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Algorithms for massive graphs

Massive networks ubiquitous in data
processing

» =100 billion edges

» graph does not fit into memory
of single computer

» with metadata, does not fit on a
single hard drive

Social distance between
nodes,
community detection,...

Compress the network
while preserving useful
properties?



Sparsification

» Let G=(V, E) be an undirected graph, where
IVI=n,|El=m.

» Find a smaller subgraph G’ of G that approximates G

G
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3. Dynamic streaming and linear sketching
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Sparsification

valueof cut= Y (xy—xy)?
e=(u,v)eE
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Sparsification

valueof cut= Y (xy—xy)? =11Bx|?
e=(u,v)eE
1 -1 0 0
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Sparsification

valueof cut= Y (xy—xv)%=11Bx|[°=x" BT Bx
e=(u,v)eE

L =B’ Bis the Laplacian of G

1 -1 0 00 O
0 1 -1 00 O N
0 0 0 00 O !
‘ Bx-| -1 0 o 10 o []|™®
: 0 0 1 00 -1
0 0 0 00 O Xn




Definition (Karger'94, Cut sparsifiers)
G is an e-cut sparsifier of G if

(1-e)xTLx<xTU'x<(1+e)xLx

for all x € {0,1}V (all cuts).

Theorem (Karger'94, Benczur-Karger'96)
For any G there exists an e-cut sparsifier G' with

O(g—znlog n) edges, and it can be constructed in O(m) time.



Definition (Spielman-Teng’04, Spectral sparsifiers)
G is an e-spectral sparsifier of G if

(1-e)xTLx<xTU'x<(1+e)xLx
for all x40 {alleuts): all xeRY.
Equivalently, (1-€)L< L' < (1+¢)L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)

For any G there exists an e-spectral sparsifier G' with
O(g—znlog n) edges, and it can be constructed in O(m) time.



Definition (Spielman-Teng’04, Spectral sparsifiers)
G’ is an e-spectral sparsifier of G if

(1-e)xTLx<xTU'x<(1+e)xLx

for all x40 {alleuts): all xeRY.
Equivalently, (1 —¢)L< L' <(1+¢)L

Theorem (Spielman-Teng’04, Spielman-Srivastava’09)

For any G there exists an e-spectral sparsifier G' with
O(g—znlog n) edges, and it can be constructed in O(m) time.

Karger'94, Benczur-Karger'96, Fung-Hariharan-Harvey-Panigrahi’11
Spielman-Teng'04, Spielman-Srivastava’08, Batson-Spielman-Srivastava’09,
Kolla-Makarychev-Saberi-Teng’10, Koutis-Levin-Peng’12, Kapralov-Panigrahy’12

Implications for numerical linear algebra, combinatorial optimization
etc



Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)

Let G=(V,E) be an undirected graph. Let G' be obtained by
including every edge e € E independently with probability
proportional to its effective resistance:

Clogn

> min{1,
Pe { 2

Re}.

Assigning weight 1/ pe if sampled. Then (1-¢)L<L"<(1+¢)L
whp.

Sample edges according to a measure of importance,
assign weights to make estimate unbiased



Sparsification
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1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches
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Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream
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Streaming model

» streaming model: edges of G arrive in an arbitrary order in
a stream;

» algorithm can only use O(n) space

» several passes over the stream (ideally one pass)

Insertion-only stream

10/47



These algorithms are streamable: just keep resparsifiying the
graph as edges come in.

Ahn-Guha’'09: O( L nlog? n) space for cut sparsifiers

Kelner-Levin’11: O( nlog n) space for spectral sparsifiers
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These algorithms are streamable: just keep resparsifiying the
graph as edges come in.

Ahn-Guha’'09: O( L nlog? n) space for cut sparsifiers

Kelner-Levin’11: O( nlog n) space for spectral sparsifiers

Many modern networks evolve over

time, edges both inserted and deleted bwlttEf”

Construct sparsifiers in dynamic streams in small space?‘
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1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches (main result)
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What if we have deletions?
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What if we have deletions?

Very different algorithms are needed...

12/47



Linear sketching

Classical data stream application: approximating frequency
moments.

[0jofofojofofofo0[0[0]

Goal: approximate ||x|[5 = ¥.; x? using <« n space
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Linear sketching

Classical data stream application: approximating frequency
moments.

(ojoft[o]2[ofofof0[0[0]

: ; 2 _v .2 i
Goal: approximate [|x]|5 = ¥;X;" using < n space

Maintain xTv; =1,...,0(1/€?) for random Gaussians v; € R".
Output average of (xv;)2.
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Linear sketching

Classical data stream application: approximating frequency
moments.

(ojoft[o]2[ofofof0[0[0]

: ; 2 _v .2 i
Goal: approximate [|x]|5 = ¥;X;" using < n space

Maintain xTv; =1,...,0(1/€?) for random Gaussians v; € R".

Output average of (xv;)2.

(1 +&)-approximation with O(;—2 log n) space

13/47



Linear sketching

Take (randomized) linear measurements of the input

S

sketching matrix

space requirement=number of rows
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Linear sketching

Take (randomized) linear measurements of the input

s -—=@

sketching matrix

space requirement=number of rows

Can get (1 +¢)-approximation to ||x|1? with Jpoly(log n) rows

Easy to maintain linear sketches in the (dynamic) streaming
model

14/47



Graph sketching
Represent adjacency matrix of input graph G as a vector of
dimension (3), sketch the vector.

Ahn-Guha-McGregorSODA12 — connectivity in n-poly(log n) space.

n-IogCn S ’ - @
f\

x| dimension (3)

space requirement=number of rows in S
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Graph sketching

Represent adjacency matrix of input graph G as a vector of

dimension (3), sketch the vector.

Ahn-Guha-McGregorSODA12 — connectivity in n-poly(log n) space.

n-IogCn

space requirement=number of rows in S

(\B

dimension (3)

Sketch the adjacency matrix, then reconstruct edges of a

sparsifier from the sketch?
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Streaming

Dynamic streaming

Cut sparsifiers:
Ahn-Guha’09

Ahn-Guha-McGregor'12
Goel-Kapralov-Post'12

o( Elz npoly(log n)) space

Spectral sparsifiers:

Kelner-Levin’11

Ahn-Guha-McGregor'14
Kapralov-Woodruff'14

o( ;—2 n°/3) space
O(poly(1)n'+o(1)) space,
two passes

16/47



Cut sparsifiers: Spectral sparsifiers:

Streaming Ahn-Guha’09 Kelner-Levin'11
. . Ahn-Guha-McGregor'12 Ahn-Guha-McGregor'14
Dynamic streaming Goel-Kapralov-Post'12 Kapralov-Woodruff'14
o( Elz npoly(logn)) space o( ;—2 n°/3) space
O(poly(1)n'+o(1)) space,
two passes

Theorem (K.-Lee-Musco-Musco-Sidford’14)

There exists a single-pass streaming algorithm that constructs
a spectral sparsifier of a graph given as a dynamic stream of
edges using O(;—znpoly(log n)) space and poly(n) runtime.
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Cut sparsifiers: Spectral sparsifiers:

Streaming Ahn-Guha’09 Kelner-Levin'11
. . Ahn-Guha-McGregor'12 Ahn-Guha-McGregor'14
Dynamic streaming Goel-Kapralov-Post'12 Kapralov-Woodruff'14
o( Elz npoly(logn)) space o( 81—2 n°/3) space

O(poly(1)n'+o(1)) space,
two passes

Theorem (K.-Lee-Musco-Musco-Sidford’14)

There exists a single-pass streaming algorithm that constructs
a spectral sparsifier of a graph given as a dynamic stream of
edges using O(;—anoly(log n)) space and poly(n) runtime.

Essentially optimal space complexity, oblivious compression
scheme
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1. Spectral sparsification
2. Streaming model of computation
3. Dynamic streaming and linear sketching

4. Spectral sparsification via linear sketches
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Constructing spectral sparsifiers

Theorem (Spielman-Srivastava’09)

Let G=(V,E) be an undirected graph. Let G' be obtained by
including every edge e € E independently with probability
proportional to its effective resistance:

Clogn
2

Pe = min{1, Re}.

Assign weight 1/pe if sampled. Then (1-¢)G< G <(1+¢)G
whp.
Sample edges according to a measure of importance,

assign weights to make estimate unbiased

Note: edges e with resistance Re = Q(1/logn) included with
probability 1

17/47



Constructing spectral sparsifiers offline

Maintain: sketch S- B of the incidence matrix B

Step 1. Compute sampling probabilities pe for each e€ E

Step 2. Sample edges independently with probability pe, give
weight 1/pe.

18/47



Constructing spectral sparsifiers offline

Maintain: sketch S- B of the incidence matrix B

Step 1. Compute sampling probabilities pe for each e€ E

[Q] How? We do not know which edges are present in the graph...

Step 2. Sample edges independently with probability pe, give
weight 1/pe.

[Q] Sample from the sketch?

19/47



Refining a sparsifier
Goal: design a sketch S that allows sampling edges of G
according to effective resistance given

» S B (sketch of edge incidence matrix)
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Refining a sparsifier
Goal: design a sketch S that allows recovery of high resistance
(=1/logn) edges of G given

» S B (sketch of edge incidence matrix)
» crude constant factor spectral sparsifier G

lC-L<Z<L

G P G

Construct a 1 + ¢ sparsifier G’ of G

19/47



Effective resistance

Ruv = bZ—VL-FbUV
Note: defined for any pair (u, v).

Inject current at u, take out at v.
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Effective resistance

Ruv = bZ—VL-FbUV
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials

0.35

-0.14
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¢ = L*byy=vertex potentials
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Effective resistance

Ruv = bL7I—VL+ buv
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials

f = Bd=currents on edges

0.35
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Effective resistance

Ruv = bL7I—VL+ buv
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials
f = Bp=currents on edges

We have
0.35
_ B’
AR
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Effective resistance

Ruv = bL7l—VL+ buv
Note: defined for any pair (u, v).

Inject current at u, take out at v.

0.27

¢ = L*byy=vertex potentials
f = Bp=currents on edges

We have
0.35
_ B’
AR

Ruyy= fraction of ||f||3 contributed by e = (u,v)

25/47



Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV

Need:
» is (u,v) an edge in G of resistance Q(1/logn)?
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Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.27

Compute ¢ = L* by, — vertex potentials
Compute f = Bp=currents on edges
Check if

0.35 5
f
Re.= —5-=Q(1/logn).

0J0[0.01[0]200[1]0[2[0]0[0]
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Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.45

Compute ¢ = L* by, — vertex potentials
Compute f = Bp=currents on edges
Check if

fé

Re = e =Q(1/logn).

[0]0]0.01]0[200[1][0[2]0[0]0]
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Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.45

Compute ¢ = L* by, — vertex potentials

Compute A = Bo=potential differences

Check if

_ 2%
l1A[12

=Q(1/(Clogn)).

e

[0]0]0.01]0[200[1][0[2]0[0]0]
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Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?

0.27

Compute ¢ = L* by, — vertex potentials
Compute A = Bo=potential differences
Check if

0.35 o
INE

Q(1/(Clogn)).

e

0J0[0.01[0]200[1]0[2[0]0[0]
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Linear sketching and sparse recovery

[0]0[001[0]200]1]0[2[0]0]0]

Let y be a vector of reals. Then i€ [n] is an £>-heavy hitter if
yZznliyli3.

Lemma (¢2-heavy hitters)
For any n > 0 there exists a (randomized) sketch in dimension
%poly(log n) from which one reconstruct all n-heavy hitters. The

recovery works in time O(% -poly(logn)).
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Linear sketching and sparse recovery

[0]0[001[0]200]1]0[2[0]0]0]

Let y be a vector of reals. Then i€ [n] is an £>-heavy hitter if
yZznliyli3.

Lemma (¢2-heavy hitters)
For any n > 0 there exists a (randomized) sketch in dimension
O(% log n) from which one reconstruct all n-heavy hitters. The

recovery works in time O(% -poly(logn)).
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Linear sketching and sparse recovery
Need to recover ’heavy’ coordinates of

[ p1— P2 |
b2 —d3
0
ba—d3
SA:=(SB)p=S- (Psacbe
b3 — b4
0

A coordinate e« (3) is heavy if A3 =Q(llAl15/(Clogn))

| This is the €5 heavy hitters problem!|

Problem: we do not know A in advance!
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Sketching the edge incidence matrix

1 -1 0 00 0]

0O 1 -1 00 O

0O 0 0 OO0 O
s.B=s.|-1 0 1 00 O

6 0 1 00 -1

0O 0 0 OO0 O

Apply £>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.
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Sketching the edge incidence matrix

1 -1 0 0 0 0 ]

0O 1 -1 00 O

0O 0 0 OO0 O
s.B=s.|-1 0 1 00 O

0o 0 1 00 -1

0O 0 0 OO0 O

Apply £>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.
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Sketching the edge incidence matrix

1 1.0 00 O
0 1 -1 00 O
0 0 0 0O O
s.B=s.| -1 0 1 00 O
0o 0 1 00 -1
0 0 0 0O O

Apply €>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.
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Sketching the edge incidence matrix

[ 1 -1 0 0 0 O

0O 1 -1 00 O

0O 0 0 00 O
s.B=s.|-1 0 1 00 O
0 0 1 00 -1

0O 0 0 OO0 O

Apply €>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.
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Sketching the edge incidence matrix

[ 1 -1 0 0 0 0 ]
0 1t -1 00 O
0 0 0 O0O0 O
s.B=s.|-1 0 1 00 O
0 0 1 00 -1
0 0 0 00 O

Apply £>-heavy hitters sketch S to every column by, ue V of B

Store the n sketches, n-log® n space.
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Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?
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Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?
Compute ¢ = L* by, — vertex potentials

0.45
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Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?
Compute ¢ = L* by, — vertex potentials

0.45

Compute S-A =S-Bdp=potential
differences

40/47



Given:
» asketch S-Bof G
» crude sparsifier G
» pair (u,v)e VxV
Need:
» is (u,v) an edge in G of resistance Q(1/logn)?
Compute ¢ = L* by, — vertex potentials

0.45

Compute S-A =S-Bd=potential
differences
Check if

2

- Y
Re= A =Q(1/(Clogn))

using heavy-hitters sketch S

[0]0]0.01]0[200[1]0[2]0]0]0]
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What about an edge of resistance r ~ 271 =0(1)? it only
contributes a ~ 27/ fraction of ¢, mass...
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What about an edge of resistance r~ 27 = 0(1)? it only

contributes a ~ 27/ fraction of ¢, mass...

Need to recover 'heavy’ coordinates of

SA:=(SB)p=S-

[ G- P2 |

b2 —d3
0

ba—d3

b3 —dg
0

b3 — P
0
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What about an edge of resistance r ~ 271 =0(1)? it only
contributes a ~ 27/ fraction of ¢, mass...

Need to recover 'heavy’ coordinates of
[ d1-d2 ]
G2 -3
0
$g— 3
SA:=(SB)$p=S- ¢36¢6

b3 — P
0

Sample edges with probability 2/

If edge (a,b) is in G and is sampled, it contributes Q(
fraction of mass whp — can recover.

Clogn)
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What about an edge of resistance r ~ 271 =0(1)? it only
contributes a ~ 27/ fraction of ¢, mass...

Need to recover 'heavy’ coordinates of

ba—d3
SA:=(SB)p=S-| ba—de

Sample edges with probability 2/

If edge (a,b) is in G and is sampled, it contributes Q(
fraction of mass whp — can recover.

Clogn)
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Store sketches of subsampled edge incidence matrix:
SI;B,j=0,...,logy n.
I1; is a diagonal matrix with Bernoulli(0/1,27/) entries

REFINESPARSIFIER(G, G,¢, )

For e=(ab)e(y) ~
Re — bl L*be > resistance in G

Round: Re=~ 27/ > determine sampling
Xe — L* be level

If TESTEDGE(SII;B, xe, €) then
add e to sparsifier with weight 2/

Repeat (C/¢?) times, take union
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Refining a sparsifier

Designed a sketch S that allows sampling edges of G
according to effective resistance given

» S B (sketch of edge incidence matrix)
» crude constant factor spectral sparsifier G

L<L<L

o=

®

— G
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Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(A) = G+ K,
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Chain of coarse sparsifiers

Approach of Miller and Peng in Iterative approaches to row sampling

Add a weighted complete graph to G:

G(A) = G+ K,
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LN)=L+A-nI*
Nonzero eigenvalues of G are between n and 8/n?, so
» Kpis a C-spectral approximation to G(1)
» G(1/poly(n)) approximates G well spectrally.
Consider powers of 2 from 1 to 1/poly(n).

Two adjacent graphs in the chain are similar:

%G()\) <G(A/2)< G(\)

This is exactly what we need for REFINESPARSIFIER...
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Final algorithm

é1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)
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Final algorithm

6‘1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)
é1/4 — REFlNESPARSlFlER(S-G(1/4),G1/g,s,3)
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Final algorithm
6‘1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)

é1/4 — REFINESPARSIFIER(S- G(1/4), G1/2,s,3)
6‘1/8 — REFINESPARSIFIER(S- G(1/8), é1/4,s,3)
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Final algorithm
6‘1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)

é1/4 — REFINESPARSIFIER(S- G(1/4), G1/2,s,3)
6‘1/8 — REFINESPARSIFIER(S- G(1/8), é1/4,s,3)

return é1 /poly(n)
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Final algorithm

6‘1/2 — REFINESPARSIFIER(S-G(1/2), Kn,€,3)
é1/4 — REFlNESPARSlFlER(S-G(1/4),G1/g,s,3)
6‘1/8 — REFINESPARSIFIER(S-G(1/8),(~31/4,£,3)

return é1 /poly(n)

Space requirement
> O(log n) sampling levels, O(Z;log n) repetitions
» O(logn) long chain of coarse sparsifiers

» an £x-heavy hitters sketch of O(poly(log n)) size for each
node.
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Summary

v

AMS sketch (approximating |1x113)
Heavy hitters (CountSketch)
0y samplers

v

\4

v

Graph connectivity

v

Graph sparsification
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Summary

v

AMS sketch (approximating |1x113)
Heavy hitters (CountSketch)
0y samplers

v

\4

v

Graph connectivity

v

Graph sparsification

Which other graph problems admit sketching
solutions?
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