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Streaming model (Alon, Matias, Szegedy’96)

Observe a (very long) stream of data, e.g. IP packets, tweets,
search queries. . ..

Task: maintain (approximate) statistics of the stream



Streaming model

Ï Single pass over the data: i1, i2, . . . , iN

Typically, assume N is known

Ï Small (sublinear) storage: typically Nα,α< 1 or logO(1)N

Units of storage: bits, words or ‘data items’ (e.g., points, nodes/edges)

Ï Fast processing time per element

Ï Mostly randomized algorithms
Randomness often necessary



Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!
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Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA



Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Trivial: store all distinct IP pairs

Space complexity: Θ(N)

This lecture: solve in space O(logN)

Exponential improvement!
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Given a set of items as a stream (e.g. queries on google.com
over a period of time)
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Find the most frequent items in the set
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Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)
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Streaming model

Widely used in practice for scalable data analytics

most frequent searches on google.com
over a time period

most frequent tweets



Heavy hitters problem

Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!



Goal: design a small space data structure

FINDTOP(S,k): returns top k most frequent items seen so far

Useful to first design

POINTQUERY(S, i): processes stream, then for any query item i
can return fi=number of times item i appeared
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Denote the number of times item i appears in the stream by fi
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Impossible in general...

Imagine a stream where all elements occur with about the same
frequency
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FINDAPPROXTOP(S,k ,ε): returns set of k items such that
fi ≥ (1−ε)fk for all reported i

APPROXPOINTQUERY(S, i ,ε): processes stream, then for any
query item i can return approximation f̂i ∈ [fi −εfk , fi +εfk ]

In this lecture: find most frequent (head) items if they
contribute the bulk of the stream under some measure
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In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i ∈ {1,2, . . . ,m}, compute
estimate f̂i of fi

To be specified:

Ï space complexity?

Ï quality of approximation?

Ï success probability?
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Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

Show that C ·s(i) is close to fi ‘with high probability’?
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Ï show that Vars[C ·s(i)] is ‘small’
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Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)

= ∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?
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Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have

C ·s(i)= fi +
∑

j∈[m]\i
fj ·s(j)s(i)

and

E[C ·s(i)]= fi .

We need to bound

Var(C ·s(i))=E[(C ·s(i)−E[C ·s(i)])2]

=E[(C ·s(i)− fi)2]

=E

( ∑
j∈[m]\i

fj ·s(j)s(i)
)2
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Basic estimate: variance

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

(C ·s(i)− fi)2 =
( ∑

j∈[m]\i
fj ·s(j)s(i)

)2

= ∑
j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·s(j)s(j ′) ·s2(i)

= ∑
j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·s(j)s(j ′)

Ï s(j)2 = 1 for all j

Ï E[s(j)s(j ′)]=E[s(j)]E[s(j ′)]= 0 for j 6= j ′.
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We have proved that
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j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability
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Estimate fi up to

8 ·
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j∈[m]\i
f 2
j
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head

item to be estimated

tail
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Pro: works well for most frequent item, if other items are small

Con: estimate for a small items contaminated by large items



Basic estimate: summary
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

Estimate fi up to

8 ·
√ ∑

j∈[m]\i
f 2
j

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

item to be estimated

head

Pro: works well for most frequent item, if other items are small

Con: estimate for a small items contaminated by large items



1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm



1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm



APPROXPOINTQUERY and COUNTSKETCH

COUNTSKETCH algorithm (Charikar, Chen, Farach-Colton’02)

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)
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Hashing the items
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For item i its stream consists of j ∈ [m] such that h(j)= h(i)

For example,

Ï subsampled stream of item 1 is {1, 6}

Ï subsampled stream of item 5 is {5, 7}
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Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 1 is {1, 6}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1

4

6 1

2 10

1

5

1 1

2 2 3 3 3 9 8 7 4 4 2 2

1

5



Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 1 is {1, 6}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1

4

6 1

2 10

1

5

1 1

2 2 3 3 3 9 8 7 4 4 2 2

1

5



Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 5 is {5, 7}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5

1 1 2 2 3 3 3 9 8

7

4 4 2 2 1

5



Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 5 is {5, 7}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5

1 1 2 2 3 3 3 9 8

7

4 4 2 2 1

5



Final ApproxPointQuery

Choose
Ï t random hash functions h1,h2, . . . ,ht from items [m] to

B ≈ k buckets {1,2, . . . ,B}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

B buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}
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UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t =O(logN), then for every i ∈ [m]

|ESTIMATE(C, i)− fi | ≤ εfk
at every point in the stream whp.

Space complexity is O(B logN)

How large is B?
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Space complexity

Set B = 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
Note that B =O(k/ε2) if 1

k
∑

j∈TAIL f 2
j =O(f 2

k )

head

tail

Note: if B ≥ k , can detect elements with counts above
O

(√
1
B ·∑j∈TAIL f 2

j

)



Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
We have

∑
j∈TAIL f 2

j =N −p
N ≤N, and f 2

1 =N

So B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!
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UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t ≥A logN for an absolute

constant A> 0, then for every i ∈ [m]∣∣ESTIMATE(C, i)− fi
∣∣≤ εfk

with high probability.

(fi is the frequency of i )



UPDATE(C, i)
for r ∈ [1 : t ]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Variance of estimate for i from r -th row:∑
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f 2
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Show that ∑
j 6=i :hr(j)=hr(i)

f 2
j =O(1/B)

∑
j∈TAIL,j 6=i

f 2
j

with high constant probability.
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Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t ] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate
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(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t ]

Pr[hr (i)= hr (j)]≤ 1/B

Suppose that B ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/B
≥ 1−1/8
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Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

B
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t ]

Prhr [hr (i)= hr (j)]= 1/B (B is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
B

∑
j∈TAIL

f 2
j
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We proved that

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

≤ 1
B

∑
j∈TAIL

f 2
j

By Markov’s inequality one has, for every i and every r ,

Pr[SMALL-VARIANCEr (i)]≥ 1−1/8



NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
B

∑
j∈TAIL

f 2
j
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Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Markov’s inequality one has, for every i and every r ,

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8



Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Markov’s inequality one has, for every i and every r ,
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Pr[SMALL-VARIANCEr (i)]≥ 1−1/8

Pr[NO-COLLISIONSr (i)]≥ 1−1/8

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

So by the union bound

Pr[SMALL-VARIANCEr (i) and NO-COLLISIONSr (i)
and SMALL-DEVIATIONr (i)]≥ 5/8.



For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk )2

}
and t ≥A logN for an absolute

constant A> 0, then with probability ≥ 1−1/N3 for every i ∈ [m]∣∣ESTIMATE(C, i)− fi(p)
∣∣≤ εfk

at the end of the stream.



Remarks, related results, open problems
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Sketching: take (randomized) linear measurements of the input

S

sketching matrix

space=number of rows

•

x

b=

Easy to maintain sketch in dynamic streams
(insertions and deletions)



Sparse recovery

S

sketching matrix

O(k logn) rows

•

x

b=

Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)



Sparse recovery
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∥∥x − x̂
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(xTAIL – x with largest k elements zeroed out)

Observation 1: # of measurements is optimal for `∞/`2
guarantee above

(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, –
see Do Ba, Indyk, Price, Woodruff’10)

Observation 2: `2/`2 sparse recovery guarantee follows:∥∥x − x̂
∥∥

2 =O(1) · ‖xTAIL‖2.
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Sparse recovery
Let S be a COUNTSKETCH matrix with O( 1

ε2 k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 1: # of measurements is optimal for `∞/`2
guarantee above

(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, –
see Do Ba, Indyk, Price, Woodruff’10)

Observation 2: `2/`2 sparse recovery guarantee follows:∥∥x − x̂
∥∥

2 = (1+ε) · min
k−sparse x ′

‖x −x ′‖2.



Sparse recovery

Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 3: if ‖x‖0 ≤ k , then xTAIL = 0 and EST(Sx)= x whp

Exact sparse recovery: a k -sparse vector can be recovered
from O(k) linear measurements



CountSketch for matrices?
Input: r parties hold vectors x1, . . . ,xr ∈Rn

each party sends O(B logn) bits to coordinator
(assume shared randomness)

Output: find largest entries in A=∑r
i=1 xixT

i

more precisely, output approximation Â∣∣∣Âij −Aij

∣∣∣= O(1)p
B

‖A‖F .
x1 ∈Rn

x2 ∈Rn

x3 ∈Rn

...
xr ∈Rn

Coordinator Â

Every party i sends COUNTSKETCH(xixT
i ) into O(B) buckets

(slow)
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Define

A=
r∑

i=1
xixi

T ∈Rn×n.

Hash function
h : [n]× [n]→ [B]

and random signs

s : [n]× [n]→ {−1,+1}.

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj .

COUNTSKETCH(xixT
i ) takes n2 time to compute...

Make hash functions ‘separable’?
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(x1 x2 x3 x4 x5 x6 x7 x8)

h1

S1x

(x1 x2 x3 x4 x5 x6 x7 x8)

h2

S2x

Take two independent instances of COUNTSKETCH: hash
functions

h1,h2 : [n]→ [B],

random signs
s1,s2 : [n]→ {−1,+1}

Tensor COUNTSKETCH1 and COUNTSKETCH2!
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h1

S1x

(x1 x2 x3 x4 x5 x6 x7 x8)

h2

S2x

Define tensoring of COUNTSKETCH1 and COUNTSKETCH2:

h(i , j)= h1(i)+h2(j) (mod B).

and s(i , j)= s1(i) ·s2(j).

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj

= ∑
i ,j∈[n]:h1(i)+h2(j)=b

s1(i) ·s2(j) ·xixj
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(Sx)b = ∑
i ,j∈[n]:h1(i)+h2(j)=b

s1(i) ·s2(j) ·xixj .

Can find Sx from COUNTSKETCH1(x) and COUNTSKETCH2(x)
fast! (exercise)



Stronger analysis of COUNTSKETCH
The bound ∥∥x − x̂

∥∥∞ ≤ 1p
k
‖xTAIL‖2

is optimal for sketches with O(k logn) rows, for worst case x

If x is drawn from a distribution (e.g., power law, Zipfian), one
can do better by about logn factor: Minton-Price’14

Minton-Price’14 assumes uniformly random hashing. A very
recent improvement:
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Non-asymptotic measurement complexity?
Good constants are achieved by `1-minimization and related

(non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to
achieve capacity – similar effects here?
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Learning-augmented sketching: learn the hash function h in
COUNTSKETCH (and more!) from data

Adversarially robust sketching: what if x is chosen by an
adversary with (partial) knowledge of the data structure?
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Take (randomized) linear measurements of the input

S

sketching matrix

space=number of rows

•

x

b=

Distribution of the sketching matrix?



Distribution of the sketching matrix?

+1 0 -1 0 0 0 0 0 0 0 +1 0
0 0 0 0 +1 0 0 0 0 -1 0 0
0 -1 0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 -1 0 0 +1 0 0 -1
0 0 0 +1 0 0 +1 0 0 0 0 0

Bernoulli(±1) or Gaussian linear measurements on random
subsets of the universe

The nonzeros are specified by the hash function h : [n]→ [B]

Can compute Sx in time nnz(x)!
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Random restrictions (hashing)

What can we learn from Sx , where S is just random
restrictions?

+1 0 0 0 0 0 0 0 0 0 +1 0
0 +1 +1 0 +1 0 0 0 0 +1 0 0
+1 0 0 +1 +1 +1 0 +1 0 0 0 0
+1 +1 0 0 +1 +1 0 0 +1 0 0 +1
0 +1 0 +1 +1 +1 +1 0 +1 0 +1 0

Can learn ‖x‖0, i.e. number of nonzeros in x



Johnson-Lindenstrauss transform

Sketching matrix S = a row of i.i.d. Gaussians of unit variance

Measures `2
2 norm of x in expectation:

E
[∥∥Sx

∥∥2
2

]
= ‖x‖2

2
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Johnson-Lindenstrauss transform

Sketching matrix S = m rows of i.i.d. Gaussians of unit variance
1/m

Measures `2
2 norm of x with high probability:

P
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2 6≈ ‖x‖2
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]
= 1−exp(−Ω(ε2m)

Downside: Sx takes m ·n time to compute
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(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform

Sketching matrix S =P ·H ·D
D=diagonal random sign matrix, H=Hadamard transform,

P=random sampling matrix

Sx can be computed in O(m+n logn) time
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Frequency moments

The p-th frequency moment

Fp = ∑
i∈[n]

f p
i

Theorem
Can approximate Fp for all p ∈ [0,2] in polylogarithmic space,
but need Ω(n1−2/p) space for all p > 2

Bar-Yossef et al. Information complexity approach to data
stream lower bounds
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