
Sparse Fourier Transform
(lecture 3)

Michael Kapralov1

1IBM Watson → EPFL

St. Petersburg CS Club
November 2015

1 / 81

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂f =
1
n

∑
j∈[n]

xjω
−f ·j ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï 1-sparse noiseless case: two-point sampling

Ï 1-sparse noisy case: O(logn loglogn) time and samples

Ï reduction from k -sparse to 1-sparse case, via filtering

2 / 81

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂f =
1
n

∑
j∈[n]

xjω
−f ·j ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï 1-sparse noiseless case: two-point sampling

Ï 1-sparse noisy case: O(logn loglogn) time and samples

Ï reduction from k -sparse to 1-sparse case, via filtering

2 / 81

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂f =
1
n

∑
j∈[n]

xjω
−f ·j ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï 1-sparse noiseless case: two-point sampling

Ï 1-sparse noisy case: O(logn loglogn) time and samples

Ï reduction from k -sparse to 1-sparse case, via filtering

2 / 81

Given x ∈Cn, compute the Discrete Fourier Transform of x :

x̂f =
1
n

∑
j∈[n]

xjω
−f ·j ,

where ω= e2πi/n is the n-th root of unity.

Goal: find the top k coefficients of x̂ approximately

In last lecture:

Ï 1-sparse noiseless case: two-point sampling

Ï 1-sparse noisy case: O(logn loglogn) time and samples

Ï reduction from k -sparse to 1-sparse case, via filtering

2 / 81

Partition frequency domain into B ≈ k buckets

-0.001

-0.0005

0

0.0005

0.001

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

3 / 81

Partition frequency domain into B ≈ k buckets

-0.001

-0.0005

0

0.0005

0.001

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

4 / 81

Partition frequency domain into B ≈ k buckets

-0.001

-0.0005

0

0.0005

0.001

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

4 / 81

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

5 / 81

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 81

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 81

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 81

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 81

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 81

Partition frequency domain into B ≈ k buckets

-0.0008

-0.0006

-0.0004

-0.0002

0

0.0002

0.0004

0.0006

0.0008

-1000 -500 0 500 1000

time

-0.5

0

0.5

1

-1000 -500 0 500 1000

frequency

For each j = 0, . . . ,B−1 let

ûj
f =

{
x̂f , if f ∈ j-th bucket
0 o.w.

Restricted to a bucket, signal is likely approximately 1-sparse!

6 / 81

We want time domain access to u0: for any a= 0, . . . ,n−1,
compute

u0
a = ∑

− n
2B ≤f≤ n

2B

x̂f ·ωf ·a.

Let

Ĝf =
{

1, if f ∈ [− n
2B : n

2B
]

0 o.w.

Then
u0

a = (x̂·+a ∗ Ĝ)(0)

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

7 / 81

We want time domain access to u0: for any a= 0, . . . ,n−1,
compute

u0
a = ∑

− n
2B ≤f≤ n

2B

x̂f ·ωf ·a.

Let

Ĝf =
{

1, if f ∈ [− n
2B : n

2B
]

0 o.w.

Then
u0

a = (x̂·+a ∗ Ĝ)(0)

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

7 / 81

Reducing k -sparse recovery to 1-sparse recovery

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

8 / 81

Reducing k -sparse recovery to 1-sparse recovery

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

9 / 81

Reducing k -sparse recovery to 1-sparse recovery

For any j = 0, . . . ,B−1

uj
a = (x̂·+a ∗ Ĝ)(j · n

B
)

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

time

m
a
g
n
itu

d
e

−1000 −800 −600 −400 −200 0 200 400 600 800 1000
−0.2

0

0.2

0.4

0.6

0.8

1

frequency

m
a
g
n
itu

d
e

10 / 81

Need to evaluate
(x̂·+a ∗ Ĝ)

(
j · n

B

)
for j = 0, . . . ,B−1.

We have access to x , not x̂ ...

By the convolution identity

x̂·+a ∗ Ĝ = á(x·+a ·G)

Suffices to compute

àx·+a ·Gj · n
B

, j = 0, . . . ,B−1

11 / 81

Need to evaluate
(x̂·+a ∗ Ĝ)

(
j · n

B

)
for j = 0, . . . ,B−1.

We have access to x , not x̂ ...

By the convolution identity

x̂·+a ∗ Ĝ = á(x·+a ·G)

Suffices to compute

àx·+a ·Gj · n
B

, j = 0, . . . ,B−1

11 / 81

Need to evaluate
(x̂·+a ∗ Ĝ)

(
j · n

B

)
for j = 0, . . . ,B−1.

We have access to x , not x̂ ...

By the convolution identity

x̂·+a ∗ Ĝ = á(x·+a ·G)

Suffices to compute

àx·+a ·Gj · n
B

, j = 0, . . . ,B−1

11 / 81

Suffices to compute

àx·+a ·Gj · n
B

, j = 0, . . . ,B−1

Sample complexity? Runtime?

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes Ω(N) time and samples!

11 / 81

Suffices to compute

�x ·Gj · n
B

, j = 0, . . . ,B−1

Sample complexity? Runtime?

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes Ω(N) time and samples!

11 / 81

Suffices to compute

�x ·Gj · n
B

, j = 0, . . . ,B−1

Sample complexity? Runtime?

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes Ω(N) time and samples!

11 / 81

Suffices to compute

�x ·Gj · n
B

, j = 0, . . . ,B−1

Sample complexity? Runtime?

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes Ω(N) time and samples!

11 / 81

To sample all signals uj , j = 0, . . . ,B−1 in time domain, it suffices
to compute �x ·Gj · n

B
, j = 0, . . . ,B−1

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

time

0

0.2

0.4

0.6

0.8

1

1.2

-1000 -500 0 500 1000

frequency

Computing x ·G takes supp(G) samples.

Design G with supp(G)≈ k that approximates rectangular filter?

Last lecture: designed G with supp(G)=O(k logN) that
approximates rectangular filter

11 / 81

In this lecture:

Ï recovery algorithm (k -sparse noiseless case)

Ï recovery algorithm (k -sparse noisy case)

Hassanieh-Indyk-Katabi-Price’STOC12

12 / 81

1. Basic block: partial recovery

2. Full algorithm

13 / 81

Basic block

Assume
Ï n is a power of 2

Ï x̂ contains at most k coefficients with polynomial precision
(e.g. x̂f in {−nO(1), . . . ,nO(1)})

Then there exists an O(k logn) time algorithm that

Ï outputs at most k potential coefficients

Ï outputs each nonzero x̂f correctly with probability at least
1−β for a constant β> 0

14 / 81

n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

Let G be a (B,δ/n,γ)-flat window function:
Ï B buckets
Ï flat region of width 1−γ
Ï leakage ≤ δ/n = 1/nO(1)

Such G can be constructed with

supp(G)=O((k/γ) logn)

15 / 81

PARTIALRECOVERY – algorithm

Main idea: filter, then run 1-sparse algorithm on each
subproblem

PARTIALRECOVERY(x ,B,γ,δ)

Choose random b ∈ [n] and odd σ ∈ {1,2, . . . ,n}

Define x ′
j ← xσjω

jb

Define

x ′′
j ← x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

Run 1-sparse decoding one ĉ′, ĉ′′

16 / 81

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

17 / 81

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

18 / 81

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

19 / 81

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

20 / 81

PARTIALRECOVERY – algorithm

Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define x ′
j ← xσjω

jb

Define

x ′′
j ← x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

For j ∈ [B]
If |ĉ′

j ·n/B | > 1/2
Decode from ĉ′

j ·n/B , ĉ′′
j ·n/B

(Two-point sampling)
End

End

21 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).

Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

22 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

22 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Basic block – analysis
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Proof.
Probability of being mapped

Ï within n/B of another frequency is O(k/B)

Ï close to boundary of the bucket is O(γ)

N
2B 0 N

2B

ideal bucket

1−γ fraction of bucket

23 / 81

Computing ĉj ·n/B

Option 1 – directly compute FFT of (x ·G)−T , . . . ,(x ·G)T ,
T =O((k/γ) logn)

Ï Can be done in time O((k/γ) log2 n)

Ï Computes too many samples of x̂ ∗ Ĝ

Option 2 – alias x ·G to B bins first
Ï Compute

bi =
∑

j∈[n/B]

xi+j ·BGi+j ·B

Ï Compute FFT of b in time

O(B logB)=O((k/γ) logn)

24 / 81

Computing ĉj ·n/B

Option 1 – directly compute FFT of (x ·G)−T , . . . ,(x ·G)T ,
T =O((k/γ) logn)

Ï Can be done in time O((k/γ) log2 n)

Ï Computes too many samples of x̂ ∗ Ĝ

Option 2 – alias x ·G to B bins first
Ï Compute

bi =
∑

j∈[n/B]

xi+j ·BGi+j ·B

Ï Compute FFT of b in time

O(B logB)=O((k/γ) logn)

24 / 81

1. Basic block: partial recovery

2. Full algorithm

25 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

26 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

26 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

26 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

26 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

26 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

27 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

27 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

27 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

27 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,10 ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,10 ·k/8, 1
16 ·8−1,1/poly(n))

. . .

27 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

28 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

28 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

28 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

28 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

28 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

28 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

28 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover isolated coeffs

Permute spectrum

Hash to 4 buckets

Recover isolated coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

28 / 81

Modified PARTIALRECOVERY

PARTIALRECOVERY(B,α,List)

Choose random b, odd σ

Define x ′
j = xσjω

jb

Define

x ′′
j = x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

For j ∈ [B]
If |ĉ′

j ·n/B | > 1/2
Decode from ĉ′

j ·n/B , ĉ′′
j ·n/B

(Two-point sampling)
End

End

So ĉ′ = x̂ ′∗ Ĝ

So ĉ′′ = x̂ ′′∗ Ĝ

29 / 81

PARTIALRECOVERY – updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos,val) ∈ List
u ←σ ·pos−b

j ← closest bin to u

off ← u− jn/B

ĉ′
j ·n/B ← ĉ′

j ·n/B −val · Ĝoff

ĉ′′
j ·n/B ← ĉ′′

j ·n/B −val ·ωu · Ĝoff

End

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

30 / 81

PARTIALRECOVERY – updating the bins

Previously located elements are still in the signal...

Subtract recovered elements from the bins

For each (pos,val) ∈ List
u ←σ ·pos−b

j ← closest bin to u

off ← u− jn/B

ĉ′
j ·n/B ← ĉ′

j ·n/B −val · Ĝoff

ĉ′′
j ·n/B ← ĉ′′

j ·n/B −val ·ωu · Ĝoff

End

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

31 / 81

Full algorithm

List←;
For t = 0 to logk

Bt ←Ck/4t . # of buckets to hash to

γt ← 1/(C2t) . sharpness of filter

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

32 / 81

Full algorithm – analysis
Let

êt ← contents of the list after stage t .

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Conditional on Et−1, for every f ∈ [n] the probability of failure to
recover is at most the sum of

Ï probability of collision with another element, which is no more
than

k/8t

Bt
= k/8t

C ·k/4t ≤
1

C ·2t

Ï probability of being hashed to the non-flat region, which is no
more than

O(γt)=O
(

1
C2t

)

33 / 81

Full algorithm – analysis
Let

êt ← contents of the list after stage t .

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Conditional on Et−1, for every f ∈ [n] the probability of failure to
recover is at most the sum of

Ï probability of collision with another element, which is no more
than

k/8t

Bt
= k/8t

C ·k/4t ≤
1

C ·2t

Ï probability of being hashed to the non-flat region, which is no
more than

O(γt)=O
(

1
C2t

)

33 / 81

Full algorithm – analysis
Let

êt ← contents of the list after stage t .

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Conditional on Et−1, for every f ∈ [n] the probability of failure to
recover is at most the sum of

Ï probability of collision with another element, which is no more
than

k/8t

Bt
= k/8t

C ·k/4t ≤
1

C ·2t

Ï probability of being hashed to the non-flat region, which is no
more than

O(γt)=O
(

1
C2t

)
33 / 81

Full algorithm – analysis

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Then

Pr[Et |Et−1]≤Pr[fraction of failures is≥ 1/8|Et−1]≤O
(

1
C ·2t

)

So for a sufficiently large C > 0

Pr[E 1 ∨ . . .∨E logk]≤O(1/C) · (1/2+1/4+ . . .)=O(1/C)< 1/10

34 / 81

Full algorithm – analysis

Define ‘good event’ Et as

Et :=
{
||x̂ − êt ||0 ≤ k/8t

}
Then

Pr[Et |Et−1]≤Pr[fraction of failures is≥ 1/8|Et−1]≤O
(

1
C ·2t

)

So for a sufficiently large C > 0

Pr[E 1 ∨ . . .∨E logk]≤O(1/C) · (1/2+1/4+ . . .)=O(1/C)< 1/10

34 / 81

Full algorithm – analysis

List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Time complexity

Ï DFT:
O(k logn)+O((k/4) logn)+ . . . =O(k logn)

Ï List update: k · logn

35 / 81

Sample complexity

List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Sample complexity O(k logn)+O((k/4) logn)+ . . . =O(k logn)

Suboptimal: sufficient to measure x0,x1, . . . ,x2k to reconstruct
x̂ if supp(x̂)≤ k (exercise).

36 / 81

Next:

Ï recovery in the noisy setting

37 / 81

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by
noise energy Err2k (x̂)

head

tail

µ≈ tail noise/
p

k

38 / 81

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·mink−sparse ẑ ||x̂ − ẑ||2

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by
noise energy Err2k (x̂)

head

tail

µ≈ tail noise/
p

k

39 / 81

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by
noise energy Err2k (x̂)

head

tail

µ≈ tail noise/
p

k

40 / 81

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

|x̂1| ≥ . . . ≥ |x̂k | ≥
|x̂k+1| ≥ |x̂k+2| ≥ . . .

Err2
k (x̂)=

∑n
j=k+1 |x̂j |2

Residual error bounded by
noise energy Err2k (x̂)

head

tail

µ≈ tail noise/
p

k

41 / 81

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

µ≈ tail noise/
p

k

Sufficient to ensure that most elements are below average
noise level:

|x̂i − ŷi |2 ≤ c ·Err2
k (x̂)/k =:µ2

42 / 81

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

µ≈ tail noise/
p

k

Sufficient to ensure that most elements are below average
noise level:

|x̂i − ŷi |2 ≤ c ·Err2
k (x̂)/k = c ·µ2

43 / 81

`2/`2 sparse recovery guarantees:

||x̂ − ŷ ||2 ≤C ·Err2
k (x̂)

µ≈ tail noise/
p

k

Sufficient to ensure that most elements are below average
noise level:

|x̂i − ŷi | ≤ cµ

43 / 81

Next:
1. Full algorithm for noisy setting

44 / 81

Next:
1. Full algorithm for noisy setting

45 / 81

Basic block (noiseless setting)

Assume
Ï n is a power of 2

Ï x̂ contains at most k coefficients with polynomial precision
(e.g. x̂f in {−nO(1), . . . ,nO(1)})

Then there exists an O(k logn) time algorithm that

Ï outputs at most k potential coefficients

Ï outputs each nonzero x̂f correctly with probability at least
1−β for a constant β> 0

46 / 81

Basic block (noisy setting)

Assume
Ï n is a power of 2

Ï x̂ contains at most k coefficients with polynomial precision
(e.g. x̂f in {−nO(1), . . . ,nO(1)}), plus noise

Then there exists an O(k logn) time algorithm that

Ï outputs at most k potential coefficients

Ï outputs each nonzero x̂f that is above noise level
correctly with probability at least 1−β for a constant β> 0

47 / 81

− n
2B 0 n

2B

ideal bucket

leakage to other buckets

bounded by δ¿ 1

1−γ fraction of bucket

Let G be a (B,δ/n,γ)-flat window function:
Ï B buckets
Ï flat region of width 1−γ
Ï leakage ≤ δ/n = 1/nO(1)

Such G can be constructed with

supp(G)=O((k/γ) logn)

48 / 81

PARTIALRECOVERY – algorithm

Main idea: filter, then run 1-sparse algorithm on each
subproblem

PARTIALRECOVERY(x ,B,γ,δ)

Choose random b ∈ [n] and odd σ ∈ {1,2, . . . ,n}

Define x ′
j ← xσjω

jb

Define

x ′′
j ← x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

Run 1-sparse decoding one ĉ′, ĉ′′

49 / 81

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

50 / 81

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

51 / 81

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

52 / 81

PARTIALRECOVERY – algorithm

Recovering 5-sparse signal x̂ from measurements of x

Permute spectrum

Filter signal

1-sparse decoding

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

Isolated frequencies are decoded successfully

53 / 81

PARTIALRECOVERY (noiseless setting)

Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define x ′
j ← xσjω

jb

Define

x ′′
j ← x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

For j ∈ [B]
If |ĉ′

j ·n/B | > 1/2
Decode from ĉ′

j ·n/B , ĉ′′
j ·n/B

(Two-point sampling)
End

End

54 / 81

PARTIALRECOVERY (noisy setting)
Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define x ′
j ← xσjω

jb

Define

x ′′
j ← x ′

j+1

Compute ĉ′
j · n

B
, j ∈ [B], where c′ = x ′ ·G

Compute

ĉ′′
j · n

B
, j ∈ [B], where c′′ = x ′′ ·G

For j ∈ [B]
If |ĉ′

j ·n/B | > 1/2
Decode from ĉ′

j ·n/B , ĉ′′
j ·n/B

(Two-point sampling)
End

End

Estimate values of i ∈ L, output top 3k

55 / 81

PARTIALRECOVERY (noisy setting)
Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define xs,0,r
j ← xσ(j+r)ω

(j+r)b

Define

xs,1,r
j ← xs,1,r

j+n/2s+1

Compute á(xs,0,r ·G)j ·n/B , for j ∈ [B]

Compute

á(xs,1,r ·G)j ·n/B , for j ∈ [B]

Initialize list L←;

For j ∈ [B]

If |ĉ′
j ·n/B | > 1/2

Decode from x̂s,∗,r
j ·n/B, add to list L

(As in lecture 1)
End

Estimate values of i ∈ L, output top 3k

For s = 0, . . . , log2 n

For

r = 1, . . . ,O(loglogn)

(output B elements)

56 / 81

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1-sparse, i.e.∑
f 6=f ∗

|x̂f |2 ≤ ε|x̂f ∗ |2 (small noise)

for some small constant ε.

Then
1. can find f ∗ using O(logn · loglogn) runtime

O(logn · loglogn) samples
with ≥ 1−1/4 success probability

Need to ensure that noise is small in most subproblems

57 / 81

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1-sparse, i.e.∑
f 6=f ∗

|x̂f |2 ≤ ε|x̂f ∗ |2 (small noise)

for some small constant ε.

Then
1. can find f ∗ using O(t · logn · loglogn) runtime

O(t · logn · loglogn) samples
with ≥ 1−4−t success probability

Need to ensure that noise is small in most subproblems

58 / 81

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1-sparse, i.e.∑
f 6=f ∗

|x̂f |2 ≤ ε|x̂f ∗ |2 (small noise)

for some small constant ε.

Then
1. can find f ∗ using O(t · logn · loglogn) runtime

O(t · logn · loglogn) samples
with ≥ 1−4−t success probability

Need to ensure that noise is small in most subproblems

59 / 81

Noise-tolerant decoding from lecture 1

Suppose that x is approximately 1-sparse, i.e.∑
f 6=f ∗

|x̂f |2 ≤ ε|x̂f ∗ |2 (small noise)

for some small constant ε.

Then
1. can find f ∗ using O(log(1/γ) · logn · loglogn) runtime

O(log(1/γ) · logn · loglogn) samples
with ≥ 1−γ success probability

Need to ensure that noise is small in most subproblems

60 / 81

Let µ2 := 1
k

min
k−sparse y

||x−y ||22 = 1
k

n∑
j=k+1

|xj |2 (average noise level)

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

For every head element i ∈ [k] and every tail element j ∈ [n]\ [k]

Pr[i and j hash to the same bucket]=O(1/B)
61 / 81

Let µ2 := 1
k

min
k−sparse y

||x−y ||22 = 1
k

n∑
j=k+1

|xj |2 (average noise level)

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

For every head element i ∈ [k] and every tail element j ∈ [n]\ [k]

Pr[h(i)=h(j)]=O(1/B)

62 / 81

Let µ2 := 1
k

min
k−sparse y

||x−y ||22 = 1
k

n∑
j=k+1

|xj |2 (average noise level)

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

For every head element i ∈ [k], expected noise in i ’s bucket is

E

[
n∑

j=k+1
|x̂j |2 ·Pr[h(i)=h(j)]

]
=µ2 ·O(k/B)

63 / 81

Let µ2 := 1
k

min
k−sparse y

||x−y ||22 = 1
k

n∑
j=k+1

|xj |2 (average noise level)

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

For every head element i ∈ [k], expected noise in i ’s bucket is

E

[
n∑

j=k+1
|x̂j |2 ·Pr[h(i)=h(j)]

]
=µ2 ·O(k/B)

64 / 81

Let µ2 := 1
k

min
k−sparse y

||x−y ||22 = 1
k

n∑
j=k+1

|xj |2 (average noise level)

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

For every head element i ∈ [k], expected noise in i ’s bucket is

E

[
n∑

j=k+1
|x̂j |2 ·Pr[h(i)=h(j)]

]
=µ2 ·O(k/B)

65 / 81

Let µ2 := 1
k

min
k−sparse y

||x−y ||22 = 1
k

n∑
j=k+1

|xj |2 (average noise level)

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

For every head element i ∈ [k], expected noise in i ’s bucket is

E

[
n∑

j=k+1
|x̂j |2 ·Pr[h(i)=h(j)]

]
=µ2 ·O(k/B)

66 / 81

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

For every head element i ∈ [k], expected noise in i ’s bucket is

E

[
n∑

j=k+1
|x̂j |2 ·Pr[h(i)=h(j)]

]
=µ2 ·O(k/B)

So by Markov’s inequality for every head element i ∈ [k]

Pr

[∑
j∈[k+1:n] s.t. h(i)=h(j)

|x̂j |2
]
> εµ2]=O(k/(εB))

67 / 81

0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

For every head element i ∈ [k], expected noise in i ’s bucket is

E

[
n∑

j=k+1
|x̂j |2 ·Pr[h(i)=h(j)]

]
=µ2 ·O(k/B)

So by Markov’s inequality for every head element i ∈ [k]

Pr

[∑
j∈[k+1:n] s.t. h(i)=h(j)

|x̂j |2
]
> εµ2]=O(k/(εB))

67 / 81

Basic block analysis (noiseless setting)
Claim
For each u ∈ supp(x̂) the probability that u is not reported is
bounded by O(k/B+γ).
Probability of

Ï being mapped within n/B of another frequency is O(k/B)
Ï being mapped close to boundary of the bucket is O(γ)

Ï colliding with too many tail elements is O(k/(εB))
Ï decoding failure is O(γ)

− N
2B 0 N

2B

ideal bucket

call such elements well-hashed

1−γ fraction of bucket

67 / 81

Basic block analysis (noisy setting)
Claim
For each u ∈ supp(x̂) with |x̂u |2 ≥µ2 the probability that u is not
reported is bounded by O(k/B+γ).
Probability of

Ï being mapped within n/B of another frequency is O(k/B)
Ï being mapped close to boundary of the bucket is O(γ)
Ï colliding with too many tail elements is O(k/B)

Ï decoding failure is O(γ)

− N
2B 0 N

2B

ideal bucket

call such elements well-hashed

1−γ fraction of bucket

67 / 81

Basic block analysis (noisy setting)
Claim
For each u ∈ supp(x̂) with |x̂u |2 ≥µ2 the probability that u is not
reported is bounded by O(k/B+γ).
Probability of

Ï being mapped within n/B of another frequency is O(k/B)
Ï being mapped close to boundary of the bucket is O(γ)
Ï colliding with too many tail elements is O(k/B)
Ï decoding failure is O(γ)

− N
2B 0 N

2B

ideal bucket

call such elements well-hashed

1−γ fraction of bucket

67 / 81

Basic block analysis (noisy setting)
Claim
For each u ∈ supp(x̂) with |x̂u |2 ≥µ2 the probability that u is not
reported is bounded by O(k/B+γ).
Probability of

Ï being mapped within n/B of another frequency is O(k/B)
Ï being mapped close to boundary of the bucket is O(γ)
Ï colliding with too many tail elements is O(k/B)
Ï decoding failure is O(γ)

− N
2B 0 N

2B

ideal bucket call such elements well-hashed

1−γ fraction of bucket

68 / 81

PARTIALRECOVERY (noisy setting)
Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define xs,0,r
j ← xσ(j+r)ω

(j+r)b

Define

xs,1,r
j ← xs,1,r

j+n/2s+1

Compute á(xs,0,r ·G)j ·n/B , for j ∈ [B]

Compute

á(xs,1,r ·G)j ·n/B , for j ∈ [B]

Initialize list L←;

For j ∈ [B]

If |ĉ′
j ·n/B | > 1/2

Decode from x̂s,∗,r
j ·n/B, add to list L

(As in lecture 1)
End

Estimate values of i ∈ L, output top 3k

For s = 0, . . . , log2 n

For

r = 1, . . . ,O(loglogn)

(output B elements)

69 / 81

PARTIALRECOVERY (noisy setting)
Choose random b ∈ [n] and odd
σ ∈ {1,2, . . . ,n}

Define xs,0,r
j ← xσ(j+r)ω

(j+r)b

Define

xs,1,r
j ← xs,1,r

j+n/2s+1

Compute á(xs,0,r ·G)j ·n/B , for j ∈ [B]

Compute

á(xs,1,r ·G)j ·n/B , for j ∈ [B]

Initialize list L←;

For j ∈ [B]

If |ĉ′
j ·n/B | > 1/2

Decode from x̂s,∗,r
j ·n/B, add to list L

(As in lecture 1)
End

Estimate values of i ∈ L, output top 3k

For s = 0, . . . , log2 n

For

r = 1, . . . ,O(loglogn)

(output B elements)

70 / 81

Estimating value of a heavy hitter (lecture 1)

Given f ∗ ∈ [n],
1. can find wf ∗ (estimate for x̂f ∗) in O(1) time and samples

such that
|wf ∗ − x̂f ∗ |2 ≤ 3ε|x̂f ∗ |2

with probability 1−1/100

Let L denote the list of located elements

Using O(k log2 n) samples and runtime, can find wL such that

|wf − x̂f |2 ≤ 3ε|x̂f |2

for all f ∈ L.

Let L′ ⊆ L denote list of top 3k values in L (in terms of
magnitude)

71 / 81

Estimating value of a heavy hitter (lecture 1)

Given f ∗ ∈ [n],
1. can find wf ∗ (estimate for x̂f ∗) in O(t) time and samples

such that
|wf ∗ − x̂f ∗ |2 ≤ 3ε|x̂f ∗ |2

with probability 1−2−t

Let L denote the list of located elements

Using O(k log2 n) samples and runtime, can find wL such that

|wf − x̂f |2 ≤ 3ε|x̂f |2

for all f ∈ L.

Let L′ ⊆ L denote list of top 3k values in L (in terms of
magnitude)

72 / 81

Estimating value of a heavy hitter (lecture 1)

Given f ∗ ∈ [n],
1. can find wf ∗ (estimate for x̂f ∗) in O(logn) time and samples

such that
|wf ∗ − x̂f ∗ |2 ≤ 3ε|x̂f ∗ |2

with probability 1−1/n2

Let L denote the list of located elements

Using O(k log2 n) samples and runtime, can find wL such that

|wf − x̂f |2 ≤ 3ε|x̂f |2

for all f ∈ L.

Let L′ ⊆ L denote list of top 3k values in L (in terms of
magnitude)

73 / 81

Estimating value of a heavy hitter (lecture 1)

Given f ∗ ∈ [n],
1. can find wf ∗ (estimate for x̂f ∗) in O(logn) time and samples

such that
|wf ∗ − x̂f ∗ |2 ≤ 3ε|x̂f ∗ |2

with probability 1−1/n2

Let L denote the list of located elements

Using O(k log2 n) samples and runtime, can find wL such that

|wf − x̂f |2 ≤ 3ε|x̂f |2

for all f ∈ L.

Let L′ ⊆ L denote list of top 3k values in L (in terms of
magnitude)

73 / 81

Estimating value of a heavy hitter (lecture 1)

Given f ∗ ∈ [n],
1. can find wf ∗ (estimate for x̂f ∗) in O(logn) time and samples

such that
|wf ∗ − x̂f ∗ |2 ≤ 3ε|x̂f ∗ |2

with probability 1−1/n2

Let L denote the list of located elements

Using O(k log2 n) samples and runtime, can find wL such that

|wf − x̂f |2 ≤ 3ε|x̂f |2

for all f ∈ L.

Let L′ ⊆ L denote list of top 3k values in L (in terms of
magnitude)

73 / 81

Estimating value of a heavy hitter (lecture 1)

Given f ∗ ∈ [n],
1. can find wf ∗ (estimate for x̂f ∗) in O(logn) time and samples

such that
|wf ∗ − x̂f ∗ |2 ≤ 3ε|x̂f ∗ |2

with probability 1−1/n2

Let L denote the list of located elements

Using O(k log2 n) samples and runtime, can find wL such that

|wf − x̂f |2 ≤ 3ε|x̂f |2

for all f ∈ L.

Let L′ ⊆ L denote list of top 3k values in L (in terms of
magnitude)

73 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

74 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

74 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

74 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

74 / 81

Full algorithm

Let C > 0 be a sufficiently large constant.

PARTIALRECOVERY(x ,C ·k

/2

, 1
16

·2−1

,1/poly(n))

PARTIALRECOVERY(x ,C ·k/2, 1
16 ·2−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/4, 1
16 ·4−1,1/poly(n))

PARTIALRECOVERY(x ,C ·k/8, 1
16 ·8−1,1/poly(n))

. . .

74 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

Permute spectrum

Hash to 8 buckets

Recover well-hashed
coeffs

Permute spectrum

Hash to 4 buckets

Recover well-hashed
coeffs

. . .
0

0.2

0.4

0.6

0.8

1

-1000 -500 0 500 1000

frequency

75 / 81

Full algorithm

List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Time complexity:

Ï DFT: O(k log2 n(loglogn))+O((k/4) log2 n loglogn)+ . . . =
O(k log2 n loglogn)

Ï List update: k · logn

76 / 81

Sample complexity

List←;
For t = 1 to logk

Bt ←Ck/4t

γt ← 1/(C2t)

List ← List +PARTIALRECOVERY(Bt ,γt ,List)
End

Sample complexity:
O(k log2 n(loglogn))+O((k/4) log2 n(loglogn))+ . . . =
O(k log2 n loglogn)

Suboptimal (?): a lower bound of Ω(k log(n/k)) known

77 / 81

Runtime and sample complexity

Noisy: runtime O(k log2 n), sample complexity
O(k log2 n loglogn)

O(loglogn) can be removed, see
Hassanieh-Indyk-Katabi-Price’STOC12

Sample complexity lower bound: Ω(k log(n/k)) (Do Ba, Indyk,
Price, Woodruff’SODA10)

78 / 81

Next lecture:

O(k logn(loglogn)O(1)) samples, O(k log2 n(loglogn)O(1)) runtime
(Indyk-Kapralov-Price’SODA14)

and

O(k logn) samples and O(n log3 n) runtime
(Indyk-Kapralov’FOCS14)

79 / 81

	2/2 sparse recovery

