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Abstract

In this paper we present improved bounds for approximating maximum matchings in bipartite graphs in
the streaming model. First, we consider the question of how well maximum matching can be approximated
in a single pass over the input when Õ(n) space is allowed, where n is the number of vertices in the
input graph. Two natural variants of this problem have been considered in the literature: (1) the edge
arrival setting, where edges arrive in the stream and (2) the vertex arrival setting, where vertices on one
side of the graph arrive in the stream together with all their incident edges. The latter setting has also
been studied extensively in the context of online algorithms, where each arriving vertex has to either be
matched irrevocably or discarded upon arrival. In the online setting, the celebrated algorithm of Karp-
Vazirani-Vazirani achieves a 1 − 1/e approximation by crucially using randomization (and using Õ(n)
space). Despite the fact that the streaming model is less restrictive in that the algorithm is not constrained
to match vertices irrevocably upon arrival, the best known approximation in the streaming model with
vertex arrivals and Õ(n) space is the same factor of 1− 1/e.

We show that no (possibly randomized) single pass streaming algorithm constrained to use Õ(n) space
can achieve a better than 1− 1/e approximation to maximum matching, even in the vertex arrival setting.
This leads to the striking conclusion that no single pass streaming algorithm can get any advantage over
online algorithms unless it uses significantly more than Õ(n) space. Additionally, our bound yields the
best known impossibility result for approximating matchings in the edge arrival model (improving upon
the bound of 2/3 proved by Goel at al[SODA’12]).

Second, we consider the problem of approximating matchings in multiple passes in the vertex arrival
setting. We show that a simple fractional load balancing approach achieves approximation ratio 1 −
e−kkk−1/(k − 1)! = 1 − 1√

2πk
+ o(1/k) in k passes using linear space. Thus, our algorithm achieves

the best possible 1 − 1/e approximation in a single pass and improves upon the 1 − O(
√

log log k/k)
approximation in k passes due to Ahn and Guha[ICALP’11]. Additionally, our approach yields an efficient
solution to the Gap-Existence problem considered by Charles et al[EC’10].
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1 Introduction

The need to process modern massive data sets necessitates rethinking classical solutions to many combinato-
rial optimization problems from the point of view of space usage and type of access to the data that algorithms
assume. Applications in domains such as processing web-scale graphs, network monitoring or data mining
among many others prohibit solutions that load the whole input into memory and assume random access to
it. The streaming model of computation has emerged as a more realistic model for processing modern data
sets. In this model the input is given to the algorithm as a stream, possibly with multiple passes allowed. The
goal is to design algorithms that require small space and ideally one or a small constant number of passes over
the data stream to compute a (often approximate) solution. For many problems with applications in network
monitoring, it has been shown that space polylogarithmic in the size of the input is often sufficient to compute
very good approximate solutions. On the other hand, even basic graph algorithms have been shown to require
Ω(n) space in the streaming model[5], where n is the number of vertices. A common relaxation is to allow
O(n · polylog(n)) space, a setting often referred to as the semi-streaming model.

1.1 Matchings in the streaming model

The problem of approximating maximum matchings in bipartite graphs has received significant attention
recently, and very efficient small-space solutions are known when multiple passes are allowed[6, 14, 4, 1, 2,
11]. The best known algorithm due to Ahn and Guha [1] achieves a 1−O(

√
log log k/k) in k passes for the

weighted as well as the unweighted version of the problem using Õ(kn) space.
Single pass algorithms. All algorithms mentioned above require at least two passes to achieve a nontrivial

approximation. The problem of approximating matchings in a single pass has recently received significant
attention[8, 11]. Two natural variants of this problem have been considered in the literature: (1) the edge
arrival setting, where edges arrive in the stream and (2) the vertex arrival setting, when vertices on one side
of the graph arrive in the stream together with all their incident edges. The latter setting has also been studied
extensively in the context of online algorithms, where each arriving vertex has to either be matched irrevocably
or discarded upon arrival.

In a single pass, the best known approximation in the edge arrival setting is still 1/2, achieved by simply
keeping a maximal matching (this was recently improved to 1/2 + ε for a constant ε > 0 under the additional
assumption of random edge arrivals[11]). It was shown in [8] that no Õ(n) space algorithm can achieve a
better than 2/3 approximation in this setting.

In the vertex arrival setting, the best known algorithms achieve an approximation of 1−1/e. The assump-
tion of vertex arrivals allows one to leverage results from online algorithms [10, 13, 9] . In the online model
vertices on one side of the graph are known, and vertices on the other side arrive in an adversarial order. The
algorithm has to either match a vertex irrevocably or discard upon arrival. The celebrated algorithm of Karp-
Vazirani-Vazirani achieves a 1− 1/e approximation for the online problem by crucially using randomization
(additionally, this algorithm only uses Õ(n) space). A deterministic single pass Õ(n) space 1− 1/e approx-
imation in the vertex arrival setting was given in [8] (such a deterministic solution is provably impossible in
the online setting). In [8], the authors also showed by analyzing a natural one-round communication problem
that no single-pass streaming algorithm that uses Õ(n) space can obtain a better than 3/4 approximation in
the vertex arrival setting. They also provided a protocol for this communication problem that matches the 3/4
approximation ratio, suggesting that new techniques would be needed to prove a stronger impossibility result.

Lop-sided graphs. The techniques for matching problems outlined above yield efficient solutions that use
Õ(|P | + |Q|) space, where |P | and |Q| are the sizes of the sets in the bipartition. While this is a reasonable
space bound to target, this can be prohibitively expensive for lop-sided graphs that arise, for example, in
applications to ad allocations. Here the P side of the graph corresponds to the set of advertisers, and the Q
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side to the set of impressions [3]. An important constraint is that the set of impressions Q may be so large that
it is not feasible to represent it explicitly, ruling out algorithms that take O(|P |+ |Q|) space.

Data model for lop-sided graphs. Since the set Q cannot be represented explicitly, it is important to fix
the model of access to Q. Here we assume the following scenario. Vertices in P arrive in the stream in an
adversarial order, together with a representation of their edges. We make no assumptions on the way the
edges are represented. For example, some edges could be stored explicitly, while others may be represented
implicitly. We assume access to the following two functions:

1. LIST-NEIGHBORS(u, S) which, given a set of vertices S ⊆ Q and a vertex u ∈ P , lists the neighbors
of u in S;

2. NEW-NEIGHBOR(u, S) which, given a set of vertices S ⊆ Q and a vertex u ∈ P outputs a neighbor
of u outside of the set S.

1.2 Our results

In this paper, we improve upon the best known bounds for both the single pass and multi-pass settings. In
the single pass setting, we prove an optimal impossibility result for vertex arrivals, which also yields the best
known impossibility result in the edge arrival model. For the multipass setting, we give a simple algorithm
that improves upon the approximation obtained by Ahn and Guha in the vertex arrival setting, as well as yields
an efficient solution to the Gap-Existence problem considered by Charles et al[3].

Lower bounds. In this paper we build upon the communication complexity approach taken in [8] to obtain
lower bounds via what can be viewed as multi-party communication complexity. Our main result is an optimal
bound on the best approximation ratio that a single-pass Õ(n) space streaming algorithm can achieve in the
vertex arrival setting:

Theorem 1 No (possibly randomized) one-pass streaming algorithm that outputs a valid matching with prob-
ability at least 3/4 can obtain a better than 1 − 1/e + δ-approximation to the maximum matching, for any
constant δ > 0, unless it uses at least n1+Ω(1/ log logn) space, even in the vertex arrival model.

We note that this bound is matched by the randomized KVV algorithm[10] for the online problem and the
deterministic Õ(n) space algorithm of [8]. One striking consequence of our bound is that no single-pass
streaming algorithm can improve upon the more constrained online algorithm of KVV, which has to make
irrevocable decisions, unless is uses significantly more than Õ(n) space. Our bound also improves upon the
best known bound of 2/3 for small space one-pass streaming algorithms in the edge arrival model.

Comparison with [8] It was shown in [8] via an analysis of the natural two-party communication problem
that no one-pass streaming algorithm that uses Õ(n) space can achieve approximation better than 2/3 in the
edge arrival setting and 3/4 in the vertex arrival setting. Furthermore, the authors also gave a communication
protocol that proves the optimality of both bounds for the communication problem, thus suggesting that a
more intricate approach would be needed to prove better impossibility results.

In this paper we prove the optimal bound of 1 − 1/e on the best approximation that a single-pass Õ(n)
space algorithm can achieve even in the vertex arrival setting. While the lower bounds from [8] follow from
a construction of a distribution on inputs that consists of two parts and hence yields a two-party communi-
cation problem, here we obtain an improvement by constructing hard input sequences that consist of k parts
instead of two, getting a lower bound that approaches 1 − 1/e for large k. This can be viewed as multi-
party communication complexity of bipartite matching, but we choose to present our lower bound in different
terms for simplicity. We note that the approach of [8] to a multi-party setting requires a substantially different
construction. We discuss the difficulties and our approach to overcoming them in section 2.
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Upper bounds. We show that a simple algorithm based on fractional load balancing achieves the optimal
1− 1/e approximation in a single pass and 1− 1√

2πk
+ o(k−1/2) approximation in k passes, improving upon

the best known algorithms for this setting:

Theorem 2 There exists an algorithm for approximating the maximum matching M in a bipartite graph
G = (P,Q,E) with the P side arriving in the stream to factor 1−e−kkk−1/(k−1)! = 1− 1√

2πk
+O(k−3/2)

in k passes using O(|P |+ |Q|) space and O(m) time per pass.

Remark 3 Note that our algorithm extends trivially to the case when vertices in P have integral capacities
Bu, u ∈ P , corresponding to advertiser budgets.

The gap-existence problem. In [3] the authors give an algorithm for the closely related gap-existence prob-
lem. In this problem the algorithm is given a bipartite graph G = (A, I,E), where A is the set of advertisers
with budgets Ba, a ∈ A and I is the set of impressions. The graph is lopsided in the sense that |I| � |A|. A
matchingM is complete if |M ∩δ(i)| = 1 for all i ∈ I and |M ∩δ(a)| = Ba for all a ∈ A. The gap-existence
problem consists of distinguishing between two cases:

(YES) there exists a complete matching with budgets Ba;

(NO) there does not exist a complete matching with budgets b(1− ε)Bac.

The approach of [3] is via sampling the I side of the graph, and yields a solution that allows for non-trivial
subsampling when the budgets are large. In particular, they obtain an algorithm with runtimeO

(
|A| log |A|

ε2
· |I|

mina |Ba|

)
,

which is sublinear in the size of the graph when all budgets are large. In section 5 we improve significantly
upon their result, showing

Theorem 4 Gap-Existence can be solved in O(log(|I| ·
∑

a∈Ba
Ba)/ε

2) passes using space O(
∑

a∈ABa/ε).
The time taken for each pass is linear in the representation of the graph.

It should also be noted that the result of [3] could be viewed as a single pass algorithm, albeit with the stronger
assumption that the arrival order in the stream is random.

Organization: In section 2 we present the framework of our lower bound, which relies on a special family
of graphs that we refer to as (d, k, δ)-packing. We then give a construction of a (d, k, δ)-packing in section 3.
Our basic multipass algorithm for approximating matchings is presented in section 4, and the algorithm for
Gap-existence is given in section 5.

2 Single pass lower bound

In this section we define the notion of a (d, k, δ)-packing, our main tool in proving the lower bound. A
(d, k, δ)-packing is a family of graphs parameterized by the set of root to leaf paths in a d-ary tree of height
k, inspired by Ruzsa-Szemerédi graphs, i.e. graphs whose edge set can be partitioned into large induced
matchings. In this section we will show that existence of a (d, k, δ)-packing with a large number of edges
implies lower bounds on the space complexity of achieving a better than 1− 1/e approximation to maximum
matchings in a single pass over the stream.

We first recall the definition of induced matchings and ε-Ruzsa-Szemerédi graphs.

Definition 5 Let G = (P,Q,E) denote a bipartite graph. A matching F ⊆ E that matches a set A ⊆ P to a
subset B ⊆ Q is induced if E ∩ (A×B) = F .
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Definition 6 A bipartite graph G = (P,Q,E) with |P | = |Q| = n is an ε-Ruzsa-Szemerédi graph if one can
write E =

⋃k
i=1Mi, where each Mi is an induced matching and |Mi| = εn for all i.

Several constructions of Ruzsa-Szemerédi graphs with a large number of edges are known. We will use the
techniques pioneered in [7], where the authors construct ε-Ruzsa-Szemerédi graphs with constant ε < 1/3,
and the extensions developed in [8], where it is proved that

Theorem 7 [8] For any constant δ ∈ (0, 1/2) there exist bipartite (1/2− δ)-Ruzsa-Szemerédi graphs on 2n
nodes with n1+Ω(1/ log logn) edges.

In the rest of the section we define a distribution on input instances for our problem of approximating max-
imum matchings in a single pass in the streaming model. We start by providing intuition for our distribution.
It is useful to first recall how the best known lower bound of 3/4 for the same setting is proved in [8]. The
stream in [8] consists of two ‘phases’. In the first phase, the algorithm is presented with a graphG = (P,Q,E)
such that |P | = n, |Q| = 2n and the edge set E can be represented as a union of induced 2-matchings Mi,
i = 1, . . . , k, k = nΩ(1/ log logn), where Mi matches a subset Ai ⊆ P such that |Ai| ≥ (1/2− δ)n to a subset
Bi ⊆ Q, |Bi| = (1 ± δ)n. Then an index i is chosen uniformly at random from [1 : k], and in the second
part of the stream a matching arrives that matches a new set of vertices P ∗ to Q∗ = Q \ Bi, making the
edges of the (uniformly random) matching Mi crucial for constructing a better than 3/4 approximation to the
maximum matching in the whole instance. It is then shown, using an additional randomization trick, that the
algorithm essentially needs to store Ω(1) bits for each edge in each induced matching Mi if it beats the 3/4
approximation ratio.

We generalize this approach by constructing hard distributions on inputs that consist of multiple phases,
for which any algorithm that achieves a better than 1− 1/e approximation is essentially forced to remember
Ω(1) bits per edge of the input graph. Ensuring that this is the case is the main challenge in generalizing the
construction in [8] to a multiphase setting. We address this challenge using the notion of a (d, k, δ)-packing,
which we now define.

2.1 (d, k, δ)-packing

Let T denote a d-ary tree of height k. A (d, k, δ)-packing will be defined as a function mapping root-to-leaf
paths p in T to bipartite graphs on the vertex set (T, S), where T and S are the two sides of the bipartition.
We will write G(p) to denote the graph that a path p is mapped to by the packing.

The vertex set ofG(p) for each root-to-leaf path pwill always be (T, S), so that the choice of p determines
the set of edges of the graph. We partition the set S as S = S0 ∪ . . .∪Sk−1 ∪Sk (the sets Si, i = 0, . . . , k are
disjoint and correspond to k + 1 ‘phases’ of the input instance). We will always have |T | = (1 + O(δ))|S|
for an arbitrarily small constant δ > 0.
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d-ary tree T

u0

u1

u2w

Hw
2

Figure 1: A root to leaf path in T . Thick solid edges represent the edges of the path (r = u0, u1, u2). Dashed
edges incident on nodes on the path P correspond to subgraphs Hw

i for i = 0, 1 and w a child of ui.

T u0 T u1

S0

Hu1
0

Su10 Su20 S1 Su21

T u2

S2

Figure 2: Subgraphs (T ui , Si) that arrive in the stream. The edges of induced near-regular subgraph Hu1
0

induced by (T u0 \ T u1) ∪ Su10 are shown in bold.

We now associate several sets of vertices on the T and S side of the bipartition with each node in the
binary tree T . Let u ∈ T be a node at distance i ∈ [0, k] from the root. The following sets are associated
with u:

1. a subset T u ⊆ T , such that if w is a child of u in T , one always has Tw ⊂ T u;

2. for each j ∈ [0 : i − 1], a set Suj , such that if w is a child of u in T , one always has Swj ⊂ Suj . To
simplify notation, we set Suii := Si.

We now describe the hard inputs that we will use. The input sequence is split into k + 1 phases. The
i-th phase corresponding to the i-th vertex on the path p from root to a leaf, where i = 0, . . . , k (see Fig. 1).
During phase i the edges of the subgraph induced by Gi(p) = (T ui , Si, Ei(p)) arrive in the stream. Crucially,
the graph Gi(p) will be a union of induced sparse subgraphs indexed by children of ui.

This setup is illustrated in Fig. 1, where (a) all edges of the path p = (r = u0, u1, u2) are shown in bold
and (b) all edges of T that are incident on nodes of p are dashed since the corresponding subgraphs Hw

i arrive
in the stream. The path p yields a nested sequence T = T u0 ⊃ T u1 ⊃ . . . T uk shown in Fig. 2.

The reason behind the fact that this construction presents a hard instance for small space algorithms is as
follows. At each step i the algorithm is presented with all the subgraphsHw

i , of which all except the uniformly
random one (corresponding to the next node on the path p, i.e. Hui+1

i ) will be useful for constructing a large
matching in the whole instance. Large here means a matching of size at least a (1−(1−1/k)k+δ′) fraction of
the maximum for some constant δ′ > 0. To show that only these special subgraphs are useful for constructing
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a large matching, we will later exhibit a directed cut of appropriate size in the graph G(p) that consists only
of the edges of Hui+1

i , i = 0, . . . , d − 1 (see Lemma 13). The key to exhibiting such a cut is the special
structure of the sets Suki for i = 0, . . . , k − 1 that we define in property (2) of (d, k, δ)-packings below. An
additional randomization trick will allow us to show that a construction of a (d, k, δ)-packing immediately
yields a lower bound of essentially Ω(dn) on the space required for a single-pass algorithm to achieve an
approximation ratio better than 1− (1− 1/k)k + δ′ for a constant δ′ > 0.

We now transform the intuitive description above into a formal argument. We will use the following

Definition 8 We call a bipartite graph G = (P,Q,E) (a, b, δ)-almost regular if (1) at most a δ fraction of
vertices in P has degree outside of [(1 − δ)a, (1 + δ)a], and no vertex has degree larger than (1 + δ)a and
(2) at most a δ fraction of vertices in Q has degree outside of [(1 − δ)b, (1 + δ)b], and no vertex has degree
larger than (1 + δ)b.

Definition 9 ((d, k, δ)-packing) A mapping from the set of root-to-leaf paths p in a d-ary tree T to the set of
bipartite graphs G(p) = (T, S,E(p)) is a (d, k, δ)-packing if the following conditions are satisfied.

Let p = (r = u0, u1, . . . , uk) be a root-to-leaf path in T . Let G(p) = (T, S,E(p)) denote the graph that
the path p is mapped to. Then the nested sequences of sets T = T u0 ⊃ T u1 ⊃ . . . ⊃ T uk−1 ⊃ T uk , and
Si = Suii ⊃ S

ui+1

i ⊃ . . . ⊃ Suki satisfies the following properties for all i = 0, . . . , k − 1:

1. For a constant γ > 0, one has for every child w of ui in the tree T that the subgraph Hw
i induced by

(T ui \ Tw) ∪ Swi is ((k − 1)γ, kγ, δ)-almost regular.

2. there exists a set Zui ⊂ T such that |Zui | ≤ O(δ/k2)|T ui |, and the subgraph induced by (T ui \ (T uk ∪
Zui)) ∪ Suki contains only the edges of Hui+1

i .

3. there exists a matching of at least a 1− δ fraction of Si to T ui \ T ui+1;

4. |T ui | = (1 +O(δ))(1− 1/k)−k+in and |Suji | = (1 +O(δ))(1− 1/k)−k+jn/k for all j = i, . . . , k − 1.

5. there exists a matching of at least a 1− δ fraction of Sk to T uk .

Furthermore, for each i = 0, . . . , k the edge set of the subgraph induced by T ui ∪ Si only depends on the
nodes of p at distance at most i from the root.

Remark 10 One could replace property (1) with the requirement that Hw
i be a matching of a 1 − O(δ)

fraction of Swi to T ui \ Tw, and still get a lower bound that tends to 1 − 1/e for large k, albeit with slightly
worse convergence. We prefer to use the more complicated definition to obtain the clean approximation ratio
1− (1− 1/k)k +O(δ), where δ can be chosen an arbitrarily small constant, for any k > 1.

In what follows we will often refer to properties of (d, k, δ)-packings by number, without specifying each
time that Definition 9 is meant.

In the rest of this section we will show that existence of large (d, k, δ)-packings implies space lower
bounds for approximating matchings in one pass in the streaming model, thus proving

Theorem 11 If a (d, k, δ)-packing with Θ(n) vertices exists for sufficiently large constant k > 0 and δ =
O(1/k3), then no one-pass streaming algorithm can obtain a better than (1−(1−1/k)k+δ′)-approximation
for any constant δ′ > 0 in space o(nd), even when vertices on one side of the graph arrive in the stream
together with all their edges.

Together with the construction of a (d, k, δ)-packing with d = nΩ(1/ log logn) and δ = O(1/k3) given in
section 3, this will yield a proof of Theorem 1.
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2.2 Distribution over inputs

We now formally define the (random) input graph I = (P,Q,E) based on a (d, k, δ)-packing. We will always
have P =

⋃k
i=0 Si and Q = T , but it will be useful to have notation for the parts P and Q of the bipartition

of I. Let p = (r = u0, u1, . . . , uk) denote the path from the root of T to a uniformly random leaf. Let
G = G(p) denote the graph that the path p is mapped to by our (d, k, δ)-packing.

Let T = T u0 ⊃ T u1 ⊃ T u2 ⊃ . . . ⊃ T uk denote the sequence of subsets of T corresponding to p.
For each i = 0, . . . , k − 1 and each child w of ui let Hw

i = (Xw
i , Y

w
i , E

w
i ) denote the almost regular graph

induced by Xw
i ∪ Y w

i , where Xw
i = T ui \ Tw and Y w

i = Swi .
We now introduce some randomness into the graph Hw

i . Let H̄w
i be obtained from Hw

i via the following
subsampling process. For each i and w let Kw

i denote a uniformly random subset of Xw
i of size δ|Xw

i | for a
small constant δ. Let bi,wx = 1 if x ∈ Kw

i and 0 o.w. Then for each x ∈ Xw
i the graph H̄w

i contains all edges
incident on x in Hw

i if bi,wx = 0 and none of the edges incident on x otherwise. For each i = 0, . . . , k − 1 let
bi = (b

i,ui+1
x )x∈Xi

ui+1
. Note that H̄w

i is a ((k − 1)γ, kγ,O(δ))-almost regular. For each i = 0, . . . , k − 1 let

Ḡi(p) = (T ui , Si, Ēi(p)) denote the subgraph with bipartition (T ui , Si) such that Ēi(p) is the union of the
edges of all graphs H̄w

i over all childrenw of ui. LetGk(p) = (T uk , Sk, Ēk(p)) be a subgraph that consists of
a perfect matching between Sk and T uk (see Fig. 2). The instance I is the union of Ḡi(p) over i = 0, . . . , k.

We now specify the order in which the vertices appear in the stream. The stream will consist of k + 1
phases. For each i = 0, . . . , k the vertices and edges of Ḡi(p) arrive in phase i in an arbitrary order.

This completes the description of the input. We now turn to proving Theorem 11. We will need the
following claim

Claim 12 G contains a matching of size at least (1−O(δ))(1− 1/k)−kn.

Proof: It is sufficient to match a 1 − δ fraction of Si to T ui \ T ui+1 for all i = 0, . . . , k − 1, as guaranteed
by property (3), and match the vertices in T uk to Sk. This matches a 1−O(δ) fraction of T , and hence yields
the required matching.

2.3 Bounding performance of a small space algorithm

By Yao’s minimax principle it is sufficient to upper bound the performance of a deterministic small space
algorithm that succeeds with probability at least 1/2. To do that, we bound the size of the matching that a
small space algorithm can output at the end of the stream. Let E∗ denote the set of edges that an algorithm
outputs at the end of the stream. We first upper bound the approximation ratio that the algorithm obtains in
terms of the number of edges in E(H

ui+1

i ) ∩ E∗, where p = (u0, u1, . . . , uk) is the uniformly random path
from the root to a leaf in T .

Lemma 13 The size of the matching output by the algorithm is bounded by

(
(1− 1/k)−k − 1

)
n+

k−1∑
i=0

|E(H
ui+1

i ) ∩ E∗|+O(δk2n).

Proof: Consider the cut (A,B), where A =
(
T 0 \ (T uk ∪

⋃k−1
i=0 Z

ui)
)
∪
⋃k−1
i=0 (Si \ Suki ) and B = T uk ∪

S∗ ∪
⋃k−1
i=0 S

uk
i ∪

⋃k−1
i=0 Z

ui . Here Zui are the sets whose existence is guaranteed by property (2).
By the maxflow/mincut theorem, the size of the matching output by the algorithm is bounded by |A∩P |+

|B ∩Q|+ |((A∩Q)× (B ∩P ))∩E∗|. Furthermore, by property (2) in Definition 9 for the sets A and B one
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has, using the fact that there are no edges from S∗ to T \T uk that ((A∩Q)×(B∩P ))∩E ⊂
⋃k−1
i=0 E(H

ui+1

i ),
and hence

|((A ∩Q)× (B ∩ P )) ∩ E∗| ≤
k−1∑
i=0

|E(H
ui+1

i ) ∩ E∗|. (1)

Combining these estimates, we get that the size of the matching output by the algorithm is bounded by∣∣∣∣∣
k−1⋃
i=0

(Si \ Suki )

∣∣∣∣∣+ |T uk |+
k−1∑
i=0

|Zui |+
k−1∑
i=0

|E(H
ui+1

i ) ∩ E∗|,

Recall that |Si| = (1 +O(δ))(1− 1/k)−k+i and |Suki | = (1 +O(δ))n/k by property (4). Thus, the first term
is at most

(1 +O(δ))

(
k−1∑
i=0

(1− 1/k)−k+i − 1

)
n/k = (1 +O(δ))

(
(1− 1/k)−k

1− (1− 1/k)k

1− (1− 1/k)
− k
)
n/k

= (1 +O(δ))((1− 1/k)−k − 2)n.

Recalling that T uk = (1 +O(δ))n by property (4) and |Zui | = O(kδ)n by property (2) completes the proof.

We now show that no small space algorithm that is correct with probability at least 1/2 can output more
than a vanishingly small fraction of edges in

⋃k−1
i=0 E(H

ui+1

i ). Recall that the vectors of bits flipped in the
subsampling process that correspond to vertices (and their edge neighborhoods) in H̄ui+1

i are denoted by bi.

Lemma 14 Let I denote the distribution on input graphs obtained from a (d, k, δ)-packing for constant k
and δ = O(1/k3). Let A be a o(nd) space algorithm that is correct with probability at least 1/2. Then for
each i = 0, . . . , k− 1 the expected number of edges in E(

⋃k−1
i=0 H

ui+1

i ) retained by A conditional on A being
correct is o(n).

Proof:
We give the algorithm the following information for free. At the end of phase i the algorithm knows all

vectors u1, . . . ,ui on the path chosen in the distribution (of course, the algorithm does not know ui+1). This
only makes the algorithm more powerful.

Let Gi denote the set of phase i graphs, i.e. the set of possible graphs on the vertices T ui ∪ Si. Since
the algorithm knows all vectors u1, . . . ,ui, these graphs are solely determined by the choices made in the
subsampling process in Hw

i for each w. Denote the state of the memory of the algorithm after i-th phase for
i = 0, . . . , k− 1 by mi. For each i between 0 and k− 1 we denote the function that maps mi−1 and the graph
Gi = (T ui , Si, Ei) ∈ Gi to mi by φi : {0, 1}s ×Gi → {0, 1}s, where s is the number of bits of space that the
algorithm uses. Wlog assume m−1 = 0.

Denote by E∗ the set of edges that the algorithm outputs at the end of the stream. Denote the event that
the algorithm is correct by C. Let E∗i := E∗ ∩ (Si × Q). Let Mi ∈ {0, 1}s denote the (random) state of the
memory of the algorithm at the end of phase i. LetD := {|E∗| = Ω(n)}∧C andDi = {|E∗i | = Ω(1/k)n}∧C.

We prove the lemma by contradiction. Suppose that conditional on being correct, the algorithm retains
Ω(n) edges of

⋃k−1
i=0 E(H

ui+1

i ). Then a simple averaging argument using the assumption that Pr[C] ≥ 1/2
shows that Pr[D] = Ω(1) and there exists j ∈ [0 : k − 1] such that Pr[Dj ] ≥ C/k for a constant C > 0.
We will now concentrate on phase j. Denote the set of good memory configurations by G = {(mj−1,mj) ∈
{0, 1}s : Pr[Dj |Mj−1 = mj−1,Mj = mj ] ≥ C/(2k))}. Thus, G is a set of memory configurations in the
j − 1-st and j-th phases such that conditional on (Mj−1,Mj) ∈ G the algorithm is likely to output a lot of
edges of

⋃k−1
i=0 E(H

ui+1

i ). Then

Pr[(Mj−1,Mj) ∈ G] + (C/(2k))Pr[(Mj−1,Mj) 6∈ G] ≥ Pr[Dj ] ≥ C/k,
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so
Pr[(Mj−1,Mj) ∈ G] ≥ C/(2k). (2)

Before proceeding, we prove an auxiliary lemma. Recall that in the definition of a (d, k, δ)-packing for
all d children w of ui the graph H̄w

i is obtained from Hw
i by keeping edges incident to a uniformly random

subset of a 1− δ fraction of nodes in Xw
i . Thus, there are at least

( |Xw
i |

δ|Xw
i |
)d

= 2ηdn graphs in Gi, where η > 0

is a constant. The following claim follows similarly to [8]. We give a proof here for completeness.

Claim 15 Let α > 0 be a constant and let F be any subset of Gi. Let GF denote a set of edges that are
contained in at least 1/2 of the graphs in F . Let J ⊆ [1 : d] be the set of indices such that GF contains at
least α|Xw

i | edges from Hw
i−1, where w is the j-th child of ui−1, for each j ∈ J . Then if |F | ≥ 2(η−o(1))dn,

|J | = o(d).

Proof: Let |J | = d1. Recall that by property (1) the maximum degree in Hw
i is bounded above by c :=

(1 +O(δ))γk. Thus, the number of graphs that can be in F is bounded by

(
(1− α/c)|Xw

i |
δ|Xw

i |

)d1( |Xw
i |

δ|Xw
i |

)d−d1
=

(
2−Ω(|Xw

i |)
(
|Xw

i |
δ|Xw

i |

))d1 ( |Xw
i |

δ|Xw
i |

)d−d1
= 2−Ω(d1n)2ηdn.

It then follows that if d1 = Ω(d), we have |F | ≤ 2(η−Ω(1))dn, contradicting our assumption on the size of
F .

Let Ej denote the event that |φ−1
Mj−1

(Mj)| ≥ 2(η−o(1))dn. A simple counting argument shows that for a
uniformly random graph H ∈ Gj we have Pr[Ēj ] = o(1) (here we use the fact that coin flips that determine
which edges belong to Hw

i−1 are independent of Mj−1). Combining this with (2), we get

Pr[(Mj−1,Mj) 6∈ G] + Pr[Ēj ] ≤ 1− C/(2k) + o(1) < 1.

Thus, there exists m∗j−1,m
∗
j ∈ {0, 1}s such that the following properties hold

(P1) Pr[Dj |Mj−1 = m∗j−1,Mj = m∗j ] ≥ C/k;

(P2) |φ−1
m∗j−1

(m∗j )| ≥ 2(η−o(1))dn.

We can now complete the proof. For brevity letM = {Mj−1 = m∗j−1,Mj = m∗j}. Recall that E∗j is the
set of edges from H

uj+1

j that the algorithm outputs at the end of the stream. We have

EE∗j [Pr[Dj |M]] ≥ C/k,

and so there exists Ê∗j such that Pr[Dj |M ∧ E∗j = Ê∗j ] ≥ C/k.
Now recall that Dj = {|E∗j | = Ω(1/k)n} ∧ C. Thus, we have isolated memory configurations m∗j−1

and m∗j and a set of edges Ê∗j of size Ω(1/k)n such that the algorithm can output Ê∗j and be correct with
probability at least C/k conditional on Mj−1 = m∗j−1 and Mj = m∗j !

Finally, note that conditional onM∧{E∗j = Ê∗j } all graphs H ∈ φ−1
i (m∗) are equiprobable. Now using

property P2 above together with Claim 15 we conclude that |Ê∗j | = o(n), which is a contradiction.

We can now give
Proof of Theorem 11: The proof of Theorem 11 now follows by combining Claim 12, Lemma 13 and
Lemma 14 after setting δ = cδ′/k2 for a small constant c > 0.
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3 Construction of a (d, k, δ)-packing

In this section we give a construction of a (d, k, δ)-packing on Θ(n) nodes with d = n
Ω
(

1
log logn

)
for any

constant k and sufficiently small constant δ > 0. Our construction will use many of the techniques introduced
in [7] and (the full version of) [8].

We first introduce notation. As before, the sides of the bipartition of the graph G(p) that we need to
construct are denoted by T and S = S0 ∪ . . . ∪ Sk. We use the notation [a] = {1, . . . , a} for integer a ≥ 1.
In our construction the T = T 0 side of the graph is identified with a hypercube [m4]m for a value of m to
be chosen later, and the sets Si, i = 0, . . . , k − 1 are identified with a subsampled version of the hypercube
[m4]m. The vertices of the last set Sk do not have any special structure. Vertices x ∈ T or y ∈ Si will often
be treated as points x, y ∈ [m4]m. Each node u of T (except the root) will be labeled with a binary vector
u ∈ {0, 1}m. We will write |u| to denote the Hamming weight of u. For x ∈ T and u ∈ T we use the dot
product notation (x,u) =

∑m
i=1 xi · ui ∈ Z. For an interval [a, b], where a, b are integers, and an integer

number W we will write [a, b] ·W to denote the interval [a ·W, b ·W ]. Finally, for an integer i and an integer
W we will write i mod W to denote the residue of i modulo W that belongs to [0,W − 1].

For convenience of the reader, we first give an informal outline of the construction. Given a path p =
(u0, u1, . . . , uk) from the root of T to a uniformly random leaf, we construct the packing as follows. First, we
associate with each node of T other than the root a subset of {0, 1}m (i.e. a binary vector) from a family of
subsets of fixed cardinality and with small intersections. Since the subsets corresponding to nodes of T have
small intersections, one can think of them as nearly orthogonal vectors.

We then traverse the path p from the root to the leaf and at step i, i = 0, . . . , k − 1 we essentially set1

T ui+1 := {x ∈ T ui : (x,ui+1) mod W ∈ [1/k, 1] ·W},

where W is an appropriately chosen parameter. Thus, traversing a root to leaf path amounts to repeatedly
cutting the hypercube with hyperplanes whose normal vectors are almost orthogonal. At step i the set Si
is identified with an appropriately subsampled copy of T ui , and a Ruzsa-Szemerédi graph is constructed on
(T ui , Si). At step i, besides defining the new set T ui+1 , the vector ui+1 (corresponding to the next vertex on
the path) is used to define a subset Sui+1

j ⊆ Suij for all j ≤ i by similarly cutting Suij with a hyperplane. The
most important property of our construction will be the fact that when we reach the leaf uk, most of the edges
going out of Sukj for j = 0, . . . , k − 1 will be contained in T uk , yielding property (2) of (d, k, δ)-packings.
We note that the idea of using nearly orthogonal vectors to construct Ruzsa-Szemerédi graphs was introduced
in [7] and further generalized in [8], so this part of our construction adapts known techniques to our setting.
Our main contribution here is the approach of constructing a recursive sequence of graphs by cutting the
hypercube by nearly orthogonal hyperplanes, which allows us to derive property (2).

We now give the details of the construction. We will use the following lemma from [8], which is a
convenient formulation of the construction of error correcting codes with fixed weight in [12]

Lemma 16 [8] For sufficiently large m > 0, any constant ε ∈ (0, 1) and constant γ ∈ (0, 2) there exists a
family F of subsets of [m] of size εm with intersection at most γε2m such that 1

m log |F| ≥ cε,γ − o(1).

Our main lemma is

Lemma 17 For any constants k, δ′ > 0 there exists a (d, k, δ′)-packing on Θ(n) nodes with d = n
Ω
(

1
log logn

)
.

Proof: We associate with each node of the d-ary tree T of height k a vector v from a family of almost
orthogonal binary vectors of equal weight whose existence is guaranteed by Lemma 16. Since the number of
nodes in such a tree is at most dk+1, we can afford to set d = 2Ω(m) since k is constant. Besides associating

1This statement is slightly imprecise in the interest of clarity.
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with each node u ∈ T a vector u, we also associate with u a random variable Uu that is uniformly distributed
over the integers between 0 and W − 1, where W is a parameter that will be chosen later. The variables Uu
and Uu′ are independent for u 6= u′.

Let X ′ = Y = [m4]m for some integer m > 0. Let X be a uniformly random subset of X ′ where each
point of X ′ appears independently with probability 1/k. We will refer to vertices in X and Y as points in
[m4]m. We now specify how a graph satisfying the properties in definition 9 is constructed for a given path
p = (u0, u1, . . . , uk) denote a path from the root of T to a leaf of T .

The path p induces a decomposition of the vertex set T as follows. For all i = 0, . . . , k − 1

T ui = {y ∈ Y : (y,uj) mod W ∈ [1/k, 1) ·W, for all j ∈ [1 : i]}
Si = {x ∈ X ′ : (x,uj) mod W ∈ [1/k, 1) ·W, for all j = [1 : i]}.

(3)

Also, let

Suij = {x ∈ Sj : (x,ul) mod W ∈ [1/k, 1) ·W, for all l ∈ [1 : i]}, for all j = 0, . . . , i− 1 (4)

The set Sk is a disjoint set of vertices connected to T uk by a perfect matching.
Consider fixed i between 0 and k − 1. For all children w of ui let

RY (w) = {y ∈ T ui : ((y,w) + Uw) mod W ∈ [0, 1/k] ·W}
W Y (w) = {y ∈ T ui : ((y,w) + Uw) mod W ∈ ([1/k, 1/k + δ] ∪ [1− δ, 1)) ·W}
BY (w) = {y ∈ T ui : ((y,w) + Uw) mod W ∈ [1/k + δ, 1− δ] ·W}

(5)

Define RX(w),WX(w), BX(w) similarly (note that these sets are defined only for Si):

RX(w) = {x ∈ Si : ((x,w) + Uw) mod W ∈ [0, 1/k] ·W}
WX(w) = {x ∈ Si : ((x,w) + Uw) mod W ∈ ([1/k, 1/k + δ] ∪ [1− δ, 1)) ·W}
BX(w) = {x ∈ Si : ((x,w) + Uw) mod W ∈ [1/k + δ, 1− δ] ·W}

(6)

We note here that the random shift Uw is not necessary for most properties that we establish, and will only
be useful to establishing property (3). First, we analyze

Size of the sets T ui , Sj , Suij , R,B,W and property (4). We will need

Claim 18 Let δ > 0 be a constant such that 1/δ and δW/|w| are integers, and let U ∈ [0 : W − 1] be an
integer. Define for q = 0, . . . , 1/δ − 1

Aq = |{y ∈ Y : ((y,uj) + U) mod W ∈ [δq, δ(q + 1)] ·W | . (7)

Then |Aq| ∈ (1± o(1))δ|Y |.

Proof: Consider the mapping ψ : y → y − δW
|uj | · uj . This is a well defined mapping into Y for all y ∈ Y

except those that have at least one coordinate smaller than δW
|uj | = O(1). We denote this set by R. But for

any fixed l one has |{y ∈ Y : yl <
δW
|uj |} = δW

m4|uj | = o(|Y |/m2), and hence by the union bound over all
l = 1, . . . ,m one has |R| = o(|Y |). For all q = 1, . . . , 1/δ−1 the mapping φ maps Aq injectively into Aq−1,
and A0 into A1/δ−1, everywhere except R. Thus, one has |Aq| = δ(1 ± o(1))|Y |, and the conclusion of the
lemma follows.

We first prove
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Lemma 19 Consider any set S defined by S = {y ∈ Y : (y,u) mod W ∈ [au, bu] ·W,u ∈ U}, where U
is a collection of binary vectors and au, bu are constants. Let v be a vector such that |u| = |v| for all u ∈ U
and maxu∈U (u,v)/|v| ≤ δ′, and A,B ∈ [0, 1], A ≤ B are rational constants. Let

S ′ = {y ∈ S : (y,v) mod W ∈ [A,B] ·W}.

Then for sufficiently large W = O(m) one has ||S ′| − (B −A)|S|| = O(|U|δ′).

Proof: Consider the mapping ψv,j : y → y − j·δ(B−A)W
|v| · v, where δ is a sufficiently small rational constant

such that 1 − (B − A) is an integer multiple of δ(B − A). Note that the mapping is well-defined as long as
W is an integer multiple of 1/(δ(B −A)), which is admissible under our assumption that W = O(m).

Let y ∈ S. Then

(ψv,j(y),u) = (y,u) +
j · δ(B −A)W

|v|
· (u,v) ≤ (y,u) + j · δ(B −A)Wδ′,

so ψv,j for |j| ≤ 1/(δ(B −A)) maps points y ∈ S into S unless either

(y,u) mod W ∈ [au, au + δ′] ∪ [bu − δ′, bu] ·W (8)

for at least one u ∈ U or y has at least one coordinate smaller than W . We call such points bad and denote
this set by R. For a fixed u the fraction of y ∈ Y that do not satisfy (8) is O(δ′) by Claim 18 and hence by the
union bound over all u ∈ U we get that the fraction of such points in Y is O(|U|δ′). The fraction of points
with at least one coordinate smaller than W is at most W/m4, and hence by the union bound the fraction of
points with at least one coordinate smaller than W is o(1), so |R| = O(Uδ′) · |Y |.

Similarly to Claim 18, define

Aq = |{y ∈ S : (y,v) mod W ∈ [(B −A)δq, (B −A)δ(q + 1)] ·W | . (9)

Now let D = [0 : 1
(B−A)δ ) denote the set of indices such that S =

⋃
d∈D Ad, and let D′ = [ A

(B−A)δ : B
(B−A)δ ]

denote the set of indices such that S ′ =
⋃
d∈D′ Ad.

Define a bipartite graph F = (S ′,S \ S ′, EF ) by including an edge (x, y), x ∈ S ′, y ∈ S \ S ′ to EF
whenever ψv,j(x) = y for some j ∈ D. Thus, each x ∈ S ′ \R has degree |D \D′| in F , and x ∈ (S \S ′)\R
have degree |D′| in F . Furthermore, the degree of each x ∈ S ′ is bounded by |D \D′| and the degree of each
x ∈ S \ S ′ is bounded by |D′|.

Putting these estimates together, we have |S ′ \R| · |D \D′| ≤ |S \ S ′| · |D′|, i.e.

|S ′| ≤ (|S| − |S ′|) · |D′|
|D \D′|

+ |R| = (|S| − |S ′|) · B −A
1− (B −A)

+ |R|.

Thus, |S ′| ≤ (B−A)·|S|+(1−(B−A))|R|. On the other hand, we also have |(S\S ′)\R|·|D′| ≤ |S ′|·|D\D′|,
i.e.

|S \ S ′| ≤ |S ′| · |D \D
′|

|D′|
+ |R| = |S ′| · 1− (B −A)

B −A
+ |R|

Thus, (B −A)(|S| − |S ′|) ≤ |S ′| · (1− (B −A)) + (B −A)|R|, so |S ′| ≥ (B −A)|S| − (B −A)|R|. The
conclusion of the lemma follows.

Estimates on the size of sets T ui now follow by noting that one has |U| ≤ k in all cases, and that the
maximum dot product δ′ can be chosen to be 1/poly(k). The bounds on the size of Suji , R,B,W follow in a
similar way with the additional application of Chernoff bounds to the sampling of points that are included in
X ′.

We now define the edges of the ((k− 1)γ, kγ,O(δ))-almost regular induced subgraph Hw
i , for a constant

γ > 0 (the induced property will be shown later). The subgraph Hw
i will consist of disjoint copies of small

complete bipartite graphs.
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Constructing Hw
i . Fix a child w of ui. For the purposes of constructing Hw

i we condition on the values of
all shifts Uw. In what follows we omit the parameter w when referring to sets RY (w),W Y (w), BY (w). For
two vertices b, b′ ∈ RY such that |(b− b′,w)| ≤ W/k we say that b ∼ b′ if b− b′ = λ ·w for some λ. Note
that we have λ ∈

[
− W
k|w| ,

W
k|w|

]
. We write Bb ⊆ Y to denote the equivalence class of b. It follows directly

from the definition of Bb and (5) that |Bb| = W/(k|w|) for all b. Also, let

Ab = BX ∩

 ⋃
λ∈[0,(1−1/k)W/|w|]

(Bb + λ ·w)

 .

Note that Ab is a random set (determined by the random choice of X ⊂ X ′). Since each element of X ′ is
included in X independently with probability 1/k, we have that E[|Ab|] = (1±O(δ))(1− 1/k)|Bb|.

We now define a set of edges of a ((k − 1)γ, kγ, δ)-almost regular subgraph between (a subset of) Bb
and Ab. First note that E[|Bb|] = (1 ± O(δ))(1 − 1/k)|Ab|. Furthermore, since X is obtained from X ′ by
independent sampling at rate 1/k, standard concentration inequalities yield

Pr [|Av| 6∈ (1± δ)(1− 1/k)|Bv|] ≤ e−δ
2(1/2)|Bv |/4 ≤ δ2 (10)

for |Ab| > γ = 16 ln(8/δ)/δ2. To ensure this, it is sufficient to ensure thatW ≥ 16k ln(8/δ)
δ2

·|w|. We note here
that we are thinking of δ as being smaller than 1/k. In particular, we will set δ = O(1/poly(k)) at the end
of the construction. Now for each c ∈ Ab, d ∈ Bb include an edge (c, d) in Hw

i . We will define a complete
bipartite graph on each such equivalence class Ab,Bb, i.e. for each c ∈ Ab, d ∈ Bb include an edge (c, d) in
Hw
i . However, since we used randomness to chose the set X ′, some of these classes may be too small due to

stochastic fluctuations. We deal with this problem next.
We now classify points b ∈ RY as good or bad depending on the how close |Bb| is to its expectation.

In particular, mark a b bad if |Bb| 6∈ (1 ± δ)(1 − 1/k)|Ab| and good otherwise. Note that in fact this is a
well-defined property of an equivalence class. Let JB denote the indicator random variable that equals 1 if
B is bad and 0 otherwise, where B is an equivalence class. Note that JB is independent of JB′ for B 6= B′,
since J is determined by the random choice of X ⊂ X ′ and we are conditioning on the values of all shifts
Uw, w ∈ T . By (10) one has E[JB] ≤ δ2 for all equivalence classes B. Note that each equivalence class
contains a constant number of points, and hence there are Ω(m4m) equivalence classes for every i and w child
of ui.

An application of Chernoff bounds shows that for fixed i and fixed w a child of ui

Pr

[∑
B
JB > 2E

[∑
B
JB

]]
≤ e−Ω(m4m). (11)

Note that by (10) one has that (11) bounds the probability of there being more than 2δ2 fraction of bad classes
for fixed w ∈ T . Taking a union bound over 2O(m) nodes of T , we conclude that there will be no more than
2δ2 fraction of bad equivalence classes in Hw

i for any i, and w a child of ui.
If b is good, let A′b denote an arbitrary subset of Ab of cardinality (1 − δ)(1 − 1/k)|Bb|. Similarly, let

B′b denote an arbitrary subset of Bb of cardinality (1 − δ)|Bb|, so that |A′b| = (1 − 1/k)|B′b|. Now for each
c ∈ A′b, d ∈ B′b include an edge (c, d) in Hw

i . Note that each such graph is a ((k − 1)γ, kγ, δ)-almost regular
graph, as required by property (1). Note that all matched edges are of the form (c, d), where

c = d− λ ·w, λ ∈ (0,W/|w|]. (12)

The union of the small complete graphs that we constructed yields the graph Hw
i for a fixed child w of

ui. We also showed that on such graph Hw
i contains more than a 2δ2 fraction of bad classes whp, which

completes the construction of the graphs Hw
i .
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Induced property (property (1)). Graphs Hw
i constructed in this way are induced for the same reason as

in [7, 8] when the vectors w,w′ corresponding to two distinct nodes of T are chosen in such a way that
|w| = |w′| = εm (recall that X ′ = Y = [m4]m) and

(w,w′) ≤ (5/2)ε|w| (13)

for sufficiently small constant ε. Indeed, consider a fixed i and suppose that an edge (a, b) ∈ E(Hw
i ) is

induced by Hw′
i for w′ 6= w. But then it must be that either c ∈ RY (w′), d ∈ BX(w′) or d ∈ RY (w′), c ∈

BX(w′). In either case one has
|(c− d,w′)| ≥ δ ·W. (14)

However, by (13) together with (12) one has

|(c− d,w′)| ≤ W

|w|
(w,w′) ≤ W

|w|
(5/2)ε|w| = (5/2)εW,

which is a contradiction with (14) for ε < δ/10.

Existence of a large matching (property (3)) We now show that for any i and w a child of ui there exists
a matching of 1 − O(δ) fraction of Si to T ui \ Tw. We will do this by exhibiting a fractional matching of
appropriate size.

Consider a point x ∈ T ui . We need to analyze the degree of x in the graph T ui ∪ Si. Note that the degree
of x depends on (1) the number of vectors w for which x ∈ RY (w) and (2) on the size of the equivalence
classes that x belongs to for different w. We first analyze (1).

For a fixed w it follows by Claim 18 and the definition of Uw that PrUw [x ∈ RY (w)] ∈ (1±o(1)) 1
k . Next

note that each vertex x ∈ RY (w) has degree (k − 1)γ in Hw
i . Furthermore, since the random shifts Uw are

independent for different w, we obtain using Chernoff bounds that for a fixed x ∈ T ui

Pr

 ∑
w child of ui

1x∈RY (w) 6∈ (1±O(δ))d/k

 ≤ e−Ω(δ2d/k). (15)

A similar argument shows that the expected degree of each vertex in Si \Swi has similar concentration around
kγd. Since there are only O(m4m) vertices and 2O(m) nodes in the tree T , and d = 2Ω(m), a union bound
shows that vertex degrees are concentrated in each T ui , Si pair with high probability. Now it remains to handle
the loss of edges due to x ∈ T ui belonging to small equivalence classes for some w. However, it follows from
the analysis in (11) that at most an O(δ2) fraction of the edge mass can be lost because of this, yielding the
following fractional matching. Put weight 1/(kγ) on each edge in Hw

i , and put weight 1
(1+O(δ))k(1−1/k)γd on

each edge going from T ui \Tw to Si \Swi . Since degrees in T ui are bounded by (1 +O(δ))(1− 1/k)γd, and
degrees is Si are bounded by (1+O(δ))kγd, this is feasible and yields a matching of size (1−O(δ+δ2))|Si|,
proving property (3).

We now prove property (2). For i = 0, . . . , k − 1 let

Zui = {y ∈ Y : (y,uj) mod W ∈ ([1/k − δ, 1/k] ∪ [0, δ]) ·W for some j ∈ [1 : k]}. (16)

We need to show that the subgraph H∗ induced by (T ui \ (T uk ∪ Zui)) ∪ Suki only contains the edges of
H
ui+1

i . First note that if an edge (c, d), c ∈ P, d ∈ Q belongs to H∗, then c ∈ Suki and d ∈ T ui , so (c, d)
necessarily belongs to some graph Hw

i , where w is a child of ui. Then we have by (12) that

d− c = q ·w, where |q| ≤W/|w|.
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On the other hand, we have for all j = 1, . . . , k using the orthogonality condition (13)

|(c− d,uj)| ≤
W

|w|
|(w,uj)| ≤ (5/2)εW. (17)

Now recall that a ∈ Suki , so by (3) and (4)

(c,uj) mod W ∈ [1/k, 1] ·W, ∀j = 1, . . . , k.

Thus, by (17) one has

(d,uj) mod W ∈ ([1/k − δ, 1] ∪ [0, δ]) ·W, ∀j ≤ k,

i.e. d ∈ Zui ∪ T uk , if we set ε to smaller than δ/10.
It remains to bound the size of Zui . First note that it follows from Claim 18 that for sufficiently small

constant δ (e.g. δ < 1/k2) one has

|{y ∈ Y : (y,uj) mod W ∈ ([1/k − δ, 1/k] ∪ [0, δ]) ·W | ≤ 2δ|Y |. (18)

Now by a union bound over all j ∈ [1 : k] we conclude that |Zui | ≤ 2δk|Y | = O(δkn).
It remains to set parameters. First, inspection of the bounds obtained so far reveals that setting δ = cδ′/k4

for a sufficiently small constant c > 0 is sufficient to obtain a (d, k, δ′)-packing, where we set ε = δ/10.
Finally, the size of the graphs obtained is essentially the same as in [7] and [8]. In particular, the number of

vertices is n = Θ(m4m) and d = 2Ω(m). Thus, we get a graph on n vertices with d = n
Ω
(

1
log logn

)
edges.

Proof of Theorem 1: The proof follows by combining Theorem 11 and Lemma 17.

4 Multipass approximation for matchings

In this section we present the basic version of our algorithm for approximating matchings in multiple passes
in the vertex arrival setting. Let G = (P,Q,E) denote a bipartite graph. We assume that vertices in P
arrive in the stream together with all their edges. At each step the algorithm maintains a fractional matching
{fe}e∈E , where the capacity of each vertex in Q is infinite and the capacity of each vertex u ∈ P is equal
to the number of times it has appeared in so far (i.e. always between 1 and k). The capacity of an edge
e = (u, v), u ∈ P, v ∈ Q is equal to the capacity of u. For a vertex u ∈ P we write δ(u) to denote the set of
neighbors of u in G.

4.1 Algorithm

We now give the algorithm and show how to implement each pass in linear time.

Algorithm 1: PROCESS-VERTEX(G, u, δ(u))
1: Augment capacity of u and all edges in δ(u) by 1.
2: WATER-FILLING(G′, u, δ(u))
3: REMOVE-CYCLES(G′, f ).

The function WATER-FILLING(G′, u, δ(u)) increases the load of the least loaded neighbors of u simul-
taneously (with other neighbors joining if the load reaches their level) until one unit of water is dispensed
out of u. Here the support of the fractional matching {fe}e∈E maintained by the algorithm is denoted by G′.
The function REMOVE-CYCLES(G′, f ) reroutes flow among cycles that could have emerged in the process,
ensuring that the flow is supported on at most |P |+ |Q| − 1 edges. We note that as stated, Algorithm 1 does
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not necessarily take O(m) time per pass due to the runtime of cycle removal. However, simply buffering
incoming vertices until the number of edges received is Θ(n) and only then removing cycles yields a linear
time implementation. Here we can use DFS to reroute flow along cycles in time linear in the number of nodes.

Remark 20 We note that a single pass of this algorithm is different from the one-pass algorithm that achieves
1 − 1/e approximation from [8]. However, we will later show that our algorithm in fact also achieves the
ratio of 1− 1/e in a single pass.

We now turn to analyzing the approximation ratio. We first give a sketch of the proof under additional
assumptions on the graph G, and then proceed to give the relevant definitions and the complete argument.

4.2 Analysis for a simple case

We now assume that G = (P,Q,E) has a perfect matching M . For each k ≥ 1 and all x ≥ 0 denote
by bk(x) the number of vertices in Q that have load at least x after k passes. We start by pointing out
some useful properties of the function bk(x). First, note that bk(0) = |M |, bk(x) is non-increasing in x and
bk(x)− bk−1(x) ≥ 0 for all x. Furthermore, we have∫ ∞

0
bk(x)dx = k|M |, (19)

since every vertex u ∈ P contributed 1 unit of water, amounting to |M | amount of water overall, and (19)
calculates the sum of loads on all v ∈ Q. Furthermore, note that the size of the matching constructed by the
algorithm after k passes is exactly equal to

1

k

∫ k

0
bk(x)dx, (20)

since every vertex v ∈ Q with load x contributed 1
k · min{k, x} to the matching. Hence the approximation

ratio after k passes is at least

1− 1

k

∫ ∞
k

bk(x)dx, (21)

where we used (19) to convert (20) into (21). Thus, it is sufficient to lower bound
∫ k

0 b
k(x)dx in order to

analyze the approximation ratio, and we turn to bounding this quantity.
First consider the case k = 1. Fix x ≥ 0 and consider vertices v ∈ Q that have load at least x – there are

at least
∫∞
x b1(s)ds of them. For each such vertex u consider its match M(u). Since u ended up at level at

least x after the first pass, its match M(u) must have been at level at least x when u arrived, and levels are
monotone increasing. Hence, we have

b1(x) ≥
∫ ∞
x

b1(s)ds (22)

for all x ≥ 0. This, however, together with (19) can be shown to imply that
∫∞
x b1(s)ds ≤ |M | · e−x for all

x. We immediately get using (21) that the approximation ratio after one pass is at least 1− 1/e.
Now suppose that k > 1 and consider vertices v ∈ Q that are at level at least x after k-th pass, but were

at a lower level after (k − 1)-st pass. There are exactly bk(x)− bk−1(x) such vertices. Since these vertices u
were at level at least x after k-th pass, their matches M(u) must have also been at level at least x when they
arrived, implying that

bk(x) ≥
∫ ∞
x

(bk(s)− bk−1(s))ds (23)
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for all x ≥ 0. Solving (23), we get that for all k ≥ 1∫ ∞
x

bk(s)ds ≤ |M | ·
∫ ∞
x

F k(s)ds, (24)

where 1−F k(x) is the cdf of the Gamma distribution with scale 1 and shape k, i.e. F k(x) =
∫∞
x e−ssk−1/(k−

1)!ds. Using this in (21) yields the desired bound on the approximation ratio, i.e. 1− e−kkk−1/k!.

4.3 General case

The proof sketch we gave in the previous subsection works under the assumption that G has a perfect match-
ing. The general case turns out to be substantially more involved. Interestingly, while the analysis above
proceeds by showing that not too much mass will be in the tail

∫∞
k bk(x)dx, here we find it more convenient

to show that substantial mass will be in the head of the distribution, i.e. bound
∫ k

0 b
k(x)dx from below. We

extend the argument using a careful reweighting of vertices and scaling of levels guided by the structure of
the canonical decomposition of G introduced in [8], which we now define.

Let G = (P,Q,E) denote a bipartite graph. For a set S ⊆ P we denote the set of neighbors of S by
Γ(S). For a number α > 0 the graph G is said to have vertex expansion at least α if |Γ(S)| ≥ α|S| for all
S ⊆ P .

Definition 21 (Canonical decomposition) Let G = (P,Q,E) denote a bipartite graph. A partition of Q =⋃
j∈I Tj , Tj ∩ Ti = ∅, j 6= i and P =

⋃
j∈I Sj , Sj ∩ Si = ∅, j 6= i together with numbers αj > 0, where

αj ≤ 1 for j ≤ 0 and αj > 1 for j > 0 is called a canonical partition if

1. for all i one has Γ
(⋃

j∈I,j≤i Sj

)
⊆
⋃
j∈I,j≤i Tj;

2. |Γ(S) ∩ Tj | ≥ αj |S| for all S ⊆ Sj for all j ∈ I;

3. |Tj |/|Sj | = αj , j ∈ I.

Here I ⊂ Z is a set of indices.

Please see Fig. 3 for an illustration.

Remark 22 For k = 1, the analysis is inspired by the analysis of the round-robin algorithm in [15]. We note
that the difference in our case is that we essentially consider a fractional version of their process, and obtain
significantly better bounds on the quality of approximation. In particular, the best approximation factor that
follows from the result of [15] is 1/8 even after any k passes, while here we get the optimal 1− 1/e factor for
k = 1, and an approximation of the form 1−O(1/k1/2) for all k > 0.

We now introduce some definitions. For a node v ∈ Q let lk(v) denote the load of v after the k-th pass.
Note that lk(v) ≥ 0 and may in general grow with |P | for the most loaded vertices in Q. The core of our
analysis will consist of bounding the distribution of water levels among vertices in Q, showing that there
cannot be too many highly overloaded vertices. It will be convenient to assume that water is allocated in
multiples of some ∆org > 0 (such a ∆org always exists since we are dealing with a finite process).

Shadow allocation and density function φkv(x). First, define

(Source capacities) Define ws(u), u ∈ P by setting ws(u) = min{1, αj} for u ∈ Sj . Note that one has∑
u∈P ws(u) = |M |. Also, for v ∈ Tj let ws(v) := min{1, αj} for convenience.
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T−1

α−1 = |T−1|
|S−1|

S−2

T−2

α−2 = |T−2|
|S−2|

Figure 3: Canonical decomposition of a bipartite graph. Note that edges from Si only go to Tj with j ≤ i
(property (1)).

(Sink capacities) Define wt(v), v ∈ Q by setting wt(v) = min{1, 1/αj} for v ∈ Tj . Note that one has∑
v∈Qwt(v) = |M |. Also, for u ∈ Sj let wt(u) := min{1, 1/αj} for convenience.

We will use the concept of a shadow allocation, in which whenever a units of water are added to a vertex
v ∈ Q in the original allocation, a/wt(v) units of water are added to v in the shadow allocation. Now
whenever water from a vertex u ∈ P is added to vertex v ∈ Q at level x during the j-th pass in the shadow
allocation, we let φjv(x) := ws(u), where φ is the density function. It will be crucial that∑

v∈Q
wt(v)

∫ ∞
0

φjv(x)dx = |M | (25)

for all j = 1, . . . , k. We assume that water in the shadow allocation is allocated in multiples of some ∆ > 0.
Then

Lemma 23 One has for all x ≥ 0 and all k ≥ 1

bk(x) ≥
∫ ∞
x

∑
v∈Q

wt(v)φkv(s)ds.

Proof: Recall that the pairs in the canonical decomposition ofG are denoted by (Sj , Tj), where the expansion
factors αj are increasing with j. We need to that

bk(x) ≥
∫ ∞
x

∑
v∈Q

wt(v) · φkv(s)ds (26)

By definition of the canonical decomposition (Sj , Tj)j∈I for each j ∈ I there exists a (possibly frac-
tional) matching Mj in G that matches each u ∈ Sj exactly αj times and each v ∈ Tj exactly once. Let
Mj(u, v) ∈ [0, 1] denote the extent to which u is matched to v, so that

∑
v∈Tj Mj(u, v) = αj for all u ∈ Sj

and
∑

u∈Sj
Mj(u, v) = 1 for all v ∈ Tj .

Consider a node u ∈ Sj and suppose that a ∆org amount of its water was allocated to level [i·∆, (i+1)·∆]
of a vertex v ∈ Tr in the original allocation. Note that r ≤ j since there are no edges from Sj to Tr, r > j.
By the definition of the shadow allocation ∆org amount of water in the original allocation corresponds to
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∆org

wt(u) water placed contiguously in the shadow allocation. Let t :=
∆org

wt(u)·∆ and let ∆ · j, . . . ,∆ · (j + t− 1)
denote the t contiguous levels that this water occupies in the shadow allocation.

By definition of the water-filling algorithm all neighbors w of u must have been at level at least wt(v)
wt(u)(i+

1)∆org ≥ (i+1)∆org when the node uwas allocated sincewt(v) = min{1, 1/αr} ≥ wt(u) = min{1, 1/αj}.
Thus, we have that for each such u ∈ Sj

contribution to rhs of (26) = ∆org · φkv(s)

since the ∆org amount of water corresponds to t =
∆org

wt∆
slabs of size ∆, and the contribution is then weighted

by wt(v) in the rhs of (26). We now calculate the contribution of u ∈ Sj to the lhs. We let each uj ∈ Sj
contributeMj(u,w) to each w ∈ Tj , so that the total contribution to each w is 1 and total contribution of each
u ∈ Sj is αj . Thus,

contribution of u to lhs of (26) ≥ ∆org ·min{1, 1/αj} · αj

since u has αj matches in Tj , whose contributions are weighted by min{1, 1/αj}. As before, it remains to
note that min{1, 1/αj} · αj = min{1, αj} = φkv(s).

We now get

Lemma 24 One has for all x ≥ 0 and all k ≥ 1

|M | − bk(x) ≤
∫ x

0
(bk(s)− bk−1(s))ds.

Proof: By Lemma 23 we have

bk(x) ≥
∫ ∞
x

∑
v∈Q

wt(v)φkv(s)ds.

Putting this together with (25) we get

|M | − bk(x) ≤
∫ x

0

∑
v∈Q

wt(v)φkv(s)ds

for all x ≥ 0 and k ≥ 1. To complete the proof, we note that∫ x

0

∑
v∈Q

wt(v)φkv(s)ds ≤
∫ x

0
(bk(s)− bk−1(s))ds

for all k ≥ 1 and x ≥ 0, where we let b0 ≡ 0 for convenience.
We also need

Lemma 25 Algorithm 1 constructs a matching of size at least

1

k

∫ k

0
bk(x)dx.

Proof: A vertex v ∈ Q contributes 1
k min{k, lk(v)} ≥ wt(v) 1

k min{k, lk(v)/wt(v)} to the matching, imply-
ing that the size of the constructed matching is at least

1

k

∫ k

0
bk(x)dx.
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We now prove lower bounds on bk(x). Recall that for integer k ≥ 1

F k(x) =

∫ ∞
x

e−ssk−1/(k − 1)!ds =
k−1∑
i=0

e−xxi/i!. (27)

Note that 1− F k(x) is the cdf of the Gamma distribution with scale 1 and shape k.

Lemma 26 For every k ≥ 1 one has for all x ≥ 0∫ x

0
bk(s)ds ≥ |M | ·

∫ x

0
F k(s)ds.

Proof:
We prove the lemma by induction on k.

Base: k = 1 This follows immediately since by Lemma 24 one has∫ x

0
b1(s)ds ≥ |M | − b1(x). (28)

Letting f(x) =
∫ x

0 b
1(s)ds, we get that f ′(x) ≥ |M | − f(x) for all x ≥ 0, f(0) = 0 and f ′(0) = |M |,

which implies that f(x) ≥ |M | · (1− e−x), as required.

Inductive step: k − 1→ k We need to prove that∫ x

0
bk(s)ds ≥ |M | ·

∫ x

0
F k(s)ds. (29)

By Lemma 24 for all x ≥ 0

bk(x) ≥ |M | −
∫ x

0
(bk(s)− bk−1(s))ds ≥ |M | −

∫ x

0
bk(s)ds+ |M | ·

∫ x

0
F k−1(s)ds, (30)

where we used the inductive hypothesis to replace
∫ x

0 b
k−1(s)ds with |M | ·

∫ x
0 F

k−1(s)ds.

Thus, ∫ x

0
bk(s)ds ≥ |M | − bk(x) + |M | ·

∫ x

0
F k−1(s)ds. (31)

Let f(x) =
∫ x

0 b
k(s)ds. We have from (31) that

f ′(x) = |M | − f(x) + |M | ·
∫ x

0
F k−1(s)ds, f(0) = 0, f ′(0) = |M |.

Thus, f ′(x) is given by the solution of

g(x) = −g′(x) + |M | · F k−1(x), g(0) = |M |. (32)

The solution of (32) is given by

g(x) = e−x
(
|M |

∫ x

0
esF k−1(s)ds+ |M |

)
. (33)

Calculating the integral in (33) yields∫ x

0
esF k−1(s)ds =

∫ x

0
es
∫ ∞
s

1

(k − 1)!
zk−1e−zdzds =

∫ x

0

k−1∑
j=0

1

j!
sjds =

k∑
j=1

1

j!
xj , (34)

and hence g(x) = |M | · F k(x). Thus,
∫ x

0 b
k(s)ds ≥ f(x) = |M | ·

∫ x
0 F

k(s)ds as required.
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Given Lemma 26, we immediately obtain

Theorem 27 Algorithm 1 achieves a (1−e−k kk−1

(k−1)!)-approximation to maximum matchings in k passes over
the input stream.

Proof: The approximation ratio is at least

1

k

∫ k

0
bk(x)dx ≥ 1

k

∫ k

0
F k(x)dx = 1− 1

k

∫ ∞
k

F k(x)dx.

Recalling that F k(x) =
∑k−1

j=0 e
−xxj/j! and using integration by parts∫

e−xxj/j!dx = −e−xxj/j!
∣∣∞
k

+

∫
e−xxj−1/(j − 1)!dx,

we get ∫ ∞
k

F k(x)dx =

∫ ∞
k

k−1∑
j=0

e−xxj/j!dx =

k−1∑
j=0

(k − j)e−kkj/j!

=

k−1∑
j=0

e−kkj+1/j!−
k−1∑
j=1

e−kkj/(j − 1)! = e−kkk/(k − 1)!

(35)

Thus,
1

k

∫ ∞
k

F k(x)dx =
e−kkk−1

(k − 1)!
=

1√
2πk

+O(k−3/2)

5 Gap-existence

In this section we show how our techniques yield an efficient algorithm for Gap-existence, thereby proving
Theorem 4. Recall that we are given a graph G = (A, I,E) and integral budgets Ba. Note that integral
budgets can be simulated implicitly by creating Ba copies of a for all a ∈ A. For simplicity, this is the
approach that we take.

We now present a discretized version of Algorithm 1. We will explicitly maintain a subset I∗ ⊂ I of size
O(|A|/ε), relying on the following two oracles:

1. an oracle LIST-NEIGHBORS(a, I∗) that, given a node a ∈ A and a set I∗ outputs the set of nodes
I∗∗ ⊆ I∗ that a is connected to;

2. an oracle NEW-NEIGHBOR(a, I∗) that, given any set I∗ ⊆ I , outputs any node i ∈ I \ I∗ that a is
connected to or ∅ if all neighbors of a are in I∗.

Algorithm 2: DISCRETIZED-WATERFILLING(G, a, ε, k)
1: I∗ ← ∅
2: while exists a neighbor i of a in I∗ with level < (ε/4)k do
3: Allocate water to i until it is at level (ε/4)k
4: end while
5: I∗ ← I∗ ∪ NEW-NEIGHBOR(a, I∗)
6: Perform water filling on neighbors in I∗.
7: REMOVE-CYCLES(G′)

First we prove
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Lemma 28 The space used by Algorithm 2 is O(|A|/ε).

Proof: Call a vertex saturated if the amount of water in it is at least εk. The number of saturated vertices is
O(|A|/ε) since there are k|A| units of water in the system, and each saturated vertex accounts for at least εk.
We say that an unsaturated vertex i belongs to a ∈ A if i was added to I∗ when NEW-NEIGHBOR was called
from a. Note that for each a ∈ A only one i ∈ I belongs to a. Thus, this amounts to at most |A| additional
vertices.

Our algorithm for Gap-Existence is as follows:

Algorithm 3: GAP-EXISTENCE(G, ε)
1: Run DISCRETIZED-WATERFILLING(G) with k = O(log(|I| ·

∑
a∈ABa)/ε

2).
2: Let G′ denote the support of the fractional solution.
3: Output YES if a complete matching with budgets b(1− ε)Bac exists in G′, NO otherwise.

We now assume that we are in the YES case and prove that the algorithm will find a matching with budgets
b(1 − ε)Bac. We refer to vertices i ∈ I that have a nonzero amount of water as active. Let pi = 1 for active
vertices and pi = 0 o.w. Abusing notation somewhat, for an active vertex i ∈ I let lk(i) denote the level of
water in i minus εk and 0 otherwise. The Gap-Existence case is in fact somewhat simpler than the general
case of approximating matchings that we just discussed, so we will use the more lightweight techniques from
the analysis of the simple case for matchings.

For each k ≥ 1 and all x ≥ 0 denote by bk(x) the number of vertices in I that have load at least x+εk after
k passes. We start by pointing out some useful properties of the function bk(x). First, note that bk(0) ≤ |I|,
bk(x) is non-increasing in x and bk(x) − bk−1(x) ≥ 0 for all x. Recall that we are interested in recovering
a 1 − ε/2-matching of the A side. To do that, we scale all allocations by 1 − ε/2. The size of the matching
recovered is

(1− ε/2)(ε/4)k
∑
i∈I

pi + (1− ε/2)

∫ ∞
0

bk(x)dx = (1− ε/2)k|M |, (36)

since every vertex a ∈ A contributed k units of water, one in each round, amounting to k|M | amount of water
overall, except for the water that was allocated below εk, and (36) calculates the sum of loads on all i ∈ I .
Furthermore, note that the size of the matching constructed by the algorithm after k passes is at least

(1− ε/2)(ε/4)
∑
i∈I

pi +
1

k

∫ k(1−ε/4)/(1−ε/2)

0
bk(x)dx, (37)

since every vertex i ∈ I with load x contributes at least 1
k ·min{k(1−ε/4), x} to the matching before scaling,

and hence 1
k ·min{k(1− ε/4)/(1− ε/2), x} after scaling. Hence the approximation ratio after k passes is at

least
1− 1

k

∫ ∞
k(1−ε/4)/(1−ε/2)

bk(x)dx, (38)

where we used (36) to convert (37) into (38). Thus, it is sufficient to lower bound
∫ k

0 b
k(x)dx in order to

analyze the approximation ratio, and we turn to bounding this quantity.

Lemma 29 One has for all k ≥ 1

bk(x) ≥
∫ ∞
x

(bk(s)− bk−1(s))ds. (39)

for all x ≥ 0, where b0 ≡ 0.

22



Proof: For each such vertex a ∈ A consider its match M(a). If a ended up allocating water at level at least
x during the k-th pass, its match M(a) must have been at level at least x when a arrived. Together with the
fact that levels are monotone increasing this gives the result. We omit the details since they would essentially
repeat the proof of Lemma 23 with minor changes due to the absence of weights wt on the I side.

We now get

Lemma 30 For all k ≥ 1 and all x ≥ 0∫ ∞
x

bk(s)ds ≤ |I| ·
∫ ∞
x

F k(s)ds. (40)

Proof: We prove the lemma by induction on k.

Base: k = 1 We prove the statement by contradiction. Suppose that∫ ∞
x0

b1(s)ds > |I|
∫ ∞
x0

e−sds = |I|e−x0 (41)

for some x0 ≥ 0. Recall that by Lemma 29 one has

b1(x) ≥
∫ ∞
x

b1(s)ds, (42)

for all x ≥ 0. Let g(x) =
(∫∞

x0
b1(s)ds

)
·e−x+x0 for x ∈ [0, x0]. Then g(x) satisfies (42) with equality,

and hence b1(x) ≥ g(x) for all x ∈ [0, x0]. But g(0) =
(∫∞

x0
b1(s)ds

)
· ex0 > |I|, a contradiction with

b1(0) = |I|.

Inductive step: k − 1→ k We need to prove that∫ ∞
x

bk(s)ds ≤ |I| ·
∫ ∞
x

F k(s)ds. (43)

Recall that by Lemma 29 for all x ≥ 0

bk(x) ≥
∫ ∞
x

(bk(s)− bk−1(s))ds =

∫ ∞
x

bk(s)ds− |I| ·
∫ ∞
x

F k−1(s)ds, (44)

where we used the inductive hypothesis to replace
∫∞
x bk−1(s)ds with |I| ·

∫∞
x F k−1(s)ds.

Fix any point x0 ≥ 0 and denote

γ :=

∫ ∞
x0

bk(s)ds.

We will show that one necessarily has γ > |I| ·
∫∞
x0
F k(s)ds.

It now follows from (44) that bk(x) is lower bounded by the solution of

g(x) =

∫ ∞
x

(g(s)− |I| · F k−1(s))ds

g(x0) = γ.

Thus, g(x) satisfies
g′(x) = −g(x) + |I| · F k−1(x), g(x0) = γ. (45)
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The solution of (45) is given by

g(x) = e−x
(
−|I|

∫ x

0
esF k−1(s)ds+ c

)
, (46)

where the constant c depends on γ. Note that g(0) = c, and recalling that g lower bounds bk(x), which
is at most |I| at x = 0, we have that c ≤ |I|.
Calculating the integral in (46) yields∫ x

0
esF k−1(s)ds =

∫ x

0
es
∫ ∞
s

1

(k − 1)!
zk−1e−zdzds =

∫ x

0

k−1∑
j=0

1

j!
sjds =

k∑
j=1

1

j!
xj , (47)

and hence

g(x) = (c+ |I|
k∑
j=1

e−xxj/j!) = |I| · F k(x) + (c− |I|).

In particular, it follows that γ = g(x0) = |I| · F k(x) + (c − |I|) ≤ |I| · F k(x), completing the proof
of the inductive step.

We now ready to prove correctness. Suppose that we are in the YES case, i.e. there exists a complete
matching with budgetsBa. Consider the fractional allocation returned by DISCRETIZED-WATERFILLING(G),
and multiply it by (1− ε/2)/k. Recalling that each active vertex can take at least 1− ε/4 units of water, we
get that every vertex in i ∈ I now contributes 1−ε/2

k(1−ε/4) min{k(1− ε/4)/(1− ε/2), lk(v)} to the matching.
Thus, by Lemma 30 together with (38) shows that the amount of water lost is at most

(1− ε/2)|I|1
k

∫ ∞
k(1−ε/4)/(1−ε/2)

bk(x)dx. (48)

We will need

Lemma 31 For all k ≥ 1 and ε∗ ≥ 0

1

k

∫ ∞
k(1+ε∗)

F k(x)dx ≤ e−ε∗k(1 + ε∗)k · e−kkk−1/(k − 1)!

Proof: Recalling that F k(x) =
∑k−1

j=0 e
−xxj/j! and using integration by parts∫

e−xxj/j!dx =
[
−e−xxj/j!

]∞
k

+

∫
e−xxj−1/(j − 1)!dx,

we get∫ ∞
k(1+ε∗)

F k(x)dx =

∫ ∞
k(1+ε∗)

k−1∑
j=0

e−xxj/j!dx =

k−1∑
j=0

(k − j)e−k(1+ε∗)(k(1 + ε∗))j/j!

≤ e−ε∗k(1 + ε∗)k
k−1∑
j=0

(k − j)e−kkj/j! = e−ε
∗k(1 + ε∗)k · e−kkk−1/(k − 1)!

(49)

24



Let ε∗ = (1− ε/4)/(1− ε/2)− 1. By Lemma 31 we have

1

k

∫ ∞
k(1+ε∗)

bk(x)dx ≤ e−k(ε∗−ln(1+ε∗)) · [e−kkk−1/(k − 1)!] ≤ e−(ε∗)2k/3 (50)

for sufficiently small ε∗ > 0. Also note that ε/5 ≤ ε∗ ≤ ε for sufficiently small ε > 0. Hence, letting
k = γ log(|I| ·

∑
a∈ABa)/ε

2 for a sufficiently large constant γ > 0 yields a (1−(
∑

a∈ABa)
−2)-approximate

fractional matching with budgets b(1−ε)Bac. We now argue that the set of edges that this fractional matching
is supported on admits a complete matching with budgets b(1− ε)Bac. We will need

Lemma 32 Let G = (P,Q,E) denote a bipartite graph. Suppose that there exists a fractional matching of
size |P |(1− |P |−2) in G. Then the support of the fractional matching contains a perfect matching of the |P |
side.

Proof: Consider the subgraph G′ that supports a fractional 1− |P |−2 matching. Recall that a graph supports
an α-matching of the P -side iff |Γ(S)| ≥ α|S| for all S ⊆ P . Now note that the ratio |Γ(S)|/|S| is a rational
number of the form i/j where j ≤ |P |. The existence of the fractional matching implies that |Γ(S)|/|S| ≥
(1− |P |−2) for all S ⊆ P . Since |Γ(S)|/|S| can only have denominator at most |P |, this implies that in fact
|Γ(S)| ≥ |S| for all |S|.

Since the budgets b(1 − ε)Bac are integral, finding a complete matching with budgets b(1 − ε)Bac is
equivalent to finding a complete matching in a graph with

∑
a∈Ab(1−ε)Bac vertices on theA side. Lemma 32

now implies the existence of a complete matching in the set of edges that the fractional matching is supported
on. This completes the proof of Theorem 4.
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