Sparse Fourier Transform
(lecture 3)

Michael Kapralov'

1IBM Watson — EPFL

St. Petersburg CS Club
November 2015

/81

Given x € C", compute the Discrete Fourier Transform of x:

1 Y
== x0,
N jeln)

where w = €2™/7 is the n-th root of unity.

81

Given x € C", compute the Discrete Fourier Transform of x:

1 Y
== x0,
N jeln)

where o = €2™/" is the n-th root of unity.
Goal: find the top k coefficients of X approximately

In last lecture:

» 1-sparse noiseless case: two-point sampling

81

Given x € C", compute the Discrete Fourier Transform of x:

1 Y
== x0,
N jeln)

where o = €2™/" is the n-th root of unity.
Goal: find the top k coefficients of X approximately

In last lecture:
» 1-sparse noiseless case: two-point sampling

» 1-sparse noisy case: O(lognloglogn) time and samples

81

Given x € C", compute the Discrete Fourier Transform of x:
%=1 Y x0T
f= Xjw 7,
N jetn]

where o = €2™/" is the n-th root of unity.
Goal: find the top k coefficients of X approximately

In last lecture:
» 1-sparse noiseless case: two-point sampling
» 1-sparse noisy case: O(lognloglogn) time and samples

» reduction from k-sparse to 1-sparse case, via filtering

81

Partition frequency domain into B = k buckets

100c

81

Partition frequency domain into B = k buckets

100c

81

Partition frequency domain into B = k buckets

100c

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets
- |

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

‘‘‘‘‘‘‘

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

Partition frequency domain into B = k buckets

Foreachj=0,...,B-1 let

o=

)?f, if fe
f

0 O.W.

Restricted to a bucket, signal is likely approximately 1-sparse!

We want time domain access to u: for any a=0,...

compute
U2= Z Xf U)fa
—pp<f<zp
Let (r [N n]
= 1, iffe|l-35:35
_) 2B - 2B
Gf_{ 0 o.W.
Then

81

We want time domain access to u: for any a=0,...,n-1,

compute
U2= Z Xf U)fa
—pp<f<zp
Let [N n]
~ 1, iffe|-2Z5:2%
- ’ 2B ' 2B
G {0 o.W.
Then

Foranyj=0,...,B-1

81

Reducing k-sparse recovery to 1-sparse recovery

Forany j=0,...,B-1

W= (Tax G) 5)

/81

Reducing k-sparse recovery to 1-sparse recovery

Forany j=0,...,B-1

W= (Tax G) 5)

6
£ o4
nQﬂ\

Reducing k-sparse recovery to 1-sparse recovery

Forany j=0,...,B-1

W= (Tax G) 5)

10/81

Need to evaluate

(%+a+C) i 5)

forj=0,...,B-1.

| We have access to x, not %... |

11/81

Need to evaluate

%22+ 03]

forj=0,...,B-1.

| We have access to x, not %... |

By the convolution identity

?._'.a * G = (X.+a ° G)

11/81

Need to evaluate R n
(2=)

forj=0,...,B-1.

| We have access to x, not %... |

By the convolution identity

?._'.a * G = (X.+a ° G)

Suffices to compute

X.+a'Gj.%,j:0,...,B—1

11/81

Suffices to compute

X.+a'Gj,§,j:O,...,B_1

11/81

Suffices to compute

11/81

Suffices to compute
x-Gj_%,j:O,...,B—1

Sample complexity? Runtime?

11/81

Suffices to compute
x-Gj_%,j:O,...,B—1

Sample complexity? Runtime?

11/81

To sample all signals /,j=0,...,B—1 in time domain, it suffices
to compute

J—

x-Gjg,j=0,...,B-1

Computing x - G takes supp(G) samples.
Design G with supp(G) = k that approximates rectangular filter?

Last lecture: designed G with supp(G) = O(klog N) that
approximates rectangular filter

11/81

In this lecture:
» recovery algorithm (k-sparse noiseless case)
» recovery algorithm (k-sparse noisy case)

Hassanieh-Indyk-Katabi-Price’'STOC12

12/81

1. Basic block: partial recovery

2. Full algorithm

13/81

Basic block

Assume
» nis a power of 2

» X contains at most k coefficients with polynomial precision
(e.g. X in {—=n°M) .., nOMy)
Then there exists an O(klogn) time algorithm that
» outputs at most k potential coefficients

» outputs each nonzero X; correctly with probability at least
1—p for a constant p>0

14/81

1 -y fraction of bucket

ideal bucket

leakage to other buckets

bounded\fy S« 1

-
1
1
1
1
1
1
1
1
1
1
1
I

n n
3B 0 3B

Let G be a (B,5/n,y)-flat window function:
» B buckets
» flat region of width 1 -y
> leakage <5/n=1/n°"

Such G can be constructed with
supp(G) = O((k/y)logn)

15/81

PARTIALRECOVERY — algorithm

Main idea: filter, then run 1-sparse algorithm on each
subproblem

PARTIALRECOVERY(X, B, Y,)
Choose random be[n]and odd o €{1,2,...,n}

Define x/ — Xgjod?
1 !
Xj - Xj+1
Compute €, ,,j€[B], where ¢'=x"-G
j.7
B
Ejf_’ﬂ,je [B], where ¢ =x"-G
B

Run 1-sparse decoding one ¢’,¢”

16/81

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

17/81

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

18/81

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

19/81

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

20/81

PARTIALRECOVERY — algorithm

Choose random b€ [n] and odd
ce{l1,2,....n}

Define x; — Xgjo/P
X=X
Compute Ej’.hﬁ,je [B], where ¢'=x"-G
B
Elffﬂ,j € [B], where c"=x"-G
B
For je[B]
If |C/,'-n/B| >1/2
i~
Decode from Cin/pr
(Two-point sampling)
End
End

X
Cin/B

21/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

22/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

22/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket

23/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

23/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

23/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

23/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

23/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

23/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

23/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket ;

23/81

Basic block — analysis

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).

Proof.

Probability of being mapped
» within n/B of another frequency is O(k/B)
» close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- =

ideal bucket ;

23/81

Computing C;.n/8

Option 1 — directly compute FFT of (x-G)_7,...,(x-G)T,
T=0((k/y)logn)

» Can be done in time O((k/y)log? n)

» Computes too many samples of X x G

24/81

Computing C;.n/8

Option 1 — directly compute FFT of (x-G)_7,...,(x-G)T,
T=0((k/y)logn)

» Can be done in time O((k/y)log? n)
» Computes too many samples of X x G

Option 2 — alias x- G to B bins first

» Compute

bi=)Y xy.8GijB
Jjeln/B]

» Compute FFT of bin time

O(BlogB) = O((k/y)log)

24/81

1. Basic block: partial recovery

2. Full algorithm

25/81

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

26/81

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

PARTIALRECOVERY(x,C-k/2, 1‘—6 -271,1/poly(n))

26/81

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))

PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

26/81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))
PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))
PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

PARTIALRECOVERY(x, C-k/8,7s-87",1/poly(n))

26/81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))
PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))
PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

PARTIALRECOVERY(x, C-k/8,7s-87",1/poly(n))

26/81

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))

27/81

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))

PARTIALRECOVERY(x,10-k/2, 1‘—6 -271,1/poly(n))

27/81

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))

PARTIALRECOVERY(x,10- k/2,16 -271,1/poly(n))

PARTIALRECOVERY(x,10- k/4,16 -471,1/poly(n))

27/81

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))
PARTIALRECOVERY(x,10- k/2,16 -271,1/poly(n))
PARTIALRECOVERY(x,10- k/4,16 -471,1/poly(n))

PARTIALRECOVERY(x,10-k/8, 7 -871,1/poly(n))

27/81

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,10-k ,{s ,1/poly(n))
PARTIALRECOVERY(x,10- k/2,16 -271,1/poly(n))
PARTIALRECOVERY(x,10- k/4,16 -471,1/poly(n))

PARTIALRECOVERY(x,10-k/8, 7 -871,1/poly(n))

27/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs «:¢

0 1 L 1 L
-1000 -500 0 500 1000
frequency

28/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs «:¢

0 1 1 .
-1000 -500 0 500 1000
frequency

28/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs ~ «:t

0 4
-1000 -500 0 500 1000
frequency

28/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs ~ «:t

-1000 -500 0 500 1000
frequency

28/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs «:¢

0 1 1
-1000 -500 0 500 1000
frequency

28/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs «:¢

0 . . .
-1000 -500 0 500 1000
frequency

28/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs

0
frequency

28/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover isolated coeffs
Permute spectrum
Hash to 4 buckets

Recover isolated coeffs

0
frequency

28/81

Modified PARTIALRECOVERY

PARTIALRECOVERY(B, a, List)
Choose random b, odd o
Define x; = Xgjod?
X=X
Compute 5,’-.,5,/6 [B], where ¢'=x"-G

5/’{ ,j€[B], where ¢"=x"-G

Wl

For je[B]
If |a;-n/B| >1/2
Decode from E;,H/B,Elf,’n/B
(Two-point sampling)
End
End

29/81

PARTIALRECOVERY — updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos, val) € List

U—a-pos—b

j—closest binto u
off —u—jn/B

=~ I~ o
Cj~n/B - Cj-n/B -val- Gol‘f

~

/!
Cin/B

/C\/,'-,n/B — —val-oY- Goff

End

30/81

PARTIALRECOVERY — updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos, val) € List
U—a-pos—b

j—closest binto u
off —u—jn/B

=~ I~ o
Cj~n/B - Cj-n/B -val- Gol‘f

~

c

C j’..,n/B—Va/'(DU'Goff

/-,n/B -
End

frequency

31/81

Full algorithm

List— ¢

For t=0 tologk
B; — Ck /4! > # of buckets to hash to
yi—1/(C2") > sharpness of filter

List — List+ PARTIALRECOVERY(B;, vy, List)
End

32/81

Full algorithm — analysis
Let
e; — contents of the list after stage t.

Define ‘good event’ &; as
& = {||)?—é,||0 sk/sf}

Conditional on &;_1, for every f € [n] the probability of failure to
recover is at most the sum of

33/81

Full algorithm — analysis
Let
e; — contents of the list after stage t.

Define ‘good event’ &; as
& = {||)?—é,||0 sk/sf}

Conditional on &;_1, for every f € [n] the probability of failure to
recover is at most the sum of

» probability of collision with another element, which is no more
than
k/8' _ k/8' 1
Bi C-k/4t~ C.2t

33/81

Full algorithm — analysis
Let
e; — contents of the list after stage t.

Define ‘good event’ &; as
& = {||)?—é,||o sk/sf}

Conditional on &;_1, for every f € [n] the probability of failure to
recover is at most the sum of

» probability of collision with another element, which is no more
than
k/8' _ k/8' 1
Bi C-k/4t~ C.2t

» probability of being hashed to the non-flat region, which is no
more than

O(1)=0(557

33/81

Full algorithm — analysis

Define ‘good event’ &; as
&:={lIX—@llo < k/8'}

Then

1
Pr[&:1&6:-1] < Pr[fraction of failures is = 1/8|6;_1] < O(ﬁ)

34/81

Full algorithm — analysis

Define ‘good event’ &; as
&r:={IX~&llo < k/8'}

Then

1
Pr[&:1&;_1] < Pr[fraction of failures is=1/8|&;_1] = O(ﬁ)

So for a sufficiently large C >0

Pr&1V...v8iogk] < O(1/C)-(1/2+1/4+..)=0(1/C) <1/10

34/81

Full algorithm — analysis

List— ¢

Fort=1 tologk
B; — Ck /4!
ye—1/(C2%)

List — List+ PARTIALRECOVERY/(B;, vy, List)
End

Time complexity

» DFT:
O(klogn)+ O((k/4)logn) +...= O(klogn)

» List update: k-logn

35/81

Sample complexity

List— ¢
Fort=1 tologk
B; — Ck /4!

ye—1/(C2")

List — List+ PARTIALRECOVERY(B;, 1, List)
End

Sample complexity O(klogn)+ O((k/4)logn)+...= O(klogn)

Suboptimal: sufficient to measure xg, X1,..., Xox t0 reconstruct
X if supp(X) < k (exercise).

36/81

Next:

» recovery in the noisy setting

37/81

€5 /0, sparse recovery guarantees:

~ 2 . ~ a2
[IX=yll SC'mmk—sparse2||X—Z||

wll

H~ tail noise/ vk

38/81

€5 /0, sparse recovery guarantees:

~ 2 . ~ a2
[IX=yll SC'mmk—sparse2||X—Z||

IX1]=...= Xk =
[Xki1] = [Xkiol = ... Residual error bounded by

noise energy Err2(X)
Erg (%)= Xkt 112

S TP M= tail noise/ vk

39/81

>/, sparse recovery guarantees:
IX -1 < C-Er(x)

IX1]=...> Xk =
[Xii1] = [Xiiol = ... Residual error bounded by
noise energy Err2(X)

EM2(R) = X0\ 1%12
head —
tail \
N\
S TP H= tail noise/ vk

40/81

>/, sparse recovery guarantees:
IX -1 < C-Er(x)

IX1]=...> Xk =
[Xii1] = [Xiiol = ... Residual error bounded by
noise energy Err2(X)

EM2(R) = X0\ 1%12
head —
tail \
N\
S TP H= tail noise/ vk

41/81

€5 /0, sparse recovery guarantees:

IX =% < C-Er(x)

_ Ll

Ll ol

H~ tail noise/ vk

Sufficient to ensure that most elements are below average
noise level:

% - il? < ¢ Erré(X) /k =: p®

42/81

€5 /0, sparse recovery guarantees:

IX-yI12 < C-Erré(x)

J‘—'—'—“—"‘—"— H= tail noise/ vk

Sufficient to ensure that most elements are below average
noise level:

1% - yil? < ¢-Err(X)/k = c-p®

43/81

€5 /0, sparse recovery guarantees:

J‘—'—'—“—"‘—"— M= tail noise/ vk

Sufficient to ensure that most elements are below average

IX-yI12 < C-Erré(x)

noise level:

IXj—Yyil<cu

43/81

Next:
1. Full algorithm for noisy setting

44/81

Next:
1. Full algorithm for noisy setting

45/81

Basic block (noiseless setting)

Assume
» nis a power of 2

» X contains at most k coefficients with polynomial precision
(e.g. X in {—=n°M) .., nOMy)
Then there exists an O(klogn) time algorithm that
» outputs at most k potential coefficients

» outputs each nonzero X; correctly with probability at least
1—p for a constant p>0

46/81

Basic block (noisy setting)

Assume
» nis a power of 2

» X contains at most k coefficients with polynomial precision
(e.g. X¢ in {—=n°M .., n°M}) plus noise
Then there exists an O(klogn) time algorithm that
» outputs at most k potential coefficients

» outputs each nonzero X; that is above noise level
correctly with probability at least 1 —p for a constant >0

47/81

1 -y fraction of bucket

ideal bucket

leakage to other buckets

bounded\fy S« 1

-
1
1
1
1
1
1
1
1
1
1
1
I

n n
3B 0 3B

Let G be a (B,5/n,y)-flat window function:
» B buckets
» flat region of width 1 -y
> leakage <5/n=1/n°"

Such G can be constructed with
supp(G) = O((k/y)logn)

48/81

PARTIALRECOVERY — algorithm

Main idea: filter, then run 1-sparse algorithm on each
subproblem

PARTIALRECOVERY(X, B, Y,)
Choose random be[n]and odd o €{1,2,...,n}

Define x/ — Xgjod?
1 !
Xj - Xj+1
Compute €, ,,j€[B], where ¢'=x"-G
j.7
B
Ejf_’ﬂ,je [B], where ¢ =x"-G
B

Run 1-sparse decoding one ¢’,¢”

49/81

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

50/81

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

51/81

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

52/81

PARTIALRECOVERY — algorithm

Recovering 5-sparse signal X from measurements of x

Permute spectrum
Filter signal

1-sparse decoding

0
frequency

Isolated frequencies are decoded successfully

53/81

PARTIALRECOVERY (noiseless setting)

Choose random b€ [n] and odd
ce{l1,2,....n}

Define x; — Xgjo/P
X=X
Compute Ej’.hﬁ,je [B], where ¢'=x"-G
B
Elffﬂ,j € [B], where c"=x"-G
B
For je[B]
If |C/,'-n/B| >1/2
i~
Decode from Cin/pr
(Two-point sampling)
End
End

X
Cin/B

54/81

PARTIALRECOVERY (noisy setting)
Choose random b e [n] and odd
oe{l,2,...,n}

Define x/ — XgjoP

Xj <_Xj+1

Compute E.ﬂ,/ € [B], where c'=x"-G

6 je[B], where ¢"=x"-G

u:\:

For je[B]
If |C n/B|>1/2

Decode from © Cjn/B’ jn/B
(Two-point sampling)
End

End

55/81

PARTIALRECOVERY (noisy setting)
Choose random b€ [n] and odd

ce{1,2,....,n}
; s,0,r j
Define x> — X;(jr 0 1P Fors=0,...,logy n
Xs,1,r <_Xs,1,r
i j+n/2s+1 r=1,...,0(loglogn)

Compute (M)j,n/B, for je [B]
(XS17-G); /g for j [B]

Initialize list L — @
For je[B]

Decode from X7/7, add to list L (output B elements)

(As in lecture 1)
End
Estimate values of i € L, output top 3k

56/81

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1-sparse, i.e.

Y %P <elx- > (small noise)
f#f*

for some small constant .

Then
1. can find f* using O(log n-loglogn) runtime
O(logn-loglogn) samples
with = 1-1/4 success probability

57/81

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1-sparse, i.e.

Y %P <elxp1? (small noise)
f#f*

for some small constant .

Then
1. can find f* using O(t-logn-loglogn) runtime
O(t-logn-loglogn) samples
with = 1 -4~ success probability

58/81

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1-sparse, i.e.

Y %P <elxp1? (small noise)
f#f*

for some small constant .

Then
1. can find f* using O(t-logn-loglogn) runtime
O(t-logn-loglogn) samples
with = 1 -4~ success probability

Need to ensure that noise is small in most subproblems

59/81

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1-sparse, i.e.

Y %P <elx.? (small noise)
f£f*

for some small constant ¢.

Then
1. can find f* using O(log(1/y)-logn-loglogn) runtime
O(log(1/y)-logn-loglogn) samples
with = 1 —y success probability

Need to ensure that noise is small in most subproblems

60/81

1 . 1 2 .
Let u?:=— min y||x—y||§: Y Ixj? (average noise level)

K k-sparse Fj:k+1

frequency

For every head element i € [k] and every tail element j € [n]\ [K]
Pr[/ and j hash to the same bucket] = O(1/B)

61/81

1 . 1 2 .
Lety?:=— min |ix-yl3=- Y Ix/® (average noise level)
K k-sparse y kj:k+1

ol
-1000 -500 0 500
frequency

For every head element i € [k] and every tail element j e [n]\ [k]
Prih(/) =h(j)] = O(1/B)

62/81

1 . 1 2 .
Let u?:=— min y||x—y||§: Y Ixj? (average noise level)

K k-sparse Fj:k+1

L. 1 | | ‘ |
500 0 500

For every head element i € [k], expected noise in i’s bucket is

n

> 1%j2-Pr[h(i) = h(j)]
J=k+1

R B

E =u2.0(k/B)

63/81

1 . 1 2 .
Let u?:=— min y||x—y||§: Y Ixj? (average noise level)

K k-sparse Fj:k+1

i | |] L |
0 500

For every head element i € [k], expected noise in i’s bucket is

n

> 1%j2-Pr[h(i) = h(j)]
J=k+1

L I

E =u2.0(k/B)

64/81

1 . 1 2 .
Let p>:=— min y||x—y||§— Y Ixj? (average noise level)

K k-sparse B Fj:k+1

|] |
500

For every head element i € [k], expected noise in i’s bucket is

E[Y I%2-Prh(i) = h(j)]
J=k+1

NI || 1

~u2-O(k/B)

65/81

1 . 1 2 .
Let p>:=— min y||x—y||§— Y Ixj? (average noise level)

K k-sparse B Fj:k+1

|] |
500

freq;ency
For every head element i € [k], expected noise in i’s bucket is

E[Y I%2-Prh(i) = h(j)]
J=k+1

NI || 1
-1000 =500

= 12-O(k/B)

66/81

0
-1000 -500 0 500
frequency

For every head element i € [k], expected noise in i’s bucket is

E| Y I%2-Prih(i) = h()]
j=k+1

~ 12 0(k/B)

67/81

500

0
frequency

For every head element i € [k], expected noise in i’s bucket is

I I
-500

0
-1000

n

> X2 Pr[h(i) =h(j)]
j=k+1

E =u2.0(k/B)

So by Markov’s inequality for every head element i € [K]

Pr IXi|? | > ep?] = O(k/(eB))

jelk+1:n] st. h())=h(j)

67/81

Basic block analysis (noiseless setting)

Claim
For each u € supp(X) the probability that u is not reported is
bounded by O(k/B+Y).
Probability of
» being mapped within n/B of another frequency is O(k/B)
» being mapped close to boundary of the bucket is O(y)

1 -y fraction of bucket

—_—
-- -

ideal bucket |

67/81

Basic block analysis (noisy setting)

Claim
For each u € supp(X) with |x,|° = u° the probability that u is not
reported is bounded by O(k/B+).
Probability of
» being mapped within n/B of another frequency is O(k/B)
» being mapped close to boundary of the bucket is O(y)
» colliding with too many tail elements is O(k/B)

1 -y fraction of bucket

—_—
-- -

ideal bucket

67/81

Basic block analysis (noisy setting)

Claim

For each u € supp(X) with |x,|° = u° the probability that u is not
reported is bounded by O(k/B+).

Probability of

being mapped within n/B of another frequency is O(k/B)
being mapped close to boundary of the bucket is O(y)
colliding with too many tail elements is O(k/B)
decoding failure is O(y)

v

vy vV

1 -y fraction of bucket

-- -

ideal bucket

67/81

Basic block analysis (noisy setting)

Claim

For each u € supp(X) with |x,|° = u° the probability that u is not
reported is bounded by O(k/B+).

Probability of

being mapped within n/B of another frequency is O(k/B)
being mapped close to boundary of the bucket is O(y)
colliding with too many tail elements is O(k/B)
decoding failure is O(y)

v

vy vV

1 -y fraction of bucket

--

ideal bucket call;such elements well-hashed

68/81

PARTIALRECOVERY (noisy setting)
Choose random b€ [n] and odd

ce{1,2,....,n}
; s,0,r i
Define x> — X;(jr 0 1P Fors=0,...,logy n
Xs,1,r <_Xs,1,r
J j+n/2s+1 r=1,...,0(loglogn)

Compute (M)j,n/B, for je [B]
(XS17-G); /g for j [B]

Initialize list L — @
For je[B]

Decode from)A(f;/,;, add to list L (output B elements)

(As in lecture 1)
End
Estimate values of i € L, output top 3k

69/81

PARTIALRECOVERY (noisy setting)
Choose random b€ [n] and odd

ce{1,2,....,n}
; s,0,r i
Define x> — X;(j 0P Fors=0,...,logy n
Xs,1,r <_Xs,1,r
i j+n/2s+1 r=1,...,0(loglogn)

Compute (M),n/s, for j e [B]
(m)j_n/B, forj€ [B]

Initialize list L — @
For je[B]

Decode from X7/, add to list L (output B elements)

(As in lecture 1)
End
Estimate values of j € L, output top 3k

70/81

Estimating value of a heavy hitter (lecture 1)

Given f* € [n],
1. can find wy. (estimate for X;-) in O(1) time and samples

such that
[Wee —)?f* |2 < 3€|)?f* |2

with probability 1 —1/100

71/81

Estimating value of a heavy hitter (lecture 1)

Given f* € [n],
1. can find wy. (estimate for X;.) in O(t) time and samples

such that
[Wee —)?f* |2 < 3€|)?f* |2

with probability 1 -2

72/81

Estimating value of a heavy hitter (lecture 1)

Given f* €[n],

1. can find wy. (estimate for Xs.) in O(logn) time and samples
such that

with probability 1-1/n?

73/81

Estimating value of a heavy hitter (lecture 1)

Given f* €[n],

1. can find wy. (estimate for Xs.) in O(logn) time and samples
such that

with probability 1-1/n?

Let L denote the list of located elements

73/81

Estimating value of a heavy hitter (lecture 1)

Given f* €[n],

1. can find wy. (estimate for Xs.) in O(logn) time and samples
such that

with probability 1-1/n?

Let L denote the list of located elements

73/81

Estimating value of a heavy hitter (lecture 1)

Given f* €[n],

1. can find wy. (estimate for Xs.) in O(logn) time and samples
such that

with probability 1-1/n?
Let L denote the list of located elements
Using O(klog? n) samples and runtime, can find w; such that
| Wt —)A(fl2 < 38|?f|2

forall felL.

Let L' < L denote list of top 3k values in L (in terms of
magnitude)

73/81

Full algorithm

Let C> 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

74/81

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

PARTIALRECOVERY(x,C-k/2, 1‘—6 -271,1/poly(n))

74/81

Full algorithm

Let C> 0 be a sufficiently large constant.
PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))

PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))

PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

74/81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))
PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))
PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

PARTIALRECOVERY(x, C-k/8,7s-87",1/poly(n))

74/81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x,C-k ,7s ,1/poly(n))
PARTIALRECOVERY(X, C-k /2, 6 -271,1/poly(n))
PARTIALRECOVERY(X, C-k/4, 7= 16 -4711/poly(n))

PARTIALRECOVERY(x, C-k/8,7s-87",1/poly(n))

74/81

Full algorithm

Permute spectrum
Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed
coeffs

0.8 |

frequency

0

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs | |
A | I AL ‘

frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed o2t
coeffs | | |

0 4
-1000 -500 0 500 1000
frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed 0]
coeffs |
k I 1 Il

frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed 0]
coeffs |
k I 1 Il

frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs | |
Al L N L, ‘

-1000 -500 500 1000
frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs | |
li L A L, ‘

-1000 -500 500 1000
frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets
Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs | |
li L A L, ‘

-1000 -500 500 1000
frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed
coeffs

0.

s b

frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed
coeffs

0.

s b

frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed
coeffs

0.

s b

frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed
coeffs

0.

s b

frequency

75/81

Full algorithm

Permute spectrum
Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum
Hash to 4 buckets

Recover well-hashed
coeffs

0.

s b

0
frequency

500

75/81

Full algorithm

List— @
Fort=1 tologk
B; — Ck /4!

Yt —1/(C2")

List — List+ PARTIALRECOVERY(B;, 1, List)
End
Time complexity:

» DFT: O(klog® n(loglogn)) + O((k/4)log® nloglogn) +... =
O(klog? nloglog n)

» List update: k-logn

76/81

Sample complexity

List— ¢
For t=1 tologk
B; — Ck /4!

ye—1/(C2Y)
List — List+ PARTIALRECOVERY(B;, vy, List)
End

Sample complexity:
O(klog? n(loglog n)) + O((k/4)log? n(loglog n)) +... =
O(klog? nloglog n)

Suboptimal (?): a lower bound of Q(klog(n/k)) known

77/81

Runtime and sample complexity

Noisy: runtime O(klog? n), sample complexity
O(klog? nloglog n)

O(loglogn) can be removed, see
Hassanieh-Indyk-Katabi-Price’'STOC12

Sample complexity lower bound: Q(klog(n/k)) (Do Ba, Indyk,
Price, Woodruff’'SODA10)

78/81

Next lecture:

O(klogn(loglogn)®(1)) samples, O(klog? n(loglogn)°(")) runtime
(Indyk-Kapralov-Price’SODA14)

and

O(klog n) samples and O(nlog® n) runtime
(Indyk-Kapralov’FOCS14)

79/81

	2/2 sparse recovery

