of at least (1 − O(δ))|R| nodes by the argument above shows that the size of the matching is at
least (1

2 −O(δ))|X|.
Now let T1, T2 be two sets in [m] of size p = (δ/(8C))m such that |T1 ∩ T2| ≤ (5/2)(δ/(8C))2m. We

show that no edge of MT1 is induced by MT2 . Let b be matched to r by T1, i.e. b − r = j(2/δ + 1)1T1 for
some j ∈ (0, 2C]. If the edge (b, r) is induced byMT2 , then one of b, r is colored blue and the other is colored
red in the coloring induced by T2. In particular, b and r are separated by a white strip. Thus,∣∣∣∣∣∣

∑
i∈T2

bi −
∑
i∈T2

ri

∣∣∣∣∣∣ ≥ (δ/(8C))m. (48)

On the other hand, ∣∣∣∣∣∣
∑
i∈T2

bi −
∑
i∈T2

ri

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
i∈T2

(b− r)i

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
i∈T2

(j(2/δ + 1)1T1)i

∣∣∣∣∣∣
≤ 2C(2/δ + 1)|T1 ∩ T2| < C(2/δ + 1)(5/2)(δ/(8C))2

≤ (5/6)(1 + δ/12)(δ/8C)m,

(49)

a contradiction with (48) for any δ ≤ 1/2. This completes the proof of (1).
It remains to show (2). Consider a fixed matchingMT . LetRT = X ∩MT ⊆ RX , BT = Y ∩MT ⊆ BY ,

where we use the notation BX , BY , RX , RY to denote the set of blue and red points in X and Y respectively.
For a vertex u ∈ X ∪ Y , denote by Γ(u) its neighbors in G. Let

B̄T =
⋃
k

kw+C(4/δ)p−1⋃
s=kw+C(2+2/δ)p

Ls.

Note that B̄T ⊂ BT can be viewed as the ’interior’ of BT . We write B̄X
T and B̄Y

T to denote the projection of
B̄ onto X and Y respectively.

We first show that for all x ∈ B̄X
T one has Γ(x) ⊆ BT ⊆ Y . Since B̄X

T is not matched by T , it suffices to
consider edges of MT ′ , T

′ 6= T . But any such edge has the form (x, y), where x = y ± λ(2/δ + 1) · 1T ′ , so
by the argument above one has

∣∣∣∣∣∣
∑
i∈T2

xi −
∑
i∈T2

yi

∣∣∣∣∣∣ < (δ/(8C))m = p, (50)
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Figure 4: A 2-matching MT

BTY

X RT B̄X
T

so y ∈ BY
T .

Thus, for each x ∈ B̄X
T one has Γ(x) ⊆ BY

T . We can now exhibit the required fractional matching.
Include edge (x, y), r ∈ BX

T , y ∈ B̄Y
T with weight 1

(1+O(δ))|F| , and include all edges of the 2-matching MT

with weight 1/2. Since the maximum degree of a node in BT is at most (1 + δ)|F|/2, and the maximum
degree of a node in B̄T is at most (1 +O(δ))|F|, this assignment yields a feasible fractional matching. Recall
that by construction, the average degree in X is at least (1 − O(δ))|F|/2, hence the size of the fractional
matching is at least (1−O(δ))|X|.

By the integrality of the matching polytope, the fractional matching can be rounded to produce an integral
matching of size at least (1−O(δ))|X|, as required. Note that since we proved that for each x ∈ B̄X

T one has
Γ(y) ⊆ BY

T , the fractional matching that we constructed avoids Y \BT = Y \ (Y ∩MT ), and hence so does
the integral matching. This completes the proof of (2).

Finally, we note that the number of edges in the graph is given by n1+Ωδ(1/ log logn), as before.
We note that the same techniques can be used to prove the following more general

Lemma 56 For any fixed constants ε, γ > 0 and an arbitrarily small constant δ > 0 there exists a family of
bipartite Ruzsa-Szemerédi graphs G = (X,Y,E) with |X| = n, |Y | = n/ε such that

1. the edge set E is a union of nΩε,δ,γ(1/ log logn) induced 1−γ
εγ -matchings M1, . . . ,Mk of size at least

(γ − δ)|X|.

2. for every j ∈ [1 : k] the graph G contains a matching M∗j of size at least (1 − O(δ))|X| that avoids
Y \ (Mj ∩ Y ).

H Lower bounds on communication and one-pass streaming complexity

We show here that lower bounds on the size of Ruzsa-Szemerédi graphs yield lower bounds on the (random-
ized) communication complexity, and hence for one-pass streaming complexity.

In the edge model, we show that CC
(

2(1−ε)
2−ε − δ, (2− ε)n

)
= Ω(UI(ε, n)) for all ε, δ > 0. In particular,

combined with the constructions of (1/2 + δ0)-Ruzsa-Szemerédi graphs for any constant δ0 > 0 (Lemma 53)
this proves that CC(ε, n) = n1+Ω(1/ log logn) for ε < 1/3. Thus our O(n) upper bound on CC(1

3 , n) in
section D is optimal in the sense that any better approximation requires super-linear communication. As a
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corollary, we also get that super-linear space is necessary to achieve better than 2/3-approximation in the
one-pass streaming model.

In the vertex model, using the construction of Ruzsa-Szemerédi graphs from Lemma 52, we show that
CCv(ε, n) = n1+Ω(1/ log logn) for all ε < 1/4. This proves optimality of our construction in section E,
and also shows that super-linear space is necessary to achieve better than 3/4-approximation in the one-pass
streaming model even in the vertex arrival setting.

We note that our lower bounds for both the edge and vertex arrival case apply to randomized algorithms.
The proofs of these results appear in the full version.

H.1 Edge arrivals

Lemma 57 For any ε > 0 and δ > 0, CC
(

2(1−ε)
2−ε − δ, (2− ε)n

)
= Ω(UI(ε, n)).

Proof: For any δ > 0, we will construct a distribution over bipartite graphs with (2−ε)n vertices on each side
such that each graph in the distribution contains a matching of size at least (2− ε)n− δn. On the other hand,
we will define a partition of the edge set E of the graph into E = E1∪E2 and show that any for deterministic
communication protocol using message size s = o(UI(ε, n)), the expected size of the matching computed is
bounded by 2(1− ε)n+ o(n). Using Yao’s minmax principle, we get the desired performance bound for any
protocol with o(UI(ε, n)) communication.

LetG = (P,Q,E) be an ε-RS graph with n vertices on each side and UI(ε, n) edges. By definition,E can
be partitioned into k induced matchings M1, ...,Mk, where |Mi| = εn for 1 ≤ i ≤ k, and k = UI(ε, n)/(εn).
We generate a random bipartite graph G′ = (P1 ∪P2, Q1 ∪Q2, E1 ∪E2) with (2− ε)n vertices on each side,
as follows:

1. We set P1 = P and Q1 = Q. Also, let P2 and Q2 be a set of (1 − ε)n vertices each that are disjoint
from P and Q.

2. For each Mi, i = 1, ..., k, let M ′i be a uniformly at random chosen subset of Mi of size (1 − δ)n. We
set E1 = ∪ki=1M

′
i .

3. Choose a uniformly random r ∈ [1 : k]. Let M∗1 be an arbitrary perfect matching between P2 and
Q \ Q1(Mr), and let M∗2 be an arbitrary perfect matching between Q2 and P \ P1(Mr). We set
E2 = M∗1 ∪M∗2 .

The instanceG′ is partitioned between Alice and Bob as follows: Alice is given all edges inG1(P1, Q1, E1)
(first phase), and Bob is given all edges in G2(P2, Q2, E2) (second phase). Clearly, any optimal matching in
G′ has size at least (2− ε)n− δn; consider, for instance, the matching M ′r ∪M∗1 ∪M∗2 .

We now show that for any deterministic communication protocol using communication at most s =
o(UI(ε, n)), with probability at least (1− o(1)), number of edges in M ′r retained by the algorithm at the end
of the first phase is o(n). Assuming this claim, we get that with probability at least (1− o(1)), the size of the
matching output by Bob is bounded by 2(1− ε)n+ o(n). Hence the expected size of the matching output by
Bob is bounded by 2(1− ε)n+ o(n). We now establish the preceding claim.

We start by observing that the number of distinct first phase graphs is at least (assume δ < ε/2)

(
εn

δn

)k
=

(
εn

δn

)UI (ε,n)

εn

= 2γUI(ε,n),

for some positive γ bounded away from 0. Let G denote the set of all possible first phase graphs, and let
φ : G → {0, 1}s be the mapping used by Alice to map graphs in G to a message of size s = o(UI(ε, n)). For
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any graph H ∈ G, let Γ(H) = {H ′ | φ(H ′) = φ(H)}. Then note that for any graph H ∈ G, Bob can output
an edge e in the solution iff e occurs in every graph H ′ ∈ Γ(H). For any subset F of G, let GF denote the
unique graph obtained by intersection of all graphs in F (i.e. the graph GF contains an edge e iff e is present
in every graph in the family F ).

Claim 58 For any 0 < ε′ < ε
2 and any subset F of G, let I ⊆ {1, 2, ..., k} be the set of indices such that GF

contains at least ε′n edges from Mi for each i ∈ I . Then if |F | ≥ 2(γ−o(1))UI(ε,n), |I| = o(k).

Proof: Let |I| = k1. Then the number of graphs that can be in F is bounded by(
(ε− ε′)n
δn

)k1
(
εn

δn

)k−k1

=

(
2−Ω(ε′n)

(
εn

δn

))k1
(
εn

δn

)k−k1

= 2−Ω(k1(ε′n))

(
εn

δn

)k
.

It then follows that if k1 = Ω(k), we have |F | ≤ 2(γ−Ω(1))UI(ε,n), contradicting our assumption on the
size of F .

To conclude the proof, we note that a simple counting argument shows that for a uniformly at random
chosen graph H ∈ G, with probability at least 1 − o(1), we have |Γ(H)| ≥ 2(γ−o(1))UI(ε,n). Conditioned
on this event, it follows from Claim 58 that for a randomly chosen index r ∈ [1..k], with probability at least
1− o(1), the graph GΓ(H) contains at most ε′n edges from Mr.

In particular, we get

Corollary 59 For any δ > 0, CC(2/3 + δ, n) = n1+Ωδ(1/ log logn).

Proof: Follows by putting together Lemma 53 and Lemma 57.
Lower bounds on communication complexity translate directly into bounds on one-pass streaming com-

plexity:

Corollary 60 For any constant δ > 0 any (possibly randomized) one-pass streaming algorithm that achieves
approximation factor 2(1−ε)

2−ε +δ must use Ω(UI(ε, n)) space. In particular, any one-pass streaming algorithm
that achieves approximation factor 2/3 + δ must use n1+Ωδ(1/ log logn) space.

Proof: Follows by Lemma 53 and Lemma 57.

H.2 Vertex arrivals

We now prove a lower bound on the communication complexity in the vertex arrival model using the con-
struction of lop-sided Ruzsa-Szemerédi graphs from Lemma 52. The bound implies that our upper bound
from section E is tight. Moreover, the bound yields the first lower bound on the streaming complexity in the
vertex arrival model.

Lemma 61 For any constant δ > 0, CC1
v (3/4 + δ, n) = n1+Ωδ(1/ log logn).

Proof: For sufficiently small δ > 0, we will construct a distribution over bipartite graphs with (2 + δ)n
vertices on each side such that each graph in the distribution contains a matching of size at least (2−O(δ))n.
On the other hand, we will show that for any deterministic protocol using space s = n1+o(1/ log logn), the
expected size of the matching computed is bounded by (3/2+O(δ))n+o(n). Using Yao’s minmax principle
we get the desired performance bound for any n1+o(1/ log logn)-space randomized protocol.

Let G = (P,Q,E) be an (1/2 − δ)-RS graph with |P | = n, |Q| = 2n and n1+Ω(1/ log logn) edges, as
guaranteed by Lemma 55. By definition, E can be partitioned into k induced 2-matchings M1, ...,Mk, where
|Mi| ≥ (1/2 − δ′)n for 1 ≤ i ≤ k, and k = nΩ(1/ log logn) and some δ′ = O(δ). We generate a random
bipartite graph G′ = (P1 ∪ P2, Q,E1 ∪ E2) with (2 + δ′)n vertices on each side, as follows:
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1. We set P1 = P and let P2 be a set of (1 + δ′)n vertices that are disjoint from P .

2. For each Mi, i = 1, ..., k, let M ′i be a uniformly at random chosen subset of Mi of size (1/2 − 2δ′)n.
We set E1 = ∪ki=1M

′
i .

3. Choose a uniformly random r ∈ [1 : k]. Let M∗ be an arbitrary perfect matching between P2 and
Q \Q(Mr). We set E2 = M∗.

Let Alice hold the graph GA(P1, Q1, E1) and let Bob hold the graph G2 = (P2, Q,E2). By Lemma 52,
there exists a matching M∗r that matches at least a (1 − δ′) fraction of X and avoids Q \ Q(Mr). Thus, any
optimal matching in GA ∪GB has size at least (2−O(δ))n; consider, for instance, the matching M∗r ∪M∗.

However, no deterministic space protocol can output more than a δ′′ = O(δ′) fraction of the edges in M ′r
if it uses n1+oδ′′ (1/ log logn) space by the same argument as in 57. Hence, the size of the matching output by
the protocol is bounded above by (1/2 +O(δ))|P1|+ |P2| = (3/2 +O(δ))n.

We immediately get

Corollary 62 For any constant δ > 0 any (possibly randomized) one-pass streaming algorithm that achieves
approximation factor 3/4 + δ must use n1+Ωδ(1/ log logn) space.

I Matching covers versus Ruzsa-Szemerédi graphs

In this section we prove that the size of the smallest possible matching cover is essentially the same as the
number of edges in the largest Ruzsa-Szemerédi graph with appropriate parameters.

We are now ready to state the two theorems that use induced matchings to bound the size of matching
covers. The lower bound is easy, and is proved first. The upper bound is more intricate, and is presented in
section I.1.

Theorem 63 [Lower bound] For any δ > 0, LC(ε, n) ≥ UI ((1 + δ)ε, n) ·
(

δ
1+δ

)
.

Proof of Theorem 63: Let c = 1 + δ. By definition, there exists an undirected bipartite graph G = (P,Q,E)
with |E| = UI(εc, n), |P | = |Q| = n, and an induced partition F of G such that every set in the partition is
of size at least εcn. Consider the smallest ε-matching-cover H of G, and any set F ∈ F . Recall that by the
definition of an induced matching, the edges in F are the only edges between P (F ) and Q(F ). Since F is a
matching between P (F ) and Q(F ), and the size of F is at least εcn, the intersection of H and F must be of
size at least |F | − εn, which is at least |F | ·

(
c−1
c

)
. Summing over all sets F in the partition F , we get that

|H| ≥ |E| ·
(
c−1
c

)
, which proves the theorem.

In particular, choosing δ = 1, we get LC(ε, n) ≥ UI(2ε, n)/2. The upper bound is more complicated; we
first state a simplified version (Theorem 64), and then the full version (Theorem 65). The simple version is a
corollary of the full version; the full version is proved in section I.1.

Theorem 64 [Simplified upper bound] Assume 0 < ε < 2/3, 0 < δ < 1, and εn ≥ 3. Then, LC(n, ε) ≤
UI((1− δ)ε, n) ·O

(
log(1/ε)
δ(1−δ)

)
.

Theorem 65 [Upper bound] Assume εn ≥ 3, and 0 < δ < 1. Then,

LC(n, ε) ≤ UI((1− δ)ε, n) ·
(

8εn

εn− 1

)
·
(

1 + log(1/ε) +
log(εn)

8εn

)
·
(

1

δ(1− δ)

)
.

We state the full expression in the above theorem as opposed to using asymptotic notation since the constants
are simple, and it is conceivable that one may choose to apply it in regimes where ε is arbitrarily close to 1.
Choosing δ = 1/2 in Theorem 64, we get the interesting special case, LC(n, ε) = O(UI(ε/2, n) log(1/ε)).
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I.1 Proof of the Upper Bound

We will now prove Theorem 65. Assume we are given an arbitrary undirected bipartite graph G = (P,Q,E)
with |P | = |Q| = n. Assume that εn is an integer. Also assume that εn is at least 3 (of course the most
interesting case is when ε > 0 is some constant). Before proceeding, we need another definition:

Definition 66 A pair (A,B), whereA ⊆ P andB ⊆ Q, is said to be “critical” if |A| = |B| = ME(A,B) =
εn, i.e. A,B are both of size εn and there is a perfect matching between them. Let C denote the set of all
critical pairs in G.

We will now consider a primal-dual pair of Linear Programs. By strong duality, the optimum objective
value for both LPs is the same; denote this value as Z∗. We label the constraints in the primal with the
corresponding variable in the dual, and vice versa, for clarity.

PRIMAL: Z∗ = minimize
∑
e∈E

xe

Subject to:
∀(A,B) ∈ C :

∑
e∈E∩(A×B)

xe ≥ 1 [λA,B]

x ≥ 0

DUAL: Z∗ = maximize
∑

(A,B)∈C
λA,B

Subject to:
∀(e) ∈ E :

∑
(A,B)∈C:e∈E∩(A×B)

λ(A,B) ≤ 1 [xe]

λ ≥ 0

We will relate the size of an ε-matching-cover of G to the primal and the size of an ε-induced partition of
G to the dual. In particular, in the next two subsections, we will prove the following two lemmas:

Lemma 67 The graph G has an ε-matching-cover of size at most(
εn

εn− 1

)
· (2εn(1 + log(1/ε)) + log(εn)) · Z∗.

Lemma 68 There exists a graph G′ = (P,Q,E′) with E′ ⊆ E such that |E′| ≥ Z∗δ(1− δ)εn/4 edges, and
G′ has a (1− δ)ε-induced partition. Hence, UI(n, (1− δ)ε) ≥ Z∗δ(1− δ)εn/4.

Theorem 65 is immediate from these two lemmas.

I.1.1 Proof of Lemma 67

A set of edges F ⊆ E is said to satisfy a pair (A,B) if |F ∩ (A × B)| > 0. We will further break down the
proof of Lemma 67 in two parts.

Lemma 69 If F satisfies all critical pairs, then F is an ε-matching-cover.

Proof: The proof is by contradiction. Suppose F satisfies all critical pairs, but there exists a pair (A,B) such
that A ⊆ P , B ⊆ Q, and MF (A,B) < ME(A,B) − εn. Consider an arbitrary maximum matching in the
graph (A,B,E ∩ (A×B)), say H . Discard all vertices from A and B that are not incident on an edge in H ,
to obtain A′ ⊆ A, B′ ⊆ B. It is still true that MF (A′, B′) < ME(A′, B′) − εn, but now we also know that
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ME(A′, B′) = |H| = |A′| = |B′|. Consider the graph G′ = (A′, B′, F ). By Hall’s theorem, there exists a
set A′′ ⊆ A′ and another set B′′ ⊆ B′ such that (a) |A′′| > |B′′|+ εn, and (b) |F ∩ (A′′ × (B′ \ B′′))| = 0.
Since H is perfect matching in the graph (A′, B′, E), there must exist at least εn edges of H that go from
A′′ to B′ \ B′′; let H ′ denote an arbitrary set of εn edges of H that go from A′′ to B′ \ B′′. Let C denote
the endpoints of these edges in P and D denote the endpoints of these edges in Q. Then, |C| = |D| = εn
and there is a perfect matching between C and D in E, i.e., the pair (C,D) is critical. But there is no edge
between C and D in F (by construction), and hence F does not satisfy all critical pairs, which contradicts our
assumption.

Lemma 70 There exists a set F of size at most(
εn

εn− 1

)
· (2εn(1 + log(1/ε)) + log(εn)) · Z∗

that satisfies all critical pairs.

Proof: First note that the number of critical pairs is at most
(
n
εn

)2
<
(
en
εn

)2εn
= e2εn(1+log(1/ε)).

We will now define a simple randomized rounding procedure for the solution x of the primal LP. For
convenience, let γ denote the quantity (2εn(1 + log(1/ε)) + log(εn)). For each edge e, let x̃e denote a
Bernoulli random variable which takes the value 1 with probability pe = min{1, γxe}, and let all x̃e’s be
independent. Let F denote the set of edges e for which x̃e = 1.

We will now define two bad events: Let ξ1 denote the event that |F | > γZ∗
(

εn
εn−1

)
. Let ξ2 denote the

event that F does not satisfy all critical sets.
By construction, E[|F |] = E[

∑
e x̃e] ≤ γ

∑
e xe = γZ∗. Hence, by Markov’s inequality, Pr[ξ1] <

εn−1
εn = 1− 1/(εn).

Fix an arbitrary critical set (A,B). If there exists an edge e ∈ E ∩ (A×B) such that pe = 1 then (A,B)
is deterministically satisfied by F . Else, it must be that pe = γxe for every edge e ∈ E ∩ (A × B), and the
probability that F does not satisfy (A,B) is at most∏

e∈E∩(A×B)

(1− γxe)

≤ e−γ
∑
e∈E∩(A×B) xe

≤ e−γ [From feasibility of the fractional solution].

Using the union bound over all critical pairs, we get Pr[ξ2] < e− log(εn) = 1/(εn). Using the union bound
over the two bad events, we get Pr[ξ1 ∪ ξ2] < 1. Hence, (using the probabilistic method), there must exist a
set of edges F that satisfies all critical pairs and has size at most

(
εn
εn−1

)
·(2εn(1 + log(1/ε)) + log(εn)) ·Z∗.

This concludes the proof of Lemma 67.

I.1.2 Proof of Lemma 68

This proof is also via randomized rounding, this time applied to the optimum solution of the dual LP. For
every relevant pair (A,B), choose λ̃A,B to be one with probability δλA,B/2 and 0 otherwise; further choose
the values of different λ̃A,B’s independently. If λ̃A,B = 1 then we say that the pair (A,B) has been selected.
Initialize H to be E; we will remove edges from H till the graph (P,Q,H) has an ε-induced partition.
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Step 1: Getting an induced partition. First, fix an arbitrary perfect matching (inE) between each selected
pair, and (a) remove all edges from H that do not belong to any of these perfect matchings. Then, (b) remove
all edges that belong to more than one of the graphs induced by the selected pairs. Let the new set of edges
be called H1.

Step 2: Pruning small induced sets. At this point, the collection of sets of edges {(A×B)∩H1 : λ̃A,B =
1} forms an induced partition of the graph (P,Q,H1). The only problem is that some of the sets in this
partition may be too small. We will count a selected pair (A,B) as “good” if it induces at least (1 − δ)εn
edges in H1, and “bad” otherwise. Remove all edges from H1 that are induced by a bad selected pair to
obtain the set H2. The set (P,Q,H2) now has a ((1 − δ)ε)-induced partition. Let k denote the number of
good selected pairs; then |H2| (and hence UI(n, (1− δ)ε)) is at least k(1− δ)εn.

We will now show that Pr[k > δZ∗/4] > 0. Consider a relevant pair (A,B) with λA,B > 0. Now,
Pr[λ̃A,B = 1] = δλA,B/2. Consider the perfect matching F chosen between this pair (arbitrarily) in step 1
and consider any edge e in this matching. This edge will not be pruned away in step 1(a). By the feasibility
constraint in the dual, ∑

(A′,B′)∈C:(A,B)6=(A′,B′),e∈E∩(A′×B′)

λA′,B′ < 1.

Hence, the probability that this edge will belong to a selected pair other than (A,B) is less than δ/2. Thus,
the expected number of edges in H1 ∩ (A×B) is more than (1− δ/2)εn. The maximum number of edges in
H1 ∩ (A×B) is εn. Applying Markov’s inequality to the random variable εn− |H1 ∩ (A×B)|, we get:

Pr[|H1 ∩ (A×B)| ≥ (1− δ)εn | λ̃A,B = 1] > 1/2.

Multiplying with the probability that λ̃A,B = 1, we obtain:

Pr[A relevant pair (A,B) is both selected and good] > δλA,B/4.

Summing over all relevant pairs (A,B), we get E[k] > δZ∗/4, and hence (using the probabilistic method
again), there must exist a set of choices for λ̃A,B which make k > δZ∗/4. For this choice, we know that H2

(and hence UI(n, (1− δ)ε)) is at least Z∗δ(1− δ)εn/4.
This concludes the proof of Lemma 68.
Finally, we note that an upper bound on the size of ε-covers directly yields an upper bound on the com-

munication complexity of achieving an additive εn error approximation to bipartite matching, denoted by
CC+(ε, n).

Lemma 71 CC+(ε, n) ≤ LC(ε, n).

Proof: Let G1 = (P1, Q1, E1) denote the bipartite graph with |P | = |Q| = n that Alice holds and
let G2 = (P2, Q2, E2) be the graph that Bob holds. Let G′1 be a ε-matching cover of G1. Consider an
empty cut (A1 ∪ B1, A2 ∪ B2) corresponding to a maximum matching M ′ in (G′1 ∪ G2), i.e. such that
|M ′| = |B1| + |A2|. Let M∗ denote a maximum matching in (A1 × B2) ∩ E1. Since G′1 is an ε-matching
cover, we have that |M∗| < εn.

Thus, since the maximum matching M in G1 ∪G2 is bounded by |B1|+ |A2|+ |M∗| we have

|M | − |M ′| ≤ (|B1|+ |A2|+ |M∗|)− (|B1|+ |A2|) ≤ εn.
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