Improved Approximating Algorithms for Directed Steiner Forest

Moran Feldman* Guy Kortsarz † Zeev Nutov ‡

Abstract
We consider the k-Directed Steiner Forest (k-DSF) problem: given a directed graph $G = (V, E)$ with edge costs, a collection $D \subseteq V \times V$ of ordered node pairs, and an integer $k \leq |D|$, find a min-cost subgraph H of G that contains an st-path for (at least) k pairs $(s, t) \in D$. When $k = |D|$, we get the Directed Steiner Forest (DSF) problem. The best known approximation ratios for these problems are: $\tilde{O}(k^{2/3})$ for k-DSF by Charikar et al. [2], and $O(1/2 + \varepsilon)$ for DSF by Chekuri et al. [3].

For DSF we give an $O(n^2 \cdot \min\{n^{4/5}, m^{2/3}\})$-approximation scheme using a novel LP-relaxation seeking to connect pairs via “cheap” paths. This is the first sub-linear (in terms of $n = |V|$) approximation ratio for the problem. For k-DSF we give a simple greedy $O(k^{3/2 + \varepsilon})$-approximation scheme, improving the best known ratio $O(k^{2/3})$ by Charikar et al. [2], and (almost) matching, in terms of k, the best ratio known for the undirected variant [11]. Even when used for the particular case of DSF, our algorithm favorably compares to the one of [3], which repeatedly solves linear programs, and uses complex time and space consuming transformations.

1 Introduction
Network design problems seek to find a minimum cost subgraph of a given (directed or undirected) graph, that satisfies some prescribed properties, often connectivity requirements. A basic network design problem is the Steiner Tree problem: given a graph $G = (V, E)$ with edge costs, and a set $T \subseteq V$ of terminals, find a min-cost subtree of G that spans T. This classic NP-hard problem was extensively studied with respect to approximation, see [26] and the references therein. A classic generalization is the Steiner Forest problem: given a graph $G = (V, E)$ with edge costs and a collection $D \subseteq V \times V$ of (unordered) node pairs, find a minimum cost subgraph H of G that connects all pairs in D (namely, contains an st-path for every $(s, t) \in D$). The best approximation ratio known for Steiner Forest is 2 [1]. In the more general k-Steiner Forest problem, we are also given an integer $k \leq |D|$, and the goal is to connect at least k (arbitrary) pairs from D. Here a significant obstacle lies in the way of achieving a good (e.g., polylogarithmic) approximation ratio even for undirected graphs. It was observed in [12] that k-Steiner Forest is harder than the Densest k-Subgraph problem, which is commonly believed not to admit a polylogarithmic approximation. See [8] for an $O(n^{1/3 - \varepsilon})$ approximation algorithm for Densest k-Subgraph, with $\delta \approx 1/60$. Despite several attempts, this ratio was not improved for 11 years. The best known approximation ratio for k-Steiner Forest is $O(\min\{\sqrt{n}, \sqrt{k}\})$, see a recent paper by Gupta, Hajiaghayi, and Nagarajan [11].

In this paper we consider the directed variant of k-Steiner Forest, namely:

k-Directed Steiner Forest (k-DSF)

Instance: A directed graph $G = (V, E)$ with edge-costs $\{c(e) : e \in E\}$, a set $D \subseteq V \times V$ of ordered pairs, and an integer $k \leq |D|$.

Objective: Find a min-cost subgraph H of G that contains an st-path for (at least) k pairs $(s, t) \in D$.

When $k = |D|$ we get the Directed Steiner Forest (DSF) problem. Another particular case of k-DSF is the k-Directed Steiner Tree (k-DST) problem, where $D = \{r\} \times T$ for some $r \in V$ and a terminal set $T \subseteq V - \{r\}$.

Remark. The name “Directed Steiner Forest” is used to relate the problem to the undirected version. In the undirected version, any minimal solution is a forest, but in the directed case, the structure of a solution may be complicated (e.g., it may contain cycles).

1.1 Directed and undirected Steiner problems
Usually, directed variants of network design problems are much harder to approximate than the undirected ones (we shall later see that for k-DSF this is not the case). For example, while the undirected Steiner Tree and the k-Steiner Tree problems both admit a constant approximation ratio (see [26, 9]), even a very special case of DST – the Group Steiner Tree problem on trees, is unlikely to admit a $\log^{2-\varepsilon} n$ ratio for any $\varepsilon > 0$ [13]. In fact, the best known ratio for DST is much worse than its proved lower bound. Extending and simplifying the

*Technion. moranfe@cs.technion.ac.il. Part of this work is a part of author’s M.Sc. Thesis done at The Open University of Israel.
†Rutgers University. guyk@camden.rutgers.edu
‡The Open University of Israel. nutov@openu.ac.il
recursive greedy method introduced by Zelikovsky [27] and Kortsarz and Peleg [22], Charikar et al. [2] gave a combinatorial $O(k^{2.27})$-approximation algorithm for k-DST that runs in $O(k^{2.67} n^2)$ time (where $k = |T|$). Substituting $\ell = 2/\varepsilon$ gives an $O(k^{1+4/9})$-approximation scheme, namely, an $O(k^2/\varepsilon^3)$-approximation algorithm that runs in $O(k^{1+4/9} n^2/\varepsilon)$ time for any fixed $\varepsilon > 0$. Substituting $\ell = \log k$ gives an $O(\log^3 k)$-approximation in quasi-polynomial time.

For Steiner Forest, the gap between directed and undirected graphs becomes even wider. The problem admits a constant approximation for undirected graphs [1]. However, Dodis and Khanna [6] showed that DSF is at least as hard as Label-Cover [25]. This implies that DSF cannot be approximated within $O(2^{\log^{1-\varepsilon} n})$ for any fixed $\varepsilon > 0$, unless NP-hard problems can be solved in quasi-polynomial time [25].

The situation for DSF is much worse than the above in the current state of the art. The best known ratio for Label-Cover is $O(\sqrt{n})$ [24]. This ratio seems hard to improve, and a better ratio is not known even for very simple versions of the problem, see [17]. If Label-Cover is indeed $\Omega(\sqrt{n})$ hard to approximate, then so is DSF. Still, there is no evidence yet discarding the possibility that DSF admits an $O(\sqrt{n})$ approximation algorithm.

Table 1 summarizes the best known approximation ratios for the presented problems, prior to our work. For other related problems, including the closely related Group Steiner Tree problem see [4, 10, 13, 15, 21] and surveys in [7] and [18, 20].

1.2 Our results

For DSF, the best known ratio, in terms of n, was $O(n^{1+\varepsilon})$, which is easily derived from the algorithm of [2] for DST. For k-DSF, the best ratio was $O(k^{2/3})$, which in terms of n can be as bad as $O(n^{4/3})$ if $k = \Theta(n^\varepsilon)$.

A natural question is whether DSF admits an $O(n^{1-\varepsilon})$ approximation ratio. In particular, is there an $O(\sqrt{n})$-approximation algorithm? Our first result makes a progress toward answering this question, by giving the first sublinear, in terms of n, approximation algorithm for the problem. The same algorithm, with minor modifications, also provides an approximation guarantee in terms of m, which for sparse graphs, improves upon its guarantee in terms of n.

Theorem 1.1. DSF admits an $O(n^{\varepsilon}\cdot\min\{n^{4/5}, m^{2/3}\})$-approximation scheme.

The algorithm of [3] for DSF does not extend to k-DSF; see the reasons for that in Section 1.3.1. Thus another natural question is: What is the best ratio possible for k-DSF in terms of k? We prove:

Theorem 1.2. k-DSF admits an $O(k^{1/2+\varepsilon})$-approximation scheme.

This improves the $O(k^{2/3})$ ratio of [2], and almost matches the best approximation $O(\sqrt{k})$ known (in terms of k) for undirected graphs [11]. A striking feature of the state of the art of the k-Steiner Forest problem is that the ratios known for the directed and undirected cases are not that different in terms of k: $O(\sqrt{k})$ for undirected graphs [11] versus $O(k^{1+2/\varepsilon})$ in our paper. However, in terms of n, the difference \sqrt{n} versus $n^{4/5+\varepsilon}$ is still quite large.

A *setpair* is a pair (S, T) of disjoint nonempty subsets of V. Chekuri et al. [3] gave an $O(\log^2 n \log^2 |D|)$-approximation algorithm for the following generalization of the Group Steiner Tree problem:

Group Steiner Forest (GSF)

Instance: An (undirected) graph $G = (V, E)$ with costs $\{c(e) : e \in E\}$, and a set D of setpairs in V.

Objective: Find a min-cost subgraph H of G with an (S, T)-path for every setpair $(S, T) \in D$.

In the more general k-Group Steiner Forest (k-GSF) problem, we are also given an integer $k \leq |D|$, and only require H to contain an (S, T)-path for (at least) k setpairs $(S, T) \in D$. Note that k-GSF also generalizes the (undirected) k-Steiner Forest problem, thus, k-GSF is unlikely to admit a polylogarithmic approximation ratio. k-GSF admits an easy (up to constants) approximation ratio preserving reduction to k-DSF. Thus by Theorem 1.2 we obtain the following extension of the $O(\sqrt{k})$-approximation for the (undirected) k-Steiner Forest problem.

Corollary 1.1. k-GSF admits an $O(k^{1/2+\varepsilon})$-approximation scheme.

In fact, our results can be used to show that if the k-Group Steiner Tree problem admits an α-approximation, then k-GSF admits an $O(\alpha\sqrt{k})$-approximation algorithm, implying an $O(\sqrt{k})$-approximation.

The running time of our algorithm for k-DSF:

We will show that if k-DST admits an α-approximation in $T(n, k)$ time, then k-DSF admits an $O(\alpha\sqrt{k})$-approximation in $O(nk^2T(2n + k, k))$ time (assuming $T(n, k)$ is increasing in k). In particular, k-DSF admits an $O(k^{1+2/\varepsilon}/\varepsilon^3)$-approximation algorithm which runs in $O(nk^{2+4/\varepsilon}(2n + k)^2/\varepsilon)$ time for any $\varepsilon > 0$. Using the specific properties of the k-DST algorithm of [2], the time complexity can be reduced to $O(nk^{1+4/\varepsilon}(2n + k)^{2/\varepsilon})$.

Comparing our DSF algorithm and the one of [3]:

In addition to the above improvements, our $O(k^{1/2+\varepsilon})$-approximation algorithm for k-DSF, when restricted to
the special case of DSF, achieves the same ratio as [3] but is much simpler and much faster. The algorithm of [3] repeatedly solves linear programs, while our algorithm is purely combinatorial, and can be seen as a reduction to k-DSF.

1.3 Main new techniques

1.3.1 Junction star-trees and their advantages

The algorithm of [2] for k-DST accumulates low density directed trees until enough terminals are connected to the root. The density of a tree is its cost over the number of new terminals it connects. The idea of low-density junction trees was first invented for approximating Buy-at-Bulk problems [5], where it was applied on undirected graphs.

Definition 1.1. An edge set J in a directed graph is called junction tree if it is the union of an ingoing tree and an outgoing tree (not necessarily edge disjoint), both rooted at the same node r. The density of a junction tree w.r.t. a set D of ordered node pairs is its cost over the number of pairs from D it connects.

We present a few details from the algorithm of [3]. A simple averaging argument shows that there is a node r so that at least \sqrt{k} s_it_i-paths go via it (otherwise, a \sqrt{k} ratio is easily derived [3]) giving an existence of a low density junction tree. (Technically speaking, a union of s_it_i-paths all going via r is not a junction tree as defined in [3], but it is easy to see that it contains a junction tree.) The question is how to find such a low density junction tree. A natural approach is to guess the root r and apply the algorithm of [2] to find an in-tree and an out-tree trees separately. The non-trivial challenge is to “match” each “source” s_i with the proper “terminal” t_i. In [3], this difficulty was overcome using a “density type” LP that “forces” the sources to match the terminals.

We overcome the above difficulty of matching s_i and t_i using “junction star-trees”. A junction star-tree is a star with leaves s_i entering a root r joined to an outbranching containing the respective t_i. We force the s_i,t_i to match by “attaching” each s_i as a child of t_i with a directed edge t_is_i of cost $c(s_ir)$. Thus, the s_i become the terminals, and s_i belongs to the solution if and only if t_i does (see Section 4). We show that the metric completion of the input graph G always contains a junction star-tree of good density. Hence the problem is reduced to k'-DST problem; we still need to guess the root r and the number k' of pairs in the junction star-tree, but we do not need to use LP methods.

Another disadvantage of the LP method used by [3] is that it is unable to deal with the k-DSF problem. The LP may connect an arbitrary number of pairs, possibly many more than k. The use of junction star-trees allows us to use the algorithm of [2] for k-DST instead of the LP methods, which in turn allows us to control the number of pairs connected.

1.3.2 A novel LP in the algorithm for DSF

Intuitively, a pair $st \in D$ is “good” if there are “many” nodes r so that a “cheap” st-path via r exists; otherwise, the pair is “bad”. There are three main procedures in our sublinear algorithm for DSF:

1. We use randomization to find a relatively small “junction subset” $R \subset V$ through which all good pairs can be connected. As R is small, and the paths are cheap, we show that the cost of connecting all good pairs via R is $\tilde{O}(n^{4/5}) \cdot \text{opt}$. After all good pairs are connected, they are excluded from D, and we remain with bad pairs only.

2. If in some optimal solution at least half of the bad pairs are connected by “costly paths” then we prove, by standard averaging, the existence of a low density junction-tree (as defined in [3]).

3. If the optimal solution connects most of the bad pairs by “cheap” paths, we use a novel LP-relaxation which asks to connect pairs by cheap paths only. We show how to find an approximate solution for this LP in polynomial time, and how to round a solution into a low density subgraph. Similarly, we can also think of a “good pair” as a pair of nodes such that many edges are involved in “cheap” paths connecting them. This idea give raise to an approximation guarantee in terms of m.

<table>
<thead>
<tr>
<th>Problem</th>
<th>Undirected</th>
<th>Directed</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In terms of n</td>
<td>In terms of k</td>
</tr>
<tr>
<td>Steiner Forest</td>
<td>2 [1]</td>
<td>$O(n^{1+\epsilon})$</td>
</tr>
</tbody>
</table>

Table 1: Best known approximation ratios for Steiner Network problems, prior to our work. We improve the ratio in terms of n for Steiner Forest on directed graphs, and both in terms of n and k for k-Steiner Forest, again, on directed graphs.
2 Preliminaries

2.1 The Greedy Algorithm We use a known result about the performance of a Greedy Algorithm for the following type of problems:

Covering Problem

Instance: A groundset \(E \) and non-negative functions \(\nu, c \) on \(2^E \), given by evaluation oracles.

Objective: Find \(F \subseteq E \) with \(\nu(F) = 0 \) so that \(c(F) \) is minimum.

We call \(\nu \) the deficiency function (it measures how far is \(F \) from being a feasible solution) and \(c \) the cost function.

Definition 2.1. Let \(F \subseteq E \) be a partial solution (partial cover) for an instance of Covering Problem and let \(J \subseteq E \). Let \(\rho(x) \) be a positive function, and let \(\text{opt} \) be the optimal solution value for Covering Problem. We say that \(J \subseteq E \) obeys the \(\rho(x)\)-Density Condition if:

\[
\frac{c(J)}{\nu(F) - \nu(F \cup J)} \leq \text{opt} \cdot \frac{\rho(\nu(F))}{\nu(F)}.
\]

The quantity in the left hand side of (2.1) is the density of \(J \) (w.r.t. \(F \)). The Greedy Algorithm starts with \(F = \emptyset \) and iteratively adds to \(F \) a subset \(J \subseteq E \) obeying (2.1). A set-function \(f \) on \(2^E \) is decreasing if \(f(F_2) \leq f(F_1) \) for any \(F_1 \subseteq F_2 \subseteq E \), and subadditive if \(f(F_1 \cup F_2) \leq f(F_1) + f(F_2) \) for any \(F_1, F_2 \subseteq E \). The following statement is well known (e.g., see a slightly weaker version in [2]).

Theorem 2.1. If \(\nu \) is decreasing, \(c \) is subadditive, and \(\rho(x)/x \) is a decreasing function, then the Greedy Algorithm computes a solution \(F \) with:

\[
c(F) \leq \text{opt} \cdot \int_0^{\nu(\emptyset)} \frac{\rho(x)}{x} dx.
\]

In our setting, the groundset is the set \(E \) of edges of the graph. For every partial solution \(F \subseteq E \), the deficiency \(\nu(F) \) of \(F \) is the number of ordered pairs not connected by \(F \). Formally, \(\nu(F) = \max\{k - |D(F)|, 0\} \), where \(D(F) \) denotes the set of pairs from \(D \) connected by \(F \). Clearly, \(\nu \) is decreasing, and \(c \) is subadditive.

2.2 Some simple reductions We briefly describe some well known reductions to be used later that we can apply with negligible loss (in time complexity or approximation ratio) on a given \(k\)-DSF instance.

Reduction 1. We may assume that we know \(\tau \) such that \(\text{opt} \leq \tau \leq 2 \cdot \text{opt} \).

This can be done by exhaustively checking all values \(\tau \in \{1, 2, 4, \ldots, 2^{\lceil \log_2 c(E) \rceil}\} \); we omit the (well known) details, and for simplicity of exposition assume \(\tau = \text{opt} \).

Reduction 2. Let \(S, T \) be the sets of first and second nodes in pairs of \(D \), respectively. We may assume that \(S \cap T = \emptyset \) and that no edge enters \(S \) or leaves \(T \).

This can be achieved by adding for every node \(v \) two new nodes \(s_v, t_v \) with edges \(s_v, v, v, t_v \) of cost 0 each, and replacing every ordered pair \((u, v) \in D \) by \((s_u, t_v) \).

Reduction 3. We may assume that \(G \) is transitively closed and that the costs are metric.

This is achieved by applying metric completion.

3 A sublinear algorithm for DSF

(Proof of Theorem 1.1)

In this section we describe an \(O(n^{4/5+\varepsilon}) \)-approximation scheme for DSF. The \(O(m^{2/3+\varepsilon}) \)-approximation scheme uses a similar method, and is sketched in Section 3.4.

Given an instance of DSF assume that Reductions 1 and 2 from Section 2.2 are implemented. Recall that in DSF \(k = |D| \). In what follows, let \(p, \alpha, \ell \) be parameters eventually set to:

\[
p = 2 \ln k/n^{1/5}, \quad \alpha = n^{2/5}, \quad \ell = \tau/\alpha^2.
\]

Definition 3.1. For a graph \(H \), let \(\text{dist}_H(u, v) \) denote the minimum cost of a uv-path in \(H \). A path \(P \) is short if \(c(P) \leq \ell \), and long otherwise. For \((s, t) \in D \), let \(U(s, t) = \{u \in V : \text{dist}_G(s, u), \text{dist}_G(u, t) \leq \ell\} \). A pair \((s, t) \in D \) is good if \(|U(s, t)| \geq \alpha \), and is bad otherwise.

3.1 Connecting good pairs

Lemma 3.1. There exists a polynomial time algorithm that given an instance of DSF finds an edge set \(F \) of cost \(c(F) \leq 4p^2\ell = \tilde{O}(n^{4/5}) \cdot \tau \) that connects all good pairs.

Proof. Form a set \(R \subseteq V \) by picking every node \(v \in V \) into \(R \) with probability \(p \). For a given good pair \((s, t) \) we have: \(\Pr[R \cap U(s, t) = \emptyset] \leq (1 - p)^k \leq k^{-2} \). By the union bound, the probability that \(R \cap U(s, t) = \emptyset \) for every good pair \((s, t) \) is at least \(1 - 1/k \). \(|R| \) is a random variable with binomial distribution \(B(n, p) \).

Thus \(E(|R|) = pn \) and the Chernoff Bound we get:

\[
\Pr[|R| \leq 2pn] = \Pr[|R| \leq 2 \cdot E(|R|)] > 1 - e^{-pn/4}.
\]

For \(pn/4 \geq \ln k \) we get that with high probability both \(|R| \leq 2pn \) and \(R \cap U(s, t) = \emptyset \) for every good pair \((s, t) \). This procedure can be derandomized using the method of conditional probabilities. We connect by a short path every node \(s \in S \) to every node \(v \in R \), if such path exists. Similarly, we connect by a short path every node \(v \in R \) to every node \(t \in T \), if such path exists. Let \(H \) be the sub-graph constructed by the above procedure. Clearly \(H \) connects all good pairs.

As \(|S| + |T| \leq 2n \), we get that \(c(H) \leq |R| \cdot 2n \cdot \ell \leq 2pn \cdot 2n \cdot \ell = 4p^2\ell = \tilde{O}(n^{4/5}) \).
3.2 Connecting bad pairs

After all good pairs are connected using the algorithm of Lemma 3.1, they are excluded from D, and we remain with bad pairs only.

Lemma 3.2. There exists an algorithm that given a DSF instance without good pairs and a constant $\varepsilon > 0$, computes in polynomial time an edge set $J \subseteq E$ of density $O(n^{4/5+\varepsilon})$.

In the rest of this section we prove Lemma 3.2. For analysis purpose, let H be some fixed optimal solution, so $c(H) = \text{opt} \geq \tau$. Let $L = \{(s, t) \in D : \text{dist}_H(s, t) \geq \ell\}$. We will consider two cases: $|L| \geq |D|/2$ and $|D - L| > |D|/2$. Proposition 3.1 handles the first case.

Lemma 3.3. ([3]) The problem of finding a minimum density junction tree admits an $O(k^\varepsilon)$-approximation scheme.

Proposition 3.1. H contains a junction tree J of density at most $(\tau/\ell) \cdot (\tau/|L|) = n^{4/5} \cdot \tau/|L|$. Hence if $|L| \geq |D|/2$, the algorithm of [3] finds a junction tree J of density $O(n^{4/5+\varepsilon}) \cdot \tau/|D|$.

Proof. Let $\Pi(L)$ be a set of paths in H corresponding to the pairs in L. The sum of the costs of the paths in $\Pi(L)$ is at least $|L| \cdot \ell$. Since these paths are in H, there must be an edge of H belonging to at least $|L| \cdot \ell/\tau$ paths. This implies that there is a junction-tree in H connecting at least $|L| \cdot \ell/\tau$ pairs from $\Pi(L)$. The density of such tree is at most $c(H)/(\ell \cdot (\ell/\tau)) \leq (\tau/|L|) \cdot (\tau/\ell)$, as claimed.

Now suppose that $|L| < |D|/2$, so $|D - L| > |D|/2$. Consider the following LP-relaxation (LP1) for the problem of connecting at least $k' \leq |D - L|$ pairs from $D = \{(s_1, t_1), \ldots, (s_k, t_k)\}$. Intuitively, (LP1) decides on a capacity x_e for every $e \in E$ and an amount y_i of s_it_i-flow. The sum of the y_i's is at least k'. The main restriction is that the flow has to be delivered on paths of cost $\leq \ell$. This is done as follows. Let $\Pi(i)$ be the set of (simple) s_it_i-paths in G of cost $\leq \ell$, and let $\Pi = \bigcup_i \Pi(i)$. For every i, decompose the final s_it_i-flow in the graph into flow paths. For every $P \in \Pi(i)$, the variable f_P is the amount of s_it_i-flow through P. The total s_it_i-flow equals the sum of the flows on the paths in $\Pi(i)$, namely, $y_i = \sum_{P \in \Pi(i)} f_P$. For every i and $e \in E$, the capacity constraint is $\sum_{P \in \Pi(i)} f_P \leq x_e$; namely, the total s_it_i-flow through P is at most x_e. Note that it holds for every pair separately, so it may not be possible to deliver simultaneously flows y_i and $y_i', i \neq i'$. The corresponding dual LP is:

(LP2) \[
\begin{align*}
\text{max} \quad & \sum_{e \in E} x_e + \sum_i y_i - W \cdot k' \\
\text{s.t.} \quad & \sum_{i \in \Pi(i)} f_P \leq x_e \quad \forall i, e \in E \\
& y_i + w_i \geq W \quad \forall i \\
& w_i \leq \sum_{e \in P} z_{i,e} \quad \forall i, P \in \Pi(i) \\
& W, x_e, y_i, z_{i,e} \geq 0 \quad \forall i, e \in E
\end{align*}
\]

Lemma 3.4. For any $k' \leq |D - L|$ the optimal value of (LP1) is at most opt. Furthermore, a solution for (LP1) of value $(1 + \varepsilon) \cdot \text{opt}$ can be found in polynomial time.

Proof. The first statement is obvious, as (LP1) is a relaxation for the problem. We will show how to find an approximate solution in polynomial time. Although the number of variables in (LP1) might be exponential, any basic feasible solution to it has $O(|D| \cdot m)$ non-zero variables. Now, if we had a polynomial time separation oracle for (LP2), we could compute an optimal solution to (LP1) (the non-zero entries) in polynomial time. The number of non-zero entries in such a computed solution is polynomial in $O(|D| \cdot m)$. The only problematic constraints are $w_i \leq \sum_{e \in P} z_{i,e}$. Unfortunately, for these constraints, a polynomial time separation oracle may not exist, since the separation problem defined by a specific pair (s_i, t_i) is equivalent to the following problem, which is NP-hard, see [14]:

Restricted Shortest Path (RSP)

Instance: A directed graph $G = (V, E)$, transition times $\{\ell(e) : e \in E\}$, lengths $\{l(e) : e \in E\}$, a pair (s, t), and an integer Z.

Objective: Find a minimum length st-path P such that $\sum_{e \in P} \ell(e) \leq Z$.

Restricted Shortest Path admits an FPTAS [14], therefore we get an approximate separation oracle, which for any $\varepsilon > 0$ checks whether there exists a path $P \in \Pi(i)$ so that $(1 + \varepsilon) \cdot w_i \leq \sum_{e \in P} z_{i,e}$. This implies that we can solve the following linear program in time polynomial in $1/\varepsilon$ and the size of the original DSF problem:

(LP3) \[
\begin{align*}
\text{max} \quad & \sum_{e \in E} x_e + \sum_i y_i - W \cdot k' \\
\text{s.t.} \quad & \sum_{i \in \Pi(i)} f_P \leq x_e \quad \forall i, e \in E \\
& y_i + w_i \geq W \quad \forall i \\
& (1 + \varepsilon) \cdot w_i \leq \sum_{e \in P} z_{i,e} \quad \forall i, P \in \Pi(i) \\
& W, x_e, y_i, z_{i,e} \geq 0 \quad \forall i, e \in E
\end{align*}
\]

Thus we can also solve the dual of (LP3), which is:
Let \(\text{opt}(\varepsilon) \) denote the optimal value of (LP4). Clearly, \(\text{opt}(\varepsilon) \leq \text{opt} \). Note that if \(x(\varepsilon) \) is a feasible solution to (LP4) then by replacing the value of every variable \(x_e \) in \(x(\varepsilon) \) by \(\min\{1, x_e \cdot (1 + \varepsilon)\} \) we get a new solution \(x \) which is a feasible solution to (LP1). The value of such \(x \) is at most \((1 + \varepsilon) \cdot \text{opt}(\varepsilon) \leq (1 + \varepsilon) \cdot \text{opt} \).

Lemma 3.5. Let \(x, y \) be a feasible solution to (LP1), and let \(\beta \) be any number obeying \(0 \leq \beta < k'/|D| \). Then at most \((|D| - k')/(1 - \beta)\) pairs in \(D \) have flow \(y_i < \beta \). Thus, the number of pairs in \(D \) that have flow \(y_i \geq \beta \) is at least:

\[
|\{i : y_i \geq \beta\}| \geq |D| - \frac{|D| - k'}{1 - \beta} = \frac{k' - \beta|D|}{1 - \beta}
\]

Proof. If more than \((|D| - k')/(1 - \beta)\) pairs in \(D \) had flow strictly less than \(\beta \), then the sum of the flows between all pairs must be strictly less than:

\[
\frac{|D| - k'}{1 - \beta} \cdot \beta + \left(|D| - \frac{|D| - k'}{1 - \beta}\right) \cdot 1 = k'
\]

This is a contradiction, since in any feasible solution of (LP1), the sum of the flows between all pairs must be at least \(k' \).

Lemma 3.6. Let \(x, y \) be a feasible solution to (LP1) and let \(0 \leq \beta < 1 \). If \(y_i \geq \beta \) for some \(i \) then \(J = \{ e \in E : x_e \geq 4\beta/\alpha^2 \} \) contains an \(s_t_i \)-path.

Proof. We claim that \(C \cap J = \emptyset \) for every \(s_t_i \)-cut \(C \). Suppose to the contrary that \(C \cap J = \emptyset \) for some \(s_t_i \)-cut \(C \), namely, \(x_e < 4\beta/\alpha^2 \) for every \(e \in C \). Thus \(|C| \geq \alpha^2/4 \), since \(\sum_{e \in C} x_e \geq y_i \geq \beta \). Every edge \(e = uv \in C \) that carries a positive amount of \(s_t_i \)-flow belongs to some short \(s_t_i \)-path, thus \(u, v \in U(s_t_i) \). We get that \(U(s_t_i) \) contains end nodes of at least \(\alpha^2/4 \) edges of the cut \(C \), implying that \(U(s_t_i) \) contains at least \(2\sqrt{\alpha^2/4} = \alpha \) nodes. Thus \((s_t_i) \) is a good pair, contradicting our assumption that all the pairs are bad.

Corollary 3.1. Assuming \(k' \leq |D - L| \), let \((x, y)\) be any solution to (LP1) found using Lemma 3.4. Then for any \(0 \leq \beta < k'/|D| \), the edge set \(J = \{ e \in E : x_e \geq 4\beta/\alpha^2 \} \) has density at most:

\[
\frac{\alpha opt \cdot (1 + \varepsilon)}{4\beta} \cdot \frac{1 - \beta}{k' - \beta |D|}
\]

In particular, for \(k' = |D|/2 \leq |D - L| \) and \(\beta = 1/4 \), the density of \(J \) is at most \(3\alpha^2 \cdot \text{opt} \cdot (1 + \varepsilon)/|D| = O(n^{4/5}) \cdot \text{opt}/|D| \).

Proof. Since \(k' \leq |D - L| \), the value of (LP1) is at most \(\text{opt} \cdot (1 + \varepsilon) \), by Lemma 3.4. Thus \(c(J) \leq \text{opt} \cdot (1 + \varepsilon)/(4\beta/\alpha^2) = \text{opt} \cdot (1 + \varepsilon) \alpha^2/(4\beta) \). By Lemmas 3.5 and 3.6, \(|D(J)| \geq (k' - \beta|D|)/(1 - \beta) \). Thus:

\[
\frac{c(J)}{|D(J)|} \leq \frac{\text{opt} \cdot (1 + \varepsilon) \alpha^2/(4\beta)}{(k' - \beta|D|)/(1 - \beta)} = \frac{\alpha^2 \text{opt} \cdot (1 + \varepsilon) \cdot (1 - \beta)}{4\beta k' - \beta|D|}.
\]

Proof of Lemma 3.2. We execute two algorithms to compute edge sets \(J', J'' \) and choose among them the one with the better density. The set \(J' \) is computed using the algorithm of Lemma 3.3. The set \(J'' \) is computed using the algorithm of Corollary 3.1 with parameters \(k' = |D|/2 \) and \(\beta = 1/4 \). If \(|L| \geq |D|/2 \) then the density of \(J' \) is \(\tilde{O}(n^{4/5}) \cdot \tau/|D| \). Otherwise, if \(|D - L| \geq |D|/2 \), the density of \(J'' \) is \(O(n^{4/5}) \cdot \tau/|D| \). In both cases, one of \(J', J'' \) has density \(\tilde{O}(n^{4/5 + \varepsilon}) \cdot \tau/|D| \).

3.3 Putting everything together
Implement Reductions 1 (so we know \(\tau \) satisfying \(\text{opt} \leq \tau \leq 2\text{opt} \)) and 2. Then the entire algorithm is as follows:

1. Find an edge set \(F \) as in Lemma 3.1, and exclude all good pairs from \(D \).

2. **While** \(F \) is not a feasible solution do:
 - Find an edge set \(J \) as in Lemma 3.2;
 - \(F \leftarrow F + J \);
 - \(D \leftarrow D - D(J) \).

3. Return \(F \).

The reductions incur only a constant loss in the approximation ratio. The total cost of the edges added at Step 1 is \(\tilde{O}(n^{4/5}) \cdot \tau \), by Lemma 3.1. Step 2 is essentially the Greedy Algorithm with \(\rho = O(n^{4/5 + \varepsilon}) \), by Lemma 3.2. Thus by Theorem 2.1, the total cost of the edges added at Step 2 is \(O(n^{4/5 + \varepsilon}) \cdot \tau = O(n^{4/5 + \varepsilon}) \cdot \text{opt}/|D| \).

3.4 An \(O(m^{2/3 + \varepsilon}) \)-approximation scheme for DSF
We show how to modify the algorithm to achieve approximation ratio of \(O(m^{2/3 + \varepsilon}) \). We omit proofs resembling ones above. We assume \(n = O(m) \), as otherwise we can process each connected component separately. Let us update the values of the parameters of the algorithm, and the definition of \(U(s, t) \) as follows:

\[
p = 2 \ln k/m^{2/3}, \alpha = m^{2/3}, \ell = \tau/\alpha.
\]
DEFINITION 3.2. For each pair s, t of nodes, let $U(s, t)$ be the set of edges involved in any short path from s to t.

Notice that we keep the definition of good and bad pairs; a pair (s, t) is a good pair if, and only if, $|U(s, t)| \geq \alpha$.

LEMMA 3.7. (Equivalent to Lemma 3.1)
There exists a polynomial time algorithm that given an instance of DSF finds an edge set F of cost $c(F) \leq 6\text{polym} = O(m^{2/3}) \cdot \tau$ that connects all good pairs.

To complete the algorithm we need the following Lemma:

LEMMA 3.8. (Equivalent to Lemma 3.2)
There exists an algorithm that given a DSF instance without good pairs and a constant $\varepsilon > 0$, computes in polynomial time an edge set $J \subseteq E$ of density $O(m^{2/3+\varepsilon}) \cdot \tau/|D|$.

Again, we make a distinction between the two cases: $|L| \geq |D|/2$ and $|D - L| \geq |D|/2$. The next proposition deals with the first case:

PROPOSITION 3.2. H contains a junction tree J of density at most $\sigma(J) \leq (\tau/\ell) \cdot (\tau/|L|) = m^{2/3} \cdot \tau/|L|$. Hence if $|L| \geq |D|/2$, the algorithm of [3] finds a junction tree J of density $O(m^{2/3+\varepsilon}) \cdot \tau/|D|$.

Now consider the case $|D - L| \geq |D|/2$. Looking at (LP1), we notice that Lemmas 3.4 and 3.5 still hold.

LEMMA 3.9. (Equivalent to Lemma 3.6)
Let x, y be a feasible solution to (LP1) and let $0 < \beta \leq 1$. If $y_i \geq \beta$ for some i then $J = \{ e \in E : x_e \geq \beta/\alpha \}$ contains an s_it_i-path.

Proof. We claim that $C \cap J \neq \emptyset$ for every s_it_i-cut C. Suppose to the contrary that $C \cap J = \emptyset$ for some s_it_i-cut C, namely, $x_e < \beta/\alpha$ for every $e \in C$. Thus $|C|$ contains at least α edges of positive s_it_i-flow, since $\sum_{e \in C} x_e \geq \beta$. Every edge e carrying a positive amount of s_it_i-flow belongs to some short s_it_i-path, thus $e \in U(s_i, t_i)$. We got that $U(s_i, t_i)$ contains at least α edges. Thus (s_i, t_i) is a good pair, contradicting our assumption that all the pairs are bad.

COROLLARY 3.2. (Equivalent To Corollary 3.1)
Assuming $k' = |D|/2 \leq |D - L|$, let (x, y) be any solution to (LP1) found using Lemma 3.4. Then the edge set $J = \{ e \in E : x_e \geq (1/4\alpha) \}$ has density at most $3\alpha \cdot \text{opt} \cdot (1 + \varepsilon)/(4D) = O(m^{2/3}) \cdot \text{opt}/|D|$.

In conclusion, the approximation scheme we get is the same as the one described in Section 3.3, with two differences: The good pairs are connected in step 1 as in Lemma 3.7, and the edge set J in step 2 is found as in Lemma 3.8. Using a similar analysis to the one in Section 3.3, we get the promised approximation ratio.

The proof of Theorem 1.1 is complete.

4 Algorithm for k-DSF (Proof of Theorem 1.2)
This section is organized as follows: Section 4.1 defines the notation of “junction star-trees” and proves the “Junction Star-Tree Theorem”. Section 4.2 describes the algorithm for k-DSF based on this theorem.

4.1 Junction star-trees

DEFINITION 4.1. Let G be a directed graph with a set $D = \{(s_1, t_1), \ldots, (s_{|D|}, t_{|D|})\}$ of ordered pairs; $S = \{s_1, \ldots, s_{|D|}\}$ are sources and $T = \{t_1, \ldots, t_{|D|}\}$ are terminals. A subgraph J of G is a junction tree if it is a union of an out-branching J_T rooted at r in $(G - S) \cup \{r\}$ and a star J_S ingoing to r in $(G - T) \cup \{r\}$.

See subsection 1.3.1 for the intuition of junction star-trees.

THEOREM 4.1. (The Junction Star-Tree Theorem)
Let $H = (V, E)$ be a graph with edge costs $\{c(e) : e \in E\}$ containing a set Π of k paths connecting a set $D \subseteq S \times T$ of k node pairs, so that $S \cap T = \emptyset$ and so that no edge enters S or leaves T. If $c(P) \geq c(H)/g$ for every $P \in \Pi$ then the metric completion of H contains a junction star-tree J of density at most:

\[
\frac{c(J)}{|D(J)|} \leq c(H) \cdot \left(\frac{g}{k} + \frac{2}{g}\right)
\]

In the rest of this subsection we will prove Theorem 4.1. For every st-path $P \in \Pi$, the truncated path \hat{P} of P is the maximal sv-subpath of P so that $c(\hat{P}) < c(H)/g$. Let e_P be the edge in $P - \hat{P}$ leaving the last node of \hat{P}. Since $c(P) \geq c(H)/g$, by the definition of \hat{P}, e_P always exists, and $c(P + e_P) \geq c(H)/g$. Let $\Pi = \{\hat{P} : P \in \Pi\}$.

DEFINITION 4.2. We say that two (not necessarily different) truncated paths in Π collide if they have a node in common.

LEMMA 4.1. There exists a partition $\mathcal{P}_1, \ldots, \mathcal{P}_q$ of Π into $q \leq g$ parts, and a set of pairwise non-colliding paths $\{\hat{P}_i \in \mathcal{P}_i : i = 1, \ldots, q\}$, such that \hat{P}_i collides with every path in \mathcal{P}_i, $i = 1, \ldots, q$. Thus there is a path $\hat{P} \in \Pi$ colliding with at least $\ell \geq k/g$ paths in Π.

Proof. We will construct the partition iteratively. Assuming that at the end of iteration $i - 1$ we constructed a subpartition $\{\mathcal{P}_1, \ldots, \mathcal{P}_{i-1}\}$ of Π, which is not yet a partition of Π, in iteration i perform two steps:
1. Pick a path $\bar{P}_i \in \bar{\Pi}$ which does not belong to any part yet, and place it in a new part \bar{P}_i.

2. Add to \bar{P}_i every path that collides with \bar{P}_i and does not belong to any other part yet.

By the construction, it is clear that eventually we will get a partition of Π, such that \bar{P}_i collides with every path in \bar{P}_j for every i, and that $\{\bar{P}_i\}_{i=1}^q \subseteq \Pi$ are pairwise non-colliding. Hence we only need to show that the number q of parts is bounded by g. Let $e_i = e_{P_i}$, $i = 1, \ldots , q$. Note that since $\bar{P}_1, \ldots , \bar{P}_q$ are pairwise node disjoint, the paths $\bar{P}_1 + e_1, \ldots , \bar{P}_q + e_q$ are pairwise edge-disjoint. Thus their total cost is at most $c(H)$. Since $c(\bar{P}_i + e_i) \geq c(H)/g$ for every i, the statement follows.

Focus on a pair of a path $\bar{P} \in \bar{\Pi}$ and a set of $\bar{P} = \{\bar{P}_1, \ldots , \bar{P}_l\}$ of $e \geq k/g$ truncated paths colliding with \bar{P} ($\bar{P} \in \bar{\Pi}$), whose existence is guaranteed by Lemma 4.1. Let $\bar{P} = \{\bar{P}_1, \ldots , \bar{P}_l\} \subseteq \Pi$ be the set of corresponding non-truncated paths. Let $S = \{s_1, \ldots , s_t\}$ and $T = \{t_1, \ldots , t_r\}$ be the sets of sources and terminals of the paths in \bar{P}, respectively. Let r_1, \ldots , r_d be the sequence of nodes of \bar{P} arranged in reverse order; r_1 is the first node of \bar{P}, r_{d-1} is the second, and so on; the last node of \bar{P} is r_1 (see Fig. 1(a)).

Lemma 4.2. There exists in H a family J_1, \ldots , J_d of pairwise edge disjoint trees so that (see Fig. 1(b)):

1. Every J_i is rooted at r_i, $i = 1, \ldots , d$.

2. Every $t \in T$ belongs exactly one tree J_i, $1 \leq i \leq d$.

3. If $t \in T \cap J_i$ and $(s, t) \in D$, then there is $m \geq i$ so that r_m belongs to a path in $\bar{\Pi}$ starting at s.

Proof. We construct the trees iteratively. J_1 is any inclusion minimal tree in H rooted at r_1 that contains the set T_1 of all the terminals in T that are reachable in H from r_1. J_2 is any inclusion minimal tree in H rooted at r_2 that contains the set T_2 of all the terminals in $T - T_1$ that are reachable in H from r_2. And, in general, J_i is any inclusion minimal tree in H rooted at r_i that contains the set T_i of all the terminals in $T - T_1 \cup \cdots \cup T_{i-1}$ that are reachable in H from r_i. By the construction, and since every path in \bar{P} collides with \bar{P} and no edge leave the terminals, it is clear that the three properties given in the lemma hold. We explain why the trees J_1, \ldots , J_d are pairwise edge disjoint. Otherwise, there are $1 \leq m < i \leq d$ so that J_m and J_i have an edge uv in common. By the minimality of J_i, there is a terminal $t \in T_i$ reachable from v in J_i (possibly $v = t$). But then t is also reachable from r_m, hence, by the construction, t should have appeared in J_m and not in J_i, contradiction.

Using Lemma 4.2, we show that the metric completion of H contains a low density junction star-tree as a subgraph. For a subgraph J of H let $k(J) = |V(J) \cap T|$ denote the number of terminals from T in J.

Corollary 4.1. There exists a junction star-tree J in the metric completion of H, such that (4.2) holds.

Proof. Let J_1, \ldots , J_d be the decomposition of H into trees as in Lemma 4.2. We will extend these rooted trees to junction star-trees by adding for every st path in \bar{P} an edge sr_i from s to the root r_i of the tree J_i which includes t (see Fig. 1(b), if $s = r_i$ we need not add this edge). The cost of each new edge is at most $2c(H)/g$, since it shortcuts a path that is obtained by joining two subpaths of truncated paths (recall that each truncated path has cost less than $c(H)/g$). Let J_1^+, \ldots , J_d^+ denote the resulting junction star-trees. Every junction star-tree connects all its sources to the corresponding terminals, and therefore $\sum_{i=1}^d k(J_i^+) = \ell$. On the other hand we can bound the sum of the costs of the junction star-trees as follows:

$$\sum_{i=1}^d c(J_i^+) < \sum_{i=1}^d c(J_i) + \ell \cdot \frac{2c(H)}{g} \leq c(H) + \ell \cdot \frac{2c(H)}{g}$$

The last inequality holds because J_1, \ldots , J_d are subgraphs of H that are pairwise edge disjoint. Using an averaging argument we get that there must be a junction star-tree $J = J_1^+$ whose density is bounded by:

$$\frac{c(J)}{k(J)} \leq \frac{c(H) + \ell \cdot 2c(H)/g}{\ell} \leq c(H) \cdot \left(\frac{g}{k} + \frac{2}{g}\right)$$

The last inequality holds because $\ell \geq k/g$.

4.2 The algorithm Given a k-DSF instance assume that Reductions 2 and 3 are implemented.

Lemma 4.3. For any k-DSF instance (after applying Reductions 2, 3), there exists a junction star-tree J so that $c(J)/|D(J)| \leq \text{opt} \cdot \sqrt[4]{8/k}$.

Proof. Let $g = \sqrt{2k}$. If $c(P) \leq c(H)/g$ for some st-path P with $(s, t) \in D$, then P is the required junction tree. Otherwise the Lemma follows from Theorem 4.1 by choosing H as an optimal solution of the k-DSF instance (after applying Reductions 2, 3).

Example: This example shows that the bound in Lemma 4.3 is tight up to a constant factor. Consider the graph in Fig. 2, where $D = \{(s_i, t_j) : 1 \leq i, j \leq k\}$. Here $k = q^2$, and the lowest possible density of a junction star-tree is $(q+1)/q > 1$, while the density of the optimal solution (which is the entire graph) is $2q/q^2 = 2/q$.

LEMMA 4.4. Suppose that there exists an algorithm that given an instance of \(k \)-DSF finds an edge set \(J \) of density \(\sigma \leq \opt \cdot \rho(k)/k \) and the set \(D(J) \) of demand pairs that \(J \) connects in \(T(n,k) \) time. Then the \(\rho(x) \)-Greedy Algorithm for \(k \)-DSF can be implemented in \(O(kT'(n,k)) \) time.

Proof. We need to show how to find a low density edge set \(J \) for every instance \(G, c, D \) of \(k \)-DSF and every partial cover \(F \). With that aim in mind, set \(D' \leftarrow D - D(F) \) to get an instance \(G, c, D' \) of \((k-\|D(F)\|) \)-DSF. Then use the algorithm for finding an edge set \(J \) of density at most \(\opt' \cdot \rho(k - \|D(F)\|)/(k - \|D(F)\|) = \opt' \cdot \rho(\nu(F)/\nu(F) \leq \opt \cdot \rho(\nu(F))/\nu(F) \), where \(\opt \) and \(\opt' \) denote the optimum solution values of the instances \(G, c, D \) and \(G, c, D' \), respectively. The number of iterations is at most \(k \), since in each iteration at least one more demand pair is satisfied. Hence the time complexity is \(O(kT'(n,k)) \).

COROLLARY 4.2. If \(k \)-DST admits an \(\alpha \)-approximation in \(T(n,k) \) time then there exists an algorithm that given an instance of \(k \)-DSF finds a junction star-tree \(J \) satisfying \(\sigma(J) \leq \opt \cdot \alpha \cdot \sqrt{k}/k \) and \(D(J) \) in \(O(nkT(2n + k,k)) \) time.

Proof. We may assume that we know the root \(r \) of some optimal density star-junction tree, as we may try every \(r \in V \). For every demand pair \((s,t) \in D \), add a new node \(t' \) and the edge \(tt' \) of cost \(c(sr) \) (if \(s = r \) let the cost of the edge be 0). Let \(T' \) be the set of nodes added. For every \(1 \leq k' \leq k \) apply the \(\alpha \)-approximation algorithm on the obtained instance of \(k'-\text{DST} \) with root \(r \) and terminal set \(T' \). From the solutions computed, output one \(J' \) of the minimum density. The junction star-tree \(J \) is obtained from \(J' \) by replacing every terminal \(t' \) of \(J' \) by the corresponding edge \(sr \). It is easy to see that \(J' \) is as required, and that it is possible to calculate \(D(J') \) without increasing the time complexity.

The graph on which we call the algorithm for \(k'-\text{DST} \) has \(n + |T| + |S| + k \) nodes due to Reduction 2 and the addition of the nodes of \(T' \). However, \(|S| \) of these nodes are sources (into which no edge enters) and can be removed before the algorithm for \(k'-\text{DST} \) is called.

Combining Corollary 4.2 with the result of [2], Theorem 2.1, and Lemma 4.4, gives Theorem 1.2.

5 Conclusions and open problems

We presented the first sub-linear, in terms of \(n \), approximation algorithm for the DSF problem. Due to [6], obtaining an approximation ratio better than \(O(\sqrt{n}) \) for DSF implies improving the best ratio for Label-Cover due to Peleg [24]. Still, it is an open question whether this ratio is indeed feasible. We also presented a simple combinatorial \(O(k^{1/2+\varepsilon}) \)-approximation scheme for \(k \)-DSF, which matches the best known LP-based algorithm of Chekuri et al. [3] for the less general problem DSF.

DSF is generalized by the Directed Steiner Network problem. In this problem each pair \((s,t) \) has connectivity requirement \(r(s,t) \), namely, \(r(s,t) \) edge disjoint \(st \)-paths are required for every \((s,t) \in D \). On undirected graphs, this problem admits a 2-approximation algorithm due to Jain [16]. As far as we know no non-trivial ratio is known for the Steiner Network problem on directed graphs, even for the simple case when the maximum requirement is 2.

Note that on directed graphs, there is an approximation ratio preserving reduction between the edge-weighted and the node-weighted versions, but this is
not so for undirected graphs. On undirected graphs, the best known ratio for the Node-Weighted Steiner Forest is $O(\log |U|)$ due to Klein and Ravi [19] and this is tight, where U is the set of nodes involved in a positive requirement pair. Recently, an $r_{\text{max}} \cdot O(\log |U|)$-approximation algorithm for the undirected Node-Weighted Steiner Network problem was presented in [23], where $r_{\text{max}} = \max_{u,v \in V} r(u,v)$ is the largest requirement.

We believe that it should be possible to approximate the Directed Steiner Network problem to a factor of $r_{\text{max}} \cdot \rho_{\text{DSF}}$, where ρ_{DSF} is the approximation ratio of DSF. A possible way to approach this ratio is through the Rooted Directed Steiner Network problem, a restricted version of the Directed Steiner Network problem in which the set of pairs with positive requirement is a subset of $\{s\} \times V$, for some node $s \in V$. We believe that an approximation ratio of $r_{\text{max}} \cdot \rho_{\text{DSN}}$ should be feasible for this problem (where ρ_{DSN} is the approximation ratio of DST), and that the ideas presented in this paper can be used to reduce the Direct Steiner Network problem to a variant of Rooted Direct Steiner Network, in a way resembling our reduction from the DSF problem to a variant of DST.

References

