
Sketching for Data Streams

Michael Kapralov

EPFL

August 30, 2023

Streaming model (Alon, Matias, Szegedy’96)

Observe a (very long) stream of data, e.g. IP packets, tweets,
search queries. . ..

Task: maintain (approximate) statistics of the stream

Streaming model

Ï Single pass over the data: i1, i2, . . . , iN

Typically, assume N is known

Ï Small (sublinear) storage: typically Nα,α< 1 or logO(1)N

Units of storage: bits, words or ‘data items’ (e.g., points, nodes/edges)

Ï Fast processing time per element

Ï Mostly randomized algorithms
Randomness often necessary

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3

4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4

6 3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6

3 2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3

2 10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2

10 3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10

3 1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3

1 3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1

3 3 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3

1 2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1

2 2 5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2

2 5 5 5 9 8 7 4 4 2 2 3 3

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2

5 5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5

5 5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5

5 9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5

9 8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9

8 7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8

7 4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7

4 4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4

4 2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4

2 2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2

2 3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2

3 1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3

1

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3 3

Heavy hitters problem
Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

1 2 3 4 5 6 7 8 9 10

head

tail

head

3 4 6 3 2 10 3 1 3 1 2 2 5 5 5 9 8 7 4 4 2 2 3 3

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 2 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 3 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 2 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 3 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 4 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0
0 0 0 5 0 0 0 0 0
0 0 0 0 0 0 0 0 0
0 4 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0 0
0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Trivial: store all distinct IP pairs

Space complexity: Θ(N)

This lecture: solve in space O(logN)

Exponential improvement!

Estimating IP flows through a router

Estimate the dominant IP flows
through a router

destination

s
o
u
r
c
e

1
1

5

4 1
1

1

Src Dst

DATA

Trivial: store all distinct IP pairs

Space complexity: Θ(N)

This lecture: solve in space O(logN)

Exponential improvement!

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Estimating search statistics

Given a set of items as a stream (e.g. queries on google.com
over a period of time)

Geneva to NYC, coffee in Geneva, Geneva to NYC

Find the most frequent items in the set

Geneva to NYC, coffee in Geneva

Trivial This lecture
Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Streaming model
Trivial This lecture

Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Are constants small?

HyperLogLog: estimate
Shakespeare’s vocabulary
using 128 bits of memory

Streaming model
Trivial This lecture

Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Are constants small?

HyperLogLog: estimate
Shakespeare’s vocabulary
using 128 bits of memory

Streaming model
Trivial This lecture

Solution hash<string> h; COUNTSKETCH

Space # of distinct items O(logN)

Are constants small?

HyperLogLog: estimate
Shakespeare’s vocabulary
using 128 bits of memory

Streaming model

Widely used in practice for scalable data analytics

most frequent searches on google.com
over a time period

most frequent tweets

Heavy hitters problem

Ï Single pass over the data: i1, i2, . . . , iN

Assume N is known

Ï Output k most frequent items

(Heavy hitters)

Ï Small storage: will get O(k logN)

Much better than storing all items!

Goal: design a small space data structure

FINDTOP(S,k): returns top k most frequent items seen so far

Useful to first design

POINTQUERY(S, i): processes stream, then for any query item i
can return fi=number of times item i appeared

Goal: design a small space data structure

FINDTOP(S,k): returns top k most frequent items seen so far

Useful to first design

POINTQUERY(S, i): processes stream, then for any query item i
can return fi=number of times item i appeared

Denote the number of times item i appears in the stream by fi
(frequency of i)

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

POINTQUERY(S, i) in space O(k logN)?

Impossible in general...

Imagine a stream where all elements occur with about the same
frequency

Denote the number of times item i appears in the stream by fi
(frequency of i)

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

POINTQUERY(S, i) in space O(k logN)?

Impossible in general...

Imagine a stream where all elements occur with about the same
frequency

Denote the number of times item i appears in the stream by fi
(frequency of i)

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

POINTQUERY(S, i) in space O(k logN)?

Impossible in general...

Imagine a stream where all elements occur with about the same
frequency

FINDAPPROXTOP(S,k ,ε): returns set of k items such that
fi ≥ (1−ε)fk for all reported i

APPROXPOINTQUERY(S, i ,ε): processes stream, then for any
query item i can return approximation f̂i ∈ [fi −εfk , fi +εfk]

In this lecture: find most frequent (head) items if they
contribute the bulk of the stream under some measure

FINDAPPROXTOP(S,k ,ε): returns set of k items such that
fi ≥ (1−ε)fk for all reported i

APPROXPOINTQUERY(S, i ,ε): processes stream, then for any
query item i can return approximation f̂i ∈ [fi −εfk , fi +εfk]

In this lecture: find most frequent (head) items if they
contribute the bulk of the stream under some measure

In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i ∈ {1,2, . . . ,m}, compute
estimate f̂i of fi

To be specified:

Ï space complexity?

Ï quality of approximation?

Ï success probability?

In what follows: APPROXPOINTQUERY in small space

Observe a stream of updates, maintain small space data
structure

Task: after observing the stream, given i ∈ {1,2, . . . ,m}, compute
estimate f̂i of fi

To be specified:

Ï space complexity?

Ï quality of approximation?

Ï success probability?

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1

4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4

6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6

1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1

2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2

10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10

1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5

1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1

5 2 2 3 3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5

2 2 3 3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2

2 3 3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2

3 3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3

3 3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3

3 9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3

9 8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9

8 7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8

7 4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7

4 4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4

4 2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4

2 2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4 2

2 1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4 2 2

1 1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 3 3 9 8 7 4 4 2 2 1

1

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 10

5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Assume elements are ordered by frequency: f1 ≥ f2 ≥ . . . ≥ fm

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

Show that C ·s(i) is close to fi ‘with high probability’?

Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

Show that C ·s(i) is close to fi ‘with high probability’?

Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

Show that C ·s(i) is close to fi ‘with high probability’?

Basic estimate

Will design a basic estimate with O(1) space complexity,
analyze precision

Choose a hash function s : [m]→ {−1,+1} uniformly at random

INITIALIZE

C ← 0
UPDATE(C, i)

C ←C+s(i)

for every p = 1, . . . ,N (every element in the stream)
UPDATE(C, ip)

end for

ESTIMATE(C, i)
return C ·s(i)

Show that C ·s(i) is close to fi ‘with high probability’?

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

Show that C ·s(i) is close to fi ‘with high probability’?

Two steps:

Ï show that Es[C ·s(i)]= fi
(so C ·s(i) is an unbiased estimate of fi)

Ï show that Vars[C ·s(i)] is ‘small’

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

Show that C ·s(i) is close to fi ‘with high probability’?

Two steps:

Ï show that Es[C ·s(i)]= fi
(so C ·s(i) is an unbiased estimate of fi)

Ï show that Vars[C ·s(i)] is ‘small’

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)

= ∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)=

∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)=

∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

C ·s(i)=
N∑

p=1
s(ip)s(i)=

∑
j∈[m]

fj ·s(j)s(i)

= fis(i)2 + ∑
j∈[m]\i

fj ·s(j)s(i)

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

= fi +
∑

j∈[m]\i
fj ·s(j)s(i) ←− random ±1’s

Our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[

C ·s(i)

]

= fi +
∑

j∈[m]\i
fj ·s(j)s(i)

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate:mean

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[C ·s(i)]= fi +E[
∑

j∈[m]\i
fj ·s(j)s(i)]

(by independence of s(i))

= fi +
∑

j∈[m]\i
fj ·E[s(j)]E[s(i)] (by independence of s(i))

= fi

The mean is correct: our estimator is unbiased!

Is the estimate C ·s(i) close to fi with high probability?

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have

C ·s(i)= fi +
∑

j∈[m]\i
fj ·s(j)s(i)

and

E[C ·s(i)]= fi .

We need to bound

Var(C ·s(i))=E[(C ·s(i)−E[C ·s(i)])2]

=E[(C ·s(i)− fi)2]

=E

(∑
j∈[m]\i

fj ·s(j)s(i)
)2



Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have

C ·s(i)= fi +
∑

j∈[m]\i
fj ·s(j)s(i)

and

E[C ·s(i)]= fi .

We need to bound

Var(C ·s(i))=E[(C ·s(i)−E[C ·s(i)])2]

=E[(C ·s(i)− fi)2]

=E

(∑
j∈[m]\i

fj ·s(j)s(i)
)2



Basic estimate: variance

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

(C ·s(i)− fi)2 =
(∑

j∈[m]\i
fj ·s(j)s(i)

)2

= ∑
j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·s(j)s(j ′) ·s2(i)

= ∑
j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·s(j)s(j ′)

Ï s(j)2 = 1 for all j

Ï E[s(j)s(j ′)]=E[s(j)]E[s(j ′)]= 0 for j 6= j ′.

Basic estimate: variance

UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

E[(C ·s(i)− fi)2]=E[
∑

j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·s(j)s(j ′)]

= ∑
j∈[m]\i

∑
j ′∈[m]\i

fj fj ′ ·E[s(j)s(j ′)]

= ∑
j∈[m]\i

f 2
j

since

Ï s(j)2 = 1 for all j

Ï E[s(j)s(j ′)]=E[s(j)]E[s(j ′)]= 0 for j 6= j ′.

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | ≥ 8 ·
√ ∑

j∈[m]\i
f 2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: variance
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

We have proved that

Var(C ·s(i))=E[(C ·s(i)− fi)2]= ∑
j∈[m]\i

f 2
j

By Chebyshev’s inequality

Pr

|C ·s(i)− fi | > 8 ·
√ ∑

j∈[m]\i
f2
j

≤ 1/64

So C ·s(i) is close (?) to fi with high probability

Basic estimate: summary
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

Estimate fi up to

8 ·
√ ∑

j∈[m]\i
f 2
j

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

item to be estimated

tail

head

Pro: works well for most frequent item, if other items are small

Con: estimate for a small items contaminated by large items

Basic estimate: summary
UPDATE(C, i)
C ←C+s(i)

ESTIMATE(C, i)
return C ·s(i)

Estimate fi up to

8 ·
√ ∑

j∈[m]\i
f 2
j

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

item to be estimated

head

Pro: works well for most frequent item, if other items are small

Con: estimate for a small items contaminated by large items

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

1. Finding top k elements via (APPROX)POINTQUERY

2. Basic version of APPROXPOINTQUERY

3. APPROXPOINTQUERY and the COUNTSKETCH algorithm

APPROXPOINTQUERY and COUNTSKETCH

COUNTSKETCH algorithm (Charikar, Chen, Farach-Colton’02)

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)

universe [m]

buckets [B]

universe [m]

buckets [B]

1 2 3 4 5 6 7 8 9 10

11

APPROXPOINTQUERY and COUNTSKETCH

COUNTSKETCH algorithm (Charikar, Chen, Farach-Colton’02)

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)

universe [m]

buckets [B]

universe [m]

buckets [B]

1 2 3 4 5 6 7 8 9 10

11

APPROXPOINTQUERY and COUNTSKETCH

COUNTSKETCH algorithm (Charikar, Chen, Farach-Colton’02)

Main ideas:

1. run basic estimate on subsampled/hashed stream
(reduces variance)

2. aggregate independent estimates to boost confidence
(take medians)

universe [m]

buckets [B]

universe [m]

buckets [B]

1 2 3 4 5 6 7 8 9 10

11

Hashing the items

universe [m]

buckets [B]

universe [m]

buckets [B]

1 2 3 4 5 6 7 8 9 10

11

Hashed into B = 8 buckets, get 8 subsampled streams

For item i its stream consists of j ∈ [m] such that h(j)= h(i)

For example,

Ï subsampled stream of item 1 is {1, 6}

Ï subsampled stream of item 5 is {5, 7}

Hashing the items

universe [m]

buckets [B]

universe [m]

buckets [B]

1 2 3 4 5 6 7 8 9 10

11

Hashed into B = 8 buckets, get 8 subsampled streams

For item i its stream consists of j ∈ [m] such that h(j)= h(i)

For example,

Ï subsampled stream of item 1 is {1, 6}

Ï subsampled stream of item 5 is {5, 7}

Hashing the items

universe [m]

buckets [B]

universe [m]

buckets [B]

1 2 3 4 5 6 7 8 9 10

11

Hashed into B = 8 buckets, get 8 subsampled streams

For item i its stream consists of j ∈ [m] such that h(j)= h(i)

For example,

Ï subsampled stream of item 1 is {1, 6}

Ï subsampled stream of item 5 is {5, 7}

Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 1 is {1, 6}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1

4

6 1

2 10

1

5

1 1

2 2 3 3 3 9 8 7 4 4 2 2

1

5

Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 1 is {1, 6}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1

4

6 1

2 10

1

5

1 1

2 2 3 3 3 9 8 7 4 4 2 2

1

5

Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 5 is {5, 7}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5

1 1 2 2 3 3 3 9 8

7

4 4 2 2 1

5

Note: hashing the universe [m], not positions in the stream

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 3 3 9 8 7 4 4 2 2 1 5

E.x. the subsampled stream of item 5 is {5, 7}

1 2 3 4 5 6 7 8 9 105 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5

1 1 2 2 3 3 3 9 8

7

4 4 2 2 1

5

Final ApproxPointQuery

Choose
Ï t random hash functions h1,h2, . . . ,ht from items [m] to

B ≈ k buckets {1,2, . . . ,B}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

B buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Final ApproxPointQuery

Choose
Ï t random hash functions h1,h2, . . . ,ht from items [m] to

B ≈ k buckets {1,2, . . . ,B}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

B buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Final ApproxPointQuery

Choose
Ï t random hash functions h1,h2, . . . ,ht from items [m] to

B ≈ k buckets {1,2, . . . ,B}

Ï t random hash functions s1,s2, . . . ,st from items [m] to
{−1,+1}

B buckets

t
ha

sh
fu

nc
tio

ns

5

← array C

The algorithm runs t independent copies of basic estimate:

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t =O(logN), then for every i ∈ [m]

|ESTIMATE(C, i)− fi | ≤ εfk
at every point in the stream whp.

Space complexity is O(B logN)

How large is B?

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t =O(logN), then for every i ∈ [m]

|ESTIMATE(C, i)− fi | ≤ εfk
at every point in the stream whp.

Space complexity is O(B logN)

How large is B?

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t =O(logN), then for every i ∈ [m]

|ESTIMATE(C, i)− fi | ≤ εfk
at every point in the stream whp.

Space complexity is O(B logN)

How large is B?

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t =O(logN), then for every i ∈ [m]

|ESTIMATE(C, i)− fi | ≤ εfk
at every point in the stream whp.

Space complexity is O(B logN)

How large is B?

Space complexity

Set B = 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
Note that B =O(k/ε2) if 1

k
∑

j∈TAIL f 2
j =O(f 2

k)

head

tail

Note: if B ≥ k , can detect elements with counts above
O

(√
1
B ·∑j∈TAIL f 2

j

)

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
We have

∑
j∈TAIL f 2

j =N −p
N ≤N, and f 2

1 =N

So B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}

We have
∑

j∈TAIL f 2
j =N −p

N ≤N, and f 2
1 =N

So B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
We have

∑
j∈TAIL f 2

j =N −p
N ≤N, and f 2

1 =N

So B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
We have

∑
j∈TAIL f 2

j =N −p
N ≤N, and f 2

1 =N

So B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

Space complexity

Set k = 1. Suppose that 1 appears
p

N times in the stream, and
other N −p

N elements are distinct

Then f1 =p
N, fi = 1 for i = 2,N −p

N.

Set B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
We have

∑
j∈TAIL f 2

j =N −p
N ≤N, and f 2

1 =N

So B = 8max

{
1,

32
∑

j∈TAIL f 2
j

(εf1)2

}
=O(1/ε2) suffices

Remarkable, as 1 appears only in
p

N positions out of N: a
vanishingly small fraction of positions!

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t ≥A logN for an absolute

constant A> 0, then for every i ∈ [m]∣∣ESTIMATE(C, i)− fi
∣∣≤ εfk

with high probability.

(fi is the frequency of i)

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Variance of estimate for i from r -th row:∑
j 6=i :hr(j)=hr(i)

f 2
j

Show that ∑
j 6=i :hr(j)=hr(i)

f 2
j =O(1/B)

∑
j∈TAIL,j 6=i

f 2
j

with high constant probability.

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Variance of estimate for i from r -th row:∑
j 6=i :hr(j)=hr(i)

f 2
j

Show that ∑
j 6=i :hr(j)=hr(i)

f 2
j =O(1/B)

∑
j∈TAIL,j 6=i

f 2
j

with high constant probability.

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t]

Pr[hr (i)= hr (j)]≤ 1/B

Suppose that B ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/B
≥ 1−1/8

(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t]

Pr[hr (i)= hr (j)]≤ 1/B

Suppose that B ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/B
≥ 1−1/8

(No) collisions with head items

NO-COLLISIONSr (i):=event that{
j ∈HEAD \ i : hr (j)= hr (i)

}=;,

i.e. that i collides with none of top k elements under hr .

For every j 6= i and every r ∈ [1 : t]

Pr[hr (i)= hr (j)]≤ 1/B

Suppose that B ≥ 8k . Then by the union bound

Pr[NO-COLLISIONSr (i)]≥ 1−k/B
≥ 1−1/8

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many of
tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simultaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr(j)=hr(i)

f 2
j + ∑

j∈TAIL,j 6=i
hr(j)=hr(i)

f 2
j

For each r ∈ [1 : t] and each item i ∈ [m] define three events:

Ï NO-COLLISIONSr (i) – i does not collide with any of the
head items under hashing r

Ï SMALL-VARIANCEr (i) – i does not collide with too many
of tail items under hashing r

Ï SMALL-DEVIATIONr (i) – success event from basic analysis

Show that all three events hold simulaneously with probability
strictly bigger than 1/2 – so median gives good estimate

Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

B
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t]

Prhr [hr (i)= hr (j)]= 1/B (B is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
B

∑
j∈TAIL

f 2
j

Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

B
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t]

Prhr [hr (i)= hr (j)]= 1/B (B is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
B

∑
j∈TAIL

f 2
j

Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

B
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t]

Prhr [hr (i)= hr (j)]= 1/B (B is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
B

∑
j∈TAIL

f 2
j

Small variance from tail elements
SMALL-VARIANCEr (i):=event that

∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j ≤ 8

B
∑

j∈TAIL
f 2
j

For every i , j ∈ [m], i 6= j and r ∈ [1 : t]

Prhr [hr (i)= hr (j)]= 1/B (B is the number of buckets)

So by linearity of expectation

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

= ∑
j∈TAIL,j 6=i

f 2
j ·Prhr [hr (i)= hr (j)]

≤ 1
B

∑
j∈TAIL

f 2
j

We proved that

E

 ∑
j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

≤ 1
B

∑
j∈TAIL

f 2
j

By Markov’s inequality one has, for every i and every r ,

Pr[SMALL-VARIANCEr (i)]≥ 1−1/8

NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
B

∑
j∈TAIL

f 2
j

NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
B

∑
j∈TAIL

f 2
j

NO-COLLISIONSr(i) and SMALL-VARIANCEr(i): recap

Consider contribution of head and tail items separately:∑
j 6=i :hr (j)=hr (i)

f 2
j = ∑

j∈HEAD,j 6=i
hr (j)=hr (i)

f 2
j + ∑

j∈TAIL,j 6=i
hr (j)=hr (i)

f 2
j

Conditioned on NO-COLLISIONSr (i) and SMALL-VARIANCEr (i)

Ï first term is zero

Ï second term is at most

8
B

∑
j∈TAIL

f 2
j

Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Markov’s inequality one has, for every i and every r ,

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

Small deviation event

SMALL-DEVIATIONr (i)=event that

(C[r ,hr (i)] ·sr (i)− fi)
2 ≤ 8Var(C[r ,hr (i)] ·sr (i)).

By Markov’s inequality one has, for every i and every r ,

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

Pr[SMALL-VARIANCEr (i)]≥ 1−1/8

Pr[NO-COLLISIONSr (i)]≥ 1−1/8

Pr[SMALL-DEVIATIONr (i)]≥ 1−1/8

So by the union bound

Pr[SMALL-VARIANCEr (i) and NO-COLLISIONSr (i)
and SMALL-DEVIATIONr (i)]≥ 5/8.

For every p ∈ [1 :N] let fi(p) :=frequency of i up to position p

Lemma
If B ≥ 8max

{
k ,

32
∑

j∈TAIL f 2
j

(εfk)2

}
and t ≥A logN for an absolute

constant A> 0, then with probability ≥ 1−1/N3 for every i ∈ [m]∣∣ESTIMATE(C, i)− fi(p)
∣∣≤ εfk

at the end of the stream.

Remarks, related results, open problems

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1

4 6 1 2 10 1 5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4

6 1 2 10 1 5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6

1 2 10 1 5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1

2 10 1 5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2

10 1 5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10

1 5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1

5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5

1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1

5 2 2 3 -3 3 9 8 7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5

2 2 3 -3 3 9 8 7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2

2 3 -3 3 9 8 7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2

3 -3 3 9 8 7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3

-3 3 9 8 7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3

3 9 8 7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3

3 9 8 7 4 4 2 2 1

1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3

3 9 8 7 4 4 2 2 1

1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]−sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3

3 9 8 7 4 4 2 2 1

1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3

9 8 7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3 9

8 7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3 9 8

7 4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3 9 8 7

4 4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3 9 8 7 4

4 2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3 9 8 7 4 4

2 2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3 9 8 7 4 4 2

2 1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3 9 8 7 4 4 2 2

1 1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 5 2 2 3 -3 3 9 8 7 4 4 2 2 1

1

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

1 2 3 4 5 6 7 8 9 10

head

tail

head

1 4 6 1 2 10 1 5 1 1 2 2 3 -3 3 9 8 7 4 4 2 2 1 5

UPDATE(C, i)
for r ∈ [1 : t]

C[r ,hr (i)]←C[r ,hr (i)]+sr (i)
end for

ESTIMATE(C, i)
return medianr

{
C[r ,hr (i)] ·sr (i)

}

Sketching: take (randomized) linear measurements of the input

S

sketching matrix

space=number of rows

•

x

b=

Easy to maintain sketch in dynamic streams
(insertions and deletions)

Sparse recovery

S

sketching matrix

O(k logn) rows

•

x

b=

Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Sparse recovery
Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 1: # of measurements is optimal for `∞/`2
guarantee above

(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, –
see Do Ba, Indyk, Price, Woodruff’10)

Observation 2: `2/`2 sparse recovery guarantee follows:∥∥x − x̂
∥∥

2 =O(1) · ‖xTAIL‖2.

Sparse recovery
Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 1: # of measurements is optimal for `∞/`2
guarantee above

(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, –
see Do Ba, Indyk, Price, Woodruff’10)

Observation 2: `2/`2 sparse recovery guarantee follows:∥∥x − x̂
∥∥

2 =O(1) · ‖xTAIL‖2.

Sparse recovery
Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 1: # of measurements is optimal for `∞/`2
guarantee above

(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, –
see Do Ba, Indyk, Price, Woodruff’10)

Observation 2: `2/`2 sparse recovery guarantee follows:∥∥x − x̂
∥∥

2 =O(1) · ‖xTAIL‖2.

Sparse recovery
Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 1: # of measurements is optimal for `∞/`2
guarantee above

(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, –
see Do Ba, Indyk, Price, Woodruff’10)

Observation 2: `2/`2 sparse recovery guarantee follows:∥∥x − x̂
∥∥

2 =O(1) · min
k−sparse x ′

‖x −x ′‖2.

Sparse recovery
Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 1: # of measurements is optimal for `∞/`2
guarantee above

(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, –
see Do Ba, Indyk, Price, Woodruff’10)

Observation 2: `2/`2 sparse recovery guarantee follows:∥∥x − x̂
∥∥

2 =O(1) · min
k−sparse x ′

‖x −x ′‖2.

Sparse recovery
Let S be a COUNTSKETCH matrix with O(1

ε2 k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 1: # of measurements is optimal for `∞/`2
guarantee above

(capacity of the Gaussian channel, i.e. Shannon-Hartley theorem, –
see Do Ba, Indyk, Price, Woodruff’10)

Observation 2: `2/`2 sparse recovery guarantee follows:∥∥x − x̂
∥∥

2 = (1+ε) · min
k−sparse x ′

‖x −x ′‖2.

Sparse recovery

Let S be a COUNTSKETCH matrix with O(k logn) rows

Lemma
For every x ∈Rn if x̂ = EST(Sx), then whp

∥∥x − x̂
∥∥∞ ≤ 1p

k
‖xTAIL‖2.

(xTAIL – x with largest k elements zeroed out)

Observation 3: if ‖x‖0 ≤ k , then xTAIL = 0 and EST(Sx)= x whp

Exact sparse recovery: a k -sparse vector can be recovered
from O(k) linear measurements

CountSketch for matrices?
Input: r parties hold vectors x1, . . . ,xr ∈Rn

each party sends O(B logn) bits to coordinator
(assume shared randomness)

Output: find largest entries in A=∑r
i=1 xixT

i

more precisely, output approximation Â∣∣∣Âij −Aij

∣∣∣= O(1)p
B

‖A‖F .
x1 ∈Rn

x2 ∈Rn

x3 ∈Rn

...
xr ∈Rn

Coordinator Â

Every party i sends COUNTSKETCH(xixT
i) into O(B) buckets

(slow)

CountSketch for matrices?
Input: r parties hold vectors x1, . . . ,xr ∈Rn

each party sends O(B logn) bits to coordinator
(assume shared randomness)

Output: find largest entries in A=∑r
i=1 xixT

i

more precisely, output approximation Â∣∣∣Âij −Aij

∣∣∣= O(1)p
B

‖A‖F .

x1 ∈Rn

x2 ∈Rn

x3 ∈Rn

...
xr ∈Rn

Coordinator Â

Every party i sends COUNTSKETCH(xixT
i) into O(B) buckets

(slow)

CountSketch for matrices?
Input: r parties hold vectors x1, . . . ,xr ∈Rn

each party sends O(B logn) bits to coordinator
(assume shared randomness)

Output: find largest entries in A=∑r
i=1 xixT

i

more precisely, output approximation Â∣∣∣Âij −Aij

∣∣∣= O(1)p
B

‖A‖F .
x1 ∈Rn

x2 ∈Rn

x3 ∈Rn

...
xr ∈Rn

Coordinator Â

Every party i sends COUNTSKETCH(xixT
i) into O(B) buckets

(slow)

CountSketch for matrices?
Input: r parties hold vectors x1, . . . ,xr ∈Rn

each party sends O(B logn) bits to coordinator
(assume shared randomness)

Output: find largest entries in A=∑r
i=1 xixT

i

more precisely, output approximation Â∣∣∣Âij −Aij

∣∣∣= O(1)p
B

‖A‖F .
x1 ∈Rn

x2 ∈Rn

x3 ∈Rn

...
xr ∈Rn

Coordinator Â

Every party i sends COUNTSKETCH(xixT
i) into O(B) buckets

(slow)

Define

A=
r∑

i=1
xixi

T ∈Rn×n.

Hash function
h : [n]× [n]→ [B]

and random signs

s : [n]× [n]→ {−1,+1}.

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj .

COUNTSKETCH(xixT
i) takes n2 time to compute...

Make hash functions ‘separable’?

Define

A=
r∑

i=1
xixi

T ∈Rn×n.

Hash function
h : [n]× [n]→ [B]

and random signs

s : [n]× [n]→ {−1,+1}.

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj .

COUNTSKETCH(xixT
i) takes n2 time to compute...

Make hash functions ‘separable’?

Define

A=
r∑

i=1
xixi

T ∈Rn×n.

Hash function
h : [n]× [n]→ [B]

and random signs

s : [n]× [n]→ {−1,+1}.

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj .

COUNTSKETCH(xixT
i) takes n2 time to compute...

Make hash functions ‘separable’?

Define

A=
r∑

i=1
xixi

T ∈Rn×n.

Hash function
h : [n]× [n]→ [B]

and random signs

s : [n]× [n]→ {−1,+1}.

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj .

COUNTSKETCH(xixT
i) takes n2 time to compute...

Make hash functions ‘separable’?

Define

A=
r∑

i=1
xixi

T ∈Rn×n.

Hash function
h : [n]× [n]→ [B]

and random signs

s : [n]× [n]→ {−1,+1}.

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj .

COUNTSKETCH(xixT
i) takes n2 time to compute...

Make hash functions ‘separable’?

CountSketch for matrices?
Input: r parties hold vectors x1, . . . ,xr ∈Rn

each party sends O(B logn) bits to coordinator
(assume shared randomness)

Output: find largest entries in A=∑r
i=1 xixT

i

more precisely, output approximation Â∣∣∣Âij −Aij

∣∣∣= O(1)p
B

‖A‖F .
x1 ∈Rn

x2 ∈Rn

x3 ∈Rn

...
xr ∈Rn

Coordinator Â

Every party i sends SOMESKETCH(xi) into B buckets?
(fast)

CountSketch for matrices?
Input: r parties hold vectors x1, . . . ,xr ∈Rn

each party sends O(B logn) bits to coordinator
(assume shared randomness)

Output: find largest entries in A=∑r
i=1 xixT

i

more precisely, output approximation Â∣∣∣Âij −Aij

∣∣∣= O(1)p
B

‖A‖F .
x1 ∈Rn

x2 ∈Rn

x3 ∈Rn

...
xr ∈Rn

Coordinator Â

Every party i sends SOMESKETCH(xi) into B buckets?
(fast)

(x1 x2 x3 x4 x5 x6 x7 x8)

h1

S1x

(x1 x2 x3 x4 x5 x6 x7 x8)

h2

S2x

Take two independent instances of COUNTSKETCH: hash
functions

h1,h2 : [n]→ [B],

random signs
s1,s2 : [n]→ {−1,+1}

Tensor COUNTSKETCH1 and COUNTSKETCH2!

(x1 x2 x3 x4 x5 x6 x7 x8)

h1

S1x

(x1 x2 x3 x4 x5 x6 x7 x8)

h2

S2x

Define tensoring of COUNTSKETCH1 and COUNTSKETCH2:

h(i , j)= h1(i)+h2(j) (mod B).

and s(i , j)= s1(i) ·s2(j).

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj

= ∑
i ,j∈[n]:h1(i)+h2(j)=b

s1(i) ·s2(j) ·xixj

(x1 x2 x3 x4 x5 x6 x7 x8)

h1

S1x

(x1 x2 x3 x4 x5 x6 x7 x8)

h2

S2x

Define tensoring of COUNTSKETCH1 and COUNTSKETCH2:

h(i , j)= h1(i)+h2(j) (mod B).

and s(i , j)= s1(i) ·s2(j).

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj

= ∑
i ,j∈[n]:h1(i)+h2(j)=b

s1(i) ·s2(j) ·xixj

(x1 x2 x3 x4 x5 x6 x7 x8)

h1

S1x

(x1 x2 x3 x4 x5 x6 x7 x8)

h2

S2x

Define tensoring of COUNTSKETCH1 and COUNTSKETCH2:

h(i , j)= h1(i)+h2(j) (mod B).

and s(i , j)= s1(i) ·s2(j).

(Sx)b = ∑
i ,j∈[n]:h(i ,j)=b

s(i , j) ·xixj

= ∑
i ,j∈[n]:h1(i)+h2(j)=b

s1(i) ·s2(j) ·xixj

(Sx)b = ∑
i ,j∈[n]:h1(i)+h2(j)=b

s1(i) ·s2(j) ·xixj .

Can find Sx from COUNTSKETCH1(x) and COUNTSKETCH2(x)
fast! (exercise)

Stronger analysis of COUNTSKETCH
The bound ∥∥x − x̂

∥∥∞ ≤ 1p
k
‖xTAIL‖2

is optimal for sketches with O(k logn) rows, for worst case x

If x is drawn from a distribution (e.g., power law, Zipfian), one
can do better by about logn factor: Minton-Price’14

Minton-Price’14 assumes uniformly random hashing. A very
recent improvement:

Stronger analysis of COUNTSKETCH
The bound ∥∥x − x̂

∥∥∞ ≤ 1p
k
‖xTAIL‖2

is optimal for sketches with O(k logn) rows, for worst case x

If x is drawn from a distribution (e.g., power law, Zipfian), one
can do better by about logn factor: Minton-Price’14

Minton-Price’14 assumes uniformly random hashing. A very
recent improvement:

Stronger analysis of COUNTSKETCH
The bound ∥∥x − x̂

∥∥∞ ≤ 1p
k
‖xTAIL‖2

is optimal for sketches with O(k logn) rows, for worst case x

If x is drawn from a distribution (e.g., power law, Zipfian), one
can do better by about logn factor: Minton-Price’14

Minton-Price’14 assumes uniformly random hashing. A very
recent improvement:

Non-asymptotic measurement complexity?
Good constants are achieved by `1-minimization and related

(non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to
achieve capacity – similar effects here?

Non-asymptotic measurement complexity?
Good constants are achieved by `1-minimization and related

(non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to
achieve capacity – similar effects here?

Non-asymptotic measurement complexity?
Good constants are achieved by `1-minimization and related

(non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to
achieve capacity – similar effects here?

Non-asymptotic measurement complexity?
Good constants are achieved by `1-minimization and related

(non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to
achieve capacity – similar effects here?

Non-asymptotic measurement complexity?
Good constants are achieved by `1-minimization and related

(non-sublinear) methods. Get best of both worlds?

Ex: in LDPC codes, the Tanner graphs needs to be irregular to
achieve capacity – similar effects here?

Learning-augmented sketching: learn the hash function h in
COUNTSKETCH (and more!) from data

Adversarially robust sketching: what if x is chosen by an
adversary with (partial) knowledge of the data structure?

Learning-augmented sketching: learn the hash function h in
COUNTSKETCH (and more!) from data

Adversarially robust sketching: what if x is chosen by an
adversary with (partial) knowledge of the data structure?

Take (randomized) linear measurements of the input

S

sketching matrix

space=number of rows

•

x

b=

Distribution of the sketching matrix?

Distribution of the sketching matrix?

+1 0 -1 0 0 0 0 0 0 0 +1 0
0 0 0 0 +1 0 0 0 0 -1 0 0
0 -1 0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 -1 0 0 +1 0 0 -1
0 0 0 +1 0 0 +1 0 0 0 0 0

Bernoulli(±1) or Gaussian linear measurements on random
subsets of the universe

The nonzeros are specified by the hash function h : [n]→ [B]

Can compute Sx in time nnz(x)!

Distribution of the sketching matrix?

+1 0 -1 0 0 0 0 0 0 0 +1 0
0 0 0 0 +1 0 0 0 0 -1 0 0
0 -1 0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 -1 0 0 +1 0 0 -1
0 0 0 +1 0 0 +1 0 0 0 0 0

Bernoulli(±1) or Gaussian linear measurements on random
subsets of the universe

The nonzeros are specified by the hash function h : [n]→ [B]

Can compute Sx in time nnz(x)!

Distribution of the sketching matrix?

+1 0 -1 0 0 0 0 0 0 0 +1 0
0 0 0 0 +1 0 0 0 0 -1 0 0
0 -1 0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 -1 0 0 +1 0 0 -1
0 0 0 +1 0 0 +1 0 0 0 0 0

Bernoulli(±1) or Gaussian linear measurements on random
subsets of the universe

The nonzeros are specified by the hash function h : [n]→ [B]

Can compute Sx in time nnz(x)!

Distribution of the sketching matrix?

+1 0 -1 0 0 0 0 0 0 0 +1 0
0 0 0 0 +1 0 0 0 0 -1 0 0
0 -1 0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 -1 0 0 +1 0 0 -1
0 0 0 +1 0 0 +1 0 0 0 0 0

Bernoulli(±1) or Gaussian linear measurements on random
subsets of the universe

The nonzeros are specified by the hash function h : [n]→ [B]

Can compute Sx in time nnz(x)!

Distribution of the sketching matrix?

+1 0 -1 0 0 0 0 0 0 0 +1 0
0 0 0 0 +1 0 0 0 0 -1 0 0
0 -1 0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 -1 0 0 +1 0 0 -1
0 0 0 +1 0 0 +1 0 0 0 0 0

Bernoulli(±1) or Gaussian linear measurements on random
subsets of the universe

The nonzeros are specified by the hash function h : [n]→ [B]

Can compute Sx in time nnz(x)!

Distribution of the sketching matrix?

+1 0 -1 0 0 0 0 0 0 0 +1 0
0 0 0 0 +1 0 0 0 0 -1 0 0
0 -1 0 0 0 0 0 +1 0 0 0 0
0 0 0 0 0 -1 0 0 +1 0 0 -1
0 0 0 +1 0 0 +1 0 0 0 0 0

Bernoulli(±1) or Gaussian linear measurements on random
subsets of the universe

The nonzeros are specified by the hash function h : [n]→ [B]

Can compute Sx in time nnz(x)!

Random restrictions (hashing)

What can we learn from Sx , where S is just random
restrictions?

+1 0 0 0 0 0 0 0 0 0 +1 0
0 +1 +1 0 +1 0 0 0 0 +1 0 0
+1 0 0 +1 +1 +1 0 +1 0 0 0 0
+1 +1 0 0 +1 +1 0 0 +1 0 0 +1
0 +1 0 +1 +1 +1 +1 0 +1 0 +1 0

Can learn ‖x‖0, i.e. number of nonzeros in x

Johnson-Lindenstrauss transform

Sketching matrix S = a row of i.i.d. Gaussians of unit variance

Measures `2
2 norm of x in expectation:

E
[∥∥Sx

∥∥2
2

]
= ‖x‖2

2

Johnson-Lindenstrauss transform

Sketching matrix S = a row of i.i.d. Gaussians of unit variance

Measures `2
2 norm of x in expectation:

E
[∥∥Sx

∥∥2
2

]
= ‖x‖2

2

Johnson-Lindenstrauss transform

Sketching matrix S = m rows of i.i.d. Gaussians of unit variance
1/m

Measures `2
2 norm of x with high probability:

P
[∥∥Sx

∥∥2
2 6≈ ‖x‖2

2

]
= 1−exp(−Ω(ε2m)

Downside: Sx takes m ·n time to compute

Johnson-Lindenstrauss transform

Sketching matrix S = m rows of i.i.d. Gaussians of unit variance
1/m

Measures `2
2 norm of x with high probability:

P
[∥∥Sx

∥∥2
2 6≈ ‖x‖2

2

]
= 1−exp(−Ω(ε2m)

Downside: Sx takes m ·n time to compute

Johnson-Lindenstrauss transform

Sketching matrix S = m rows of i.i.d. Gaussians of unit variance
1/m

Measures `2
2 norm of x with high probability:

P
[∥∥Sx

∥∥2
2 6≈ ‖x‖2

2

]
= 1−exp(−Ω(ε2m)

Downside: Sx takes m ·n time to compute

(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform

Sketching matrix S =P ·H ·D
D=diagonal random sign matrix, H=Hadamard transform,

P=random sampling matrix

Sx can be computed in O(m+n logn) time

(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform

Sketching matrix S =P ·H ·D

D=diagonal random sign matrix, H=Hadamard transform,
P=random sampling matrix

Sx can be computed in O(m+n logn) time

(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform

Sketching matrix S =P ·H ·D
D=diagonal random sign matrix, H=Hadamard transform,

P=random sampling matrix

Sx can be computed in O(m+n logn) time

(Faster) Johnson-Lindenstrauss transform

Subsampled randomized Hadamard transform

Sketching matrix S =P ·H ·D
D=diagonal random sign matrix, H=Hadamard transform,

P=random sampling matrix

Sx can be computed in O(m+n logn) time

Frequency moments

The p-th frequency moment

Fp = ∑
i∈[n]

f p
i

Theorem
Can approximate Fp for all p ∈ [0,2] in polylogarithmic space,
but need Ω(n1−2/p) space for all p > 2

Bar-Yossef et al. Information complexity approach to data
stream lower bounds

Frequency moments

The p-th frequency moment

Fp = ∑
i∈[n]

f p
i

Theorem
Can approximate Fp for all p ∈ [0,2] in polylogarithmic space,
but need Ω(n1−2/p) space for all p > 2

Bar-Yossef et al. Information complexity approach to data
stream lower bounds

Frequency moments

The p-th frequency moment

Fp = ∑
i∈[n]

f p
i

Theorem
Can approximate Fp for all p ∈ [0,2] in polylogarithmic space,
but need Ω(n1−2/p) space for all p > 2

Bar-Yossef et al. Information complexity approach to data
stream lower bounds

