Lecture 4: Spectral sparsification in dynamic
streams

Michael Kapralov'

TEPFL

May 26, 2017

/47

Algorithms for massive graphs

Massive networks ubiquitous in data
processing

» =100 billion edges

» graph does not fit into memory
of single computer

» with metadata, does not fit on a
single hard drive

Social distance between
nodes,
community detection,...

Compress the network
while preserving useful
properties?

Sparsification

» Let G=(V, E) be an undirected graph, where
IVI=n,|El=m.

» Find a smaller subgraph G’ of G that approximates G

G

/47

Sparsification

» Let G=(V, E) be an undirected graph, where
[VI=n,El=m.

» Find a smaller subgraph G’ of G that approximates G

G o G

3/47

Sparsification

» Let G=(V, E) be an undirected graph, where
[VI=n,El=m.

» Find a smaller subgraph G’ of G that approximates G

G o G

3/47

Sparsification

» Let G=(V, E) be an undirected graph, where
[VI=n,El=m.

» Find a smaller subgraph G’ of G that approximates G

G o G

3/47

Sparsification

» Let G=(V, E) be an undirected graph, where
[VI=n,El=m.

» Find a smaller subgraph G’ of G that approximates G

3/47

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches

47

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches

47

Sparsification

valueof cut= Y (xy—xy)?
e=(u,v)eE

4/47

Sparsification

valueof cut= Y (xy—xy)?
e=(u,v)eE

4/47

Sparsification

value of cut =

)3

e=(u,v)eE

(xu—xv)? = llzI?

X1 —Xo

Z= X4_X3

X4 — X5

Sparsification

value of cut =

)3

e=(u,v)eE

(xu—xv)? = llzI?

X1 — Xo
Z= X4 — X3

X4 — X5

= Bx

Sparsification

valueof cut= Y (xy—xy)? =11Bx|?

e=(u,v)eE
1 -1 0 00 O
0 1 -1 00 O o
0 0 0 00 O !
‘ Bx—| -1 0 0 10 0 [
k 0 0 1 00 -1
0 0 0 00 O Xn

Sparsification

valueof cut= Y (xy—xy)? =11Bx|?

e=(u,v)eE
1 -1 0 O
o 1 -1 0
0O 0 0 O
¢ Bx=| -1 0 0 1
) 0O 0 1 0
0O 0 0 O

[N elNolo o]

o L

o O oo

X1
Xo

Xn

Sparsification

valueof cut= Y (xy—xy)? =11Bx|?
e=(u,v)eE
1 -1 0 0
o 1 -1 0
0O 0 0 O
« Bx=|-1 0 o0 1
X 0 0 1 0
0O 0 0 O

[eNeNoleNolNol

o L

[N« Nl

X1
Xo

Xn

Sparsification

valueof cut= Y (xy—xv)%=11Bx|[°=x" BT Bx
e=(u,v)eE

L =B’ Bis the Laplacian of G

1 -1 0 00 O
0 1 -1 00 O N
0 0 0 00 O !
‘ Bx-| -1 0 o 10 o []|™®
: 0 0 1 00 -1
0 0 0 00 O Xn

Definition (Karger'94, Cut sparsifiers)
G is an e-cut sparsifier of G if

(1-e)xTLx<xTU'x<(1+e)xLx

for all x € {0,1}V (all cuts).

Theorem (Karger'94, Benczur-Karger'96)
For any G there exists an e-cut sparsifier G' with

O(g—znlog n) edges, and it can be constructed in O(m) time.

Definition (Spielman-Teng’04, Spectral sparsifiers)
G is an e-spectral sparsifier of G if

(1-e)xTLx<xTU'x<(1+e)xLx
for all x40 {alleuts): all xeRY.
Equivalently, (1-€)L< L' < (1+¢)L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)

For any G there exists an e-spectral sparsifier G' with
O(g—znlog n) edges, and it can be constructed in O(m) time.

Definition (Spielman-Teng’04, Spectral sparsifiers)
G’ is an e-spectral sparsifier of G if

(1-e)xTLx<xTU'x<(1+e)xLx

for all x40 {alleuts): all xeRY.
Equivalently, (1 —¢)L< L' <(1+¢)L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)

For any G there exists an e-spectral sparsifier G' with
O(g—znlog n) edges, and it can be constructed in O(m) time.

Karger'94, Benczur-Karger'96, Fung-Hariharan-Harvey-Panigrahi’11
Spielman-Teng'04, Spielman-Srivastava’08, Batson-Spielman-Srivastava’09,
Kolla-Makarychev-Saberi-Teng’10, Koutis-Levin-Peng’12, Kapralov-Panigrahy’12

Implications for numerical linear algebra, combinatorial optimization
etc

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)

Let G=(V,E) be an undirected graph. Let G' be obtained by
including every edge e € E independently with probability
proportional to its effective resistance:

Clogn

> min{1,
Pe { 2

Re}.

Assigning weight 1/ pe if sampled. Then (1-¢)L<L"<(1+¢)L
whp.

Sample edges according to a measure of importance,
assign weights to make estimate unbiased

Sparsification

8/47

Sparsification

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches

47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

.;\0

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream

10/47

Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream (ideally one pass)

Insertion-only stream

10/47

These algorithms are streamable: just keep resparsifiying the
graph as edges come in.

Ahn-Guha’'09: O(L nlog? n) space for cut sparsifiers

Kelner-Levin’11: O(nlog n) space for spectral sparsifiers

11/47

These algorithms are streamable: just keep resparsifiying the
graph as edges come in.

Ahn-Guha’'09: O(L nlog? n) space for cut sparsifiers

Kelner-Levin’11: O(nlog n) space for spectral sparsifiers

Many modern networks evolve over

time, edges both inserted and deleted bwlttEf”

Construct sparsifiers in dynamic streams in small space?‘

11/47

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches (main result)

11/47

What if we have deletions?

12/47

What if we have deletions?

12/47

What if we have deletions?

12/47

What if we have deletions?

12/47

What if we have deletions?

12/47

What if we have deletions?

12/47

What if we have deletions?

12/47

What if we have deletions?

12/47

What if we have deletions?

12/47

What if we have deletions?

Very different algorithms are needed...

12/47

Linear sketching

Classical data stream application: approximating frequency
moments.

[0jofofojofofofo0[0[0]

Goal: approximate ||x|[5 = ¥.; x? using <« n space

13/47

Linear sketching

Classical data stream application: approximating frequency
moments.

(ojof1[ojofofofof0[0[0]

Goal: approximate ||x|[5 = ¥.; x? using < n space

13/47

Linear sketching

Classical data stream application: approximating frequency
moments.

(ojoft[o]1[ofofof0[0[0]

Goal: approximate ||x|[5 = ¥.; x? using < n space

13/47

Linear sketching

Classical data stream application: approximating frequency
moments.

(ojoft[o]2[ofofof0[0[0]

Goal: approximate ||x|[5 = ¥.; x? using < n space

13/47

Linear sketching

Classical data stream application: approximating frequency
moments.

(ojoft[o]2[ofofof0[0[0]

: ; 2 _v .2 i
Goal: approximate [|x]|5 = ¥;X;" using < n space

Maintain xTv; =1,...,0(1/€?) for random Gaussians v; € R".
Output average of (xv;)2.

13/47

Linear sketching

Classical data stream application: approximating frequency
moments.

(ojoft[o]2[ofofof0[0[0]

: ; 2 _v .2 i
Goal: approximate [|x]|5 = ¥;X;" using < n space

Maintain xTv; =1,...,0(1/€?) for random Gaussians v; € R".

Output average of (xv;)2.

(1 +&)-approximation with O(;—2 log n) space

13/47

Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows

14/47

Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows

Can get (1 +¢)-approximation to ||x|1? with Jpoly(log n) rows

14/47

Linear sketching

Take (randomized) linear measurements of the input

s -—=@

sketching matrix

space requirement=number of rows

Can get (1 +¢)-approximation to ||x|1? with Jpoly(log n) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

14/47

Graph sketching
Represent adjacency matrix of input graph G as a vector of
dimension (3), sketch the vector.

Ahn-Guha-McGregorSODA12 — connectivity in n-poly(log n) space.

n-IogCn S ’ - @
f\

x| dimension (3)

space requirement=number of rows in S

15/47

Graph sketching

Represent adjacency matrix of input graph G as a vector of

dimension (3), sketch the vector.

Ahn-Guha-McGregorSODA12 — connectivity in n-poly(log n) space.

n-IogCn

space requirement=number of rows in S

(\B

dimension (3)

Sketch the adjacency matrix, then reconstruct edges of a

sparsifier from the sketch?

15/47

Streaming

Dynamic streaming

Cut sparsifiers:
Ahn-Guha’09

Ahn-Guha-McGregor'12
Goel-Kapralov-Post'12

o(Elz npoly(log n)) space

Spectral sparsifiers:

Kelner-Levin’11

Ahn-Guha-McGregor'14
Kapralov-Woodruff'14

o(;—2 n°/3) space
O(poly(1)n'+o(1)) space,
two passes

16/47

Cut sparsifiers: Spectral sparsifiers:

Streaming Ahn-Guha’09 Kelner-Levin'11
. . Ahn-Guha-McGregor'12 Ahn-Guha-McGregor'14
Dynamic streaming Goel-Kapralov-Post'12 Kapralov-Woodruff'14
o(Elz npoly(logn)) space o(;—2 n°/3) space
O(poly(1)n'+o(1)) space,
two passes

Theorem (K.-Lee-Musco-Musco-Sidford’14)

There exists a single-pass streaming algorithm that constructs
a spectral sparsifier of a graph given as a dynamic stream of
edges using O(;—znpoly(log n)) space and poly(n) runtime.

16/47

Cut sparsifiers: Spectral sparsifiers:

Streaming Ahn-Guha’09 Kelner-Levin'11
. . Ahn-Guha-McGregor'12 Ahn-Guha-McGregor'14
Dynamic streaming Goel-Kapralov-Post'12 Kapralov-Woodruff'14
o(Elz npoly(logn)) space o(81—2 n°/3) space

O(poly(1)n'+o(1)) space,
two passes

Theorem (K.-Lee-Musco-Musco-Sidford’14)

There exists a single-pass streaming algorithm that constructs
a spectral sparsifier of a graph given as a dynamic stream of
edges using O(;—anoly(log n)) space and poly(n) runtime.

Essentially optimal space complexity, oblivious compression
scheme

16/47

1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches

16/47

Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)

Let G=(V,E) be an undirected graph. Let G' be obtained by
including every edge e € E independently with probability
proportional to its effective resistance:

Clogn
2

Pe = min{1, Re}.

Assign weight 1/pe if sampled. Then (1-¢)G< G <(1+¢)G
whp.
Sample edges according to a measure of importance,

assign weights to make estimate unbiased

Note: edges e with resistance Re = Q(1/logn) included with
probability 1

17/47

Constructing spectral sparsifiers offline

Maintain: sketch S- B of the incidence matrix B

Step 1. Compute sampling probabilities pe for each e€ E

Step 2. Sample edges independently with probability pe, give
weight 1/pe.

18/47

Constructing spectral sparsifiers offline

Maintain: sketch S- B of the incidence matrix B

Step 1. Compute sampling probabilities pe for each e€ E

[Q] How? We do not know which edges are present in the graph...

Step 2. Sample edges independently with probability pe, give
weight 1/pe.

[Q] Sample from the sketch?

19/47

Refining a sparsifier
Goal: design a sketch S that allows sampling edges of G
according to effective resistance given

» S B (sketch of edge incidence matrix)

19/47

Refining a sparsifier
Goal: design a sketch S that allows sampling edges of G
according to effective resistance given

» S B (sketch of edge incidence matrix)
» crude constant factor spectral sparsifier G

15-L<Z<L

G P G

Construct a 1 + ¢ sparsifier G’ of G

19/47

Refining a sparsifier
Goal: design a sketch S that allows recovery of high resistance
(=1/logn) edges of G given

» S B (sketch of edge incidence matrix)
» crude constant factor spectral sparsifier G

lC-L<Z<L

G P G

Construct a 1 + ¢ sparsifier G’ of G

19/47

Effective resistance

Ruv = bZ—VL-FbUV
Note: defined for any pair (u, v).

Inject current at u, take out at v.

20/47

Effective resistance

Ruv = bZ—VL-FbUV
Note: defined for any pair (u, v).

Inject current at u, take out at v.

¢ = L byy=vertex potentials

21/47

Effective resistance

Ruv = bZ—VL-FbUV
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials

0.35

-0.14

22/47

Effective resistance

Ruv = bL7I—VL+ buv
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials

0.35

22/47

Effective resistance

Ruv = bL7I—VL+ buv
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials

ny = (by—(px = b)7(—yL+bUV

0.35

22/47

Effective resistance

Ruv = bL7I—VL+ buv
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials

f = Bd=currents on edges

0.35

23/47

Effective resistance

Ruv = bL7I—VL+ buv
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials
f = Bp=currents on edges

We have
0.35
_ B’
AR

24/47

Effective resistance

Ruv = bL7l—VL+ buv
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials
f = Bp=currents on edges

We have
0.35
_ B’
AR

Ruyy= fraction of ||f||3 contributed by e = (u,v)

25/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV

Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

26/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.27

Compute ¢ = L* by, — vertex potentials
Compute f = Bp=currents on edges
Check if

0.35 5
f
Re.= —5-=Q(1/logn).

0J0[0.01[0]200[1]0[2[0]0[0]

27/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.45

Compute ¢ = L* by, — vertex potentials
Compute f = Bp=currents on edges
Check if

fé

Re = e =Q(1/logn).

[0]0]0.01]0[200[1][0[2]0[0]0]

28/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.45

Compute ¢ =L* by, — vertex potentials
Compute f = Bp=currents on edges
Check if

fé

Re = e =Q(1/logn).

[0]0]0.01]0[200[1][0[2]0[0]0]

29/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.45

Compute ¢ = L* by, — vertex potentials

Compute A = Bo=potential differences

Check if

_ 2%
l1A[12

=Q(1/(Clogn)).

e

[0]0]0.01]0[200[1][0[2]0[0]0]

30/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.27

Compute ¢ = L* by, — vertex potentials
Compute A = Bo=potential differences
Check if

0.35 o
INE

Q(1/(Clogn)).

e

0J0[0.01[0]200[1]0[2[0]0[0]

31/47

Linear sketching and sparse recovery

[0]0[001[0]200]1]0[2[0]0]0]

Let y be a vector of reals. Then i€ [n] is an £>-heavy hitter if
yZznliyli3.

Lemma (¢2-heavy hitters)
For any n > 0 there exists a (randomized) sketch in dimension
%poly(log n) from which one reconstruct all n-heavy hitters. The

recovery works in time O(% -poly(logn)).

32/47

Linear sketching and sparse recovery

[0]0[001[0]200]1]0[2[0]0]0]

Let y be a vector of reals. Then i€ [n] is an £>-heavy hitter if
yZznliyli3.

Lemma (¢2-heavy hitters)
For any n > 0 there exists a (randomized) sketch in dimension
O(% log n) from which one reconstruct all n-heavy hitters. The

recovery works in time O(% -poly(logn)).

33/47

Linear sketching and sparse recovery
Need to recover ’heavy’ coordinates of

[p1— P2 |
b2 —d3
0
ba—d3
SA:=(SB)p=S- (Psacbe
b3 — b4
0

A coordinate e« (3) is heavy if A3 =Q(llAl15/(Clogn))

| This is the €5 heavy hitters problem!|

Problem: we do not know A in advance!

34/47

Sketching the edge incidence matrix

1 -1 0 00 0]

0O 1 -1 00 O

0O 0 0 OO0 O
s.B=s.|-1 0 1 00 O

6 0 1 00 -1

0O 0 0 OO0 O

Apply £>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.

35/47

Sketching the edge incidence matrix

1 -1 0 0 0 0]

0O 1 -1 00 O

0O 0 0 OO0 O
s.B=s.|-1 0 1 00 O

0o 0 1 00 -1

0O 0 0 OO0 O

Apply £>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.

36/47

Sketching the edge incidence matrix

1 1.0 00 O
0 1 -1 00 O
0 0 0 0O O
s.B=s.| -1 0 1 00 O
0o 0 1 00 -1
0 0 0 0O O

Apply €>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.

37/47

Sketching the edge incidence matrix

[1 -1 0 0 0 O

0O 1 -1 00 O

0O 0 0 00 O
s.B=s.|-1 0 1 00 O
0 0 1 00 -1

0O 0 0 OO0 O

Apply €>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.

38/47

Sketching the edge incidence matrix

[1 -1 0 0 0 0]
0 1t -1 00 O
0 0 0 O0O0 O
s.B=s.|-1 0 1 00 O
0 0 1 00 -1
0 0 0 00 O

Apply £>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.

39/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

40/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?
Compute ¢ = L* by, — vertex potentials

0.45

40/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?
Compute ¢ = L* by, — vertex potentials

0.45

Compute S-A =S-Bdp=potential
differences

40/47

Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?
Compute ¢ = L* by, — vertex potentials

0.45

Compute S-A =S-Bd=potential
differences
Check if

2

- Y
Re= A =Q(1/(Clogn))

using heavy-hitters sketch S

[0]0]0.01]0[200[1]0[2]0]0]0]

40/47

What about an edge of resistance r ~ 271 =0(1)? it only
contributes a ~ 27/ fraction of ¢, mass...

41/47

What about an edge of resistance r~ 27 = 0(1)? it only

contributes a ~ 27/ fraction of ¢, mass...

Need to recover 'heavy’ coordinates of

SA:=(SB)p=S-

[G- P2 |

b2 —d3
0

ba—d3

b3 —dg
0

b3 — P
0

41/47

What about an edge of resistance r ~ 271 =0(1)? it only
contributes a ~ 27/ fraction of ¢, mass...

Need to recover 'heavy’ coordinates of
[d1-d2]
G2 -3
0
$g— 3
SA:=(SB)$p=S- ¢36¢6

b3 — P
0

Sample edges with probability 2/

If edge (a,b) is in G and is sampled, it contributes Q(
fraction of mass whp — can recover.

Clogn)

41/47

What about an edge of resistance r ~ 271 =0(1)? it only
contributes a ~ 27/ fraction of ¢, mass...

Need to recover 'heavy’ coordinates of

ba—d3
SA:=(SB)p=S-| ba—de

Sample edges with probability 2/

If edge (a,b) is in G and is sampled, it contributes Q(
fraction of mass whp — can recover.

Clogn)

42/47

Store sketches of subsampled edge incidence matrix:
SI;B,j=0,...,logy n.
I1; is a diagonal matrix with Bernoulli(0/1,27/) entries

REFINESPARSIFIER(G, G,¢,)

For e=(ab)e(y) ~
Re — bl L*be > resistance in G

Round: Re=~ 27/ > determine sampling
Xe — L* be level

If TESTEDGE(SII;B, xe, €) then
add e to sparsifier with weight 2/

Repeat (C/¢?) times, take union

43/47

Refining a sparsifier

Designed a sketch S that allows sampling edges of G
according to effective resistance given

» S B (sketch of edge incidence matrix)
» crude constant factor spectral sparsifier G

L<L<L

o=

®

— G

43/47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(A) = G+ K,

44/47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(A) = G+ K,

44/47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(A) = G+ K,

44/47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(A) = G+ K,

il

LS
LRI

NN

Y Ysr

»,:‘a.‘:z«(
<N

44/47

Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(A) = G+ K,

44/47

LN)=L+A-nI*
Nonzero eigenvalues of G are between n and 8/n?, so
» Kpis a C-spectral approximation to G(1)
» G(1/poly(n)) approximates G well spectrally.
Consider powers of 2 from 1 to 1/poly(n).

Two adjacent graphs in the chain are similar:

%G()\) <G(A/2)< G(\)

This is exactly what we need for REFINESPARSIFIER...

45/47

Final algorithm

é1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)

46/47

Final algorithm

6‘1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)
é1/4 — REFlNESPARSlFlER(S-G(1/4),G1/g,s,3)

46/47

Final algorithm
6‘1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)

é1/4 — REFINESPARSIFIER(S- G(1/4), G1/2,s,3)
6‘1/8 — REFINESPARSIFIER(S- G(1/8), é1/4,s,3)

46/47

Final algorithm
6‘1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)

é1/4 — REFINESPARSIFIER(S- G(1/4), G1/2,s,3)
6‘1/8 — REFINESPARSIFIER(S- G(1/8), é1/4,s,3)

return é1 /poly(n)

46/47

Final algorithm

6‘1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)
é1/4 — REFlNESPARSlFlER(S-G(1/4),G1/g,s,3)
6‘1/8 — REFINESPARSIFIER(S-G(1/8),(~31/4,£,3)

return é1 /poly(n)

Space requirement
> O(log n) sampling levels, O(Z;log n) repetitions
» O(logn) long chain of coarse sparsifiers

» an £x-heavy hitters sketch of O(poly(log n)) size for each
node.

46/47

Summary

v

AMS sketch (approximating |1x113)
Heavy hitters (CountSketch)
0y samplers

v

\4

v

Graph connectivity

v

Graph sparsification

47/47

Summary

v

AMS sketch (approximating |1x113)
Heavy hitters (CountSketch)
0y samplers

v

\4

v

Graph connectivity

v

Graph sparsification

Which other graph problems admit sketching
solutions?

47/47

