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1 Introduction

The traveling salesman problem — to find the shortest tour visiting n given cities — is one of the
best-known NP-hard optimization problems.

Without any assumptions on the distances, a simple reduction from the problem of deciding
whether a graph is Hamiltonian shows that it is NP-hard to approximate the shortest tour to within
any factor. Therefore it is common to relax the problem by allowing the tour to visit cities more
than once. This is equivalent to assuming that the distances satisfy the triangle inequality: the
distance from city i to k is no larger than the distance from i to j plus the distance from j to k. All
results mentioned and proved in this paper refer to this setting.

If we further assume the distances to be symmetric, then Christofides’ classic algorithm from
1976 [Chr76] is guaranteed to find a tour of length at most 3/2 times the optimum. Improving this
approximation guarantee is a notorious open question in approximation algorithms. There has been
a flurry of recent progress in the special case when distances are given as unweighted shortest path
metrics [GSS11, MS16, Muc12, SV14]. However, even though the standard linear programming
(LP) relaxation is conjectured to approximate the optimum within a factor of 4/3, it remains an
elusive problem to improve upon Christofides’ algorithm.

If we do not restrict ourselves to symmetric distances, we obtain the more general asymmetric
traveling salesman problem (ATSP). Compared to the symmetric setting, the gap in our under-
standing is much larger, and the current algorithmic techniques have failed to give any constant
approximation guarantee. This is intriguing especially since the standard LP relaxation, also known
as the Held-Karp lower bound, is conjectured to approximate the optimum to within a small constant.
In fact, it is only known that its integrality gap1 is at least 2 [CGK06].

The first approximation algorithm for ATSP was given by Frieze, Galbiati and Maffioli [FGM82],
achieving an approximation guarantee of log2(n). Their elegant “repeated cycle cover” approach
was refined in several papers [Blä08, KLSS05, FS07], but there was no asymptotic improvement in
the approximation guarantee until the more recent O(log n / log log n)-approximation algorithm by
Asadpour et al. [AGM+10]. They introduced a new and influential approach to ATSP based on a
connection to the graph-theoretic concept of thin spanning trees. This has further led to improved
algorithms for special cases of ATSP, such as graphs of bounded genus [GS11]. Moreover, Anari
and Oveis Gharan recently exploited this connection to significantly improve the best known upper
bound on the integrality gap of the standard LP relaxation to O(poly log log n) [AG15]. This implies
an efficient algorithm for estimating the optimal value of a tour within a factor O(poly log log n)
but, as their arguments are non-constructive, no approximation algorithm for finding a tour of
matching guarantee.

Around the same time, an alternative approach was introduced by Svensson [Sve15]. It
reduces the task of approximating ATSP to a seemingly easier problem called Local-Connectivity
ATSP. The paper [Sve15] also gave an algorithm for Local-Connectivity ATSP restricted to the
special case of node-weighted metrics, implying a constant-factor approximation algorithm for
that special case. We have generalized this to graphs with at most two different edge weights in
subsequent work [STV16]. In this paper, we build upon and generalize both of these results to give
a constant-factor approximation algorithm for all metrics.

Theorem 1.1. There is a polynomial-time algorithm for ATSP that returns a tour of value at most a constant
times the Held-Karp lower bound.

1Recall that the integrality gap is defined as the maximum ratio between the optimum values of the exact (integer)
formulation and of its relaxation.
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We remark that we have not optimized the constant of the approximation guarantee, instead
favoring simplicity. However, we believe that further developments are needed to get close to the
lower bound of 2 on the integrality gap [CGK06] and the inapproximability of 75/74 [KLS13].

Outline. The paper [Sve15] has introduced the problem Local-Connectivity ATSP and showed that
it is equivalent (in terms of constant-factor approximation) to the asymmetric traveling salesman
problem. Further, it gave an efficient solution to Local-Connectivity ATSP for node-weighted
graphs. In [STV16] we gave a solution for graphs with two different edge weights. This, however,
turned out to be technically challenging. In fact, it is unclear if the same approach can be extended
even to a fixed number of different edge weights.

In the current paper we take a different route. Instead of trying to directly tackle Local-
Connectivity ATSP in arbitrary weighted graphs, the first part of our argument uses a sequence of
natural reductions to reduce the problem of approximating ATSP in general to that of approximating
ATSP on special, structured instances called vertebrate pairs. These instances enjoy properties that
make them amenable for Local-Connectivity ATSP. The reduction of the first part proceeds in
multiple stages:

– We first solve the standard Held-Karp LP relaxation for ATSP. By applying the uncrossing
technique on the optimal dual solution, we are able to show that we can focus on laminarly-
weighted ATSP instances – ones where the edge weights are defined by a laminar family of
vertex subsets. We discuss this in Section 2.

– In the next step, we define a natural recursive algorithm that solves smaller instances obtained
by contracting tight vertex sets in the laminar family. The analysis of this approach shows
that it works as long as the contraction of a set causes a large decrease in the LP value. We
refer to such sets as reducible. Thus, we reduce the problem further to irreducible instances:
ones that do not contain any such reducible set. This is outlined in Section 3.

– Given an irreducible instance, we can utilize its structure together with the constant-factor
approximation algorithm for node-weighted instances [Sve15] to obtain a special subtour that
we call the backbone. Intuitively, the backbone visits most of the vertices in the instance. In
particular, it is required to visit at least one vertex in each non-singleton set in the laminar
family. We call an instance together with a backbone a vertebrate pair. In Section 4 we outline
the reduction that shows that if we can deal with vertebrate pairs, then we can deal with
irreducible instances.

In each of the above stages, we prove a theorem of the form: if there is a constant-factor approximation
for ATSP on more structured instances, then there is a constant-factor approximation for ATSP on
less structured instances. For instance, an algorithm for irreducible instances implies an algorithm
for laminarly-weighted instances. One can also think of making a stronger and stronger assumption
on the instance without loss of generality, making it increasingly resemble a node-weighted metric.
The second part, i.e., solving Local-Connectivity ATSP on vertebrate pairs, is described in Section 5.

2 Held-Karp Relaxation and Reduction to Laminarly-Weighted ATSP

It will be convenient to define ATSP in terms of its graphic formulation:

Definition 2.1. The input for ATSP is a pair (G,w), where G = (V,E) is a strongly connected directed
graph (digraph) and w is a nonnegative weight function defined on the edges. The objective is to
find a closed walk of minimum weight that visits every vertex at least once.
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LP(G,w)

min
∑
e∈E

w(e)x(e)

s.t. x(δ+(v)) = x(δ−(v)) for v ∈ V ,
x(δ(S)) > 2 for ∅ , S ( V ,

x > 0 .

DUAL(G,w)

max
∑
∅,S⊂V

2 · yS

s.t.
∑

S: (u,v)∈δ(S)

yS + αu − αv 6 w(u, v) for (u, v) ∈ E ,

y > 0.

Figure 1: The Held-Karp relaxation LP(G,w) and its dual DUAL(G,w). For a function f : A → R+ and a
subset B ⊆ A, we use the notation f (B) =

∑
a∈B f (a). In particular, x(F) =

∑
e∈F x(e) for an edge set F.

Without loss of generality one could assume that G is a complete digraph. However, for our
reductions, it will be important that G may not be complete.

A closed walk that visits every vertex at least once is equivalent to an Eulerian set2 of edges that
connects the graph. This brings us to the well-known Held-Karp relaxation LP(G,w) shown on the
left of Figure 1. It has a variable x(e) > 0 for every edge e ∈ E, and the intended solution is that x(e)
should equal the number of times e is used in the tour. Here, δ+(S) denotes the outgoing edges of a
vertex set S, δ−(S) denotes the incoming edges, and δ(S) is the union of both. The optimum value
of this LP is called the Held-Karp lower bound. The first set of constraints says that the in-degree
should equal the out-degree for each vertex, i.e., the solution should be Eulerian. The second set of
constraints forbids the existence of subtours, i.e., Eulerian components that are connected but do not
connect the entire graph. They are called subtour elimination constraints.

The dual linear program DUAL(G,w), shown on the right of Figure 1, is obtained by associating
variables (αv)v∈V and (yS)∅,S⊂V with the first and second set of constraints of LP(G,w), respectively.

Now consider primal optimal and dual optimal solutions x and (α, y), respectively. By a
standard uncrossing argument (see e.g. [CFN85] for an early application of this technique to the
Held-Karp relaxation of the symmetric traveling salesman problem), we may assume that the
support L = {S : yS > 0} of y is a laminar family of vertex sets, i.e., any two sets in L are either
disjoint or one is a subset of the other. We may further assume that every edge e ∈ E has x(e) > 0
(since we can always solve the smaller instance where we disregard all edges e with x(e) = 0).
Hence, complementarity slackness gives the following:

– For every (u, v) ∈ E, we have w(u, v) =
∑

S∈L: e∈δ(S) yS + αu − αv.

– For every S ∈ L, we have x(δ(S)) = 2.

We refer to a vertex set S ⊆ V with x(δ(S)) = 2 (and thus x(δ+(S)) = x(δ−(S)) = 1) as a tight set (with
respect to x). Notice that the first condition says that the weights of the edges are determined by the
dual solution (α, y). Now consider the weight function w′ induced by the dual solution where we
disregard the α-variables: w′(u, v) =

∑
S∈L: e∈δ(S) yS. A key observation is that w′ is equivalent to w,

in the sense that it assigns the same weight to any Eulerian solution. We can therefore consider the
weight function w′(u, v) = w(u, v) − αu + αv that is determined by the vector (yS)S∈L. This motivates
the following definition (see also Figure 2 for an example):

Definition 2.2. A tuple I = (G,L, x, y) is called a laminarly-weighted ATSP instance if G is a strongly
connected digraph, L is a laminar family of vertex subsets, x is a feasible solution to the LP(G, 0),
and y : L → R+. We further require that xe > 0 for every e ∈ E and that every set in L be tight with
respect to x. We define the induced weight function wI : E→ R+ as wI(e) =

∑
S∈L: e∈δ(S) yS for every

e ∈ E.
2By an edge set, we always mean an edge multiset: the same edge can be present in multiple copies.
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Figure 2: An example of a laminarly-weighted ATSP instance I. The sets of the laminar family are shown in
gray, with their y-values written on their borders. We depict a single edge e that crosses four sets
in the laminar family and has w(e) = 1 + 3 + 2 + 5 = 11. Also, if we let S be the dashed set, then
value(S) = 2 · (1 + 2 + 5) = 16 and value(I) = 2 · (1 + 1 + 2 + 2 + 3 + 5) = 28.

It is worth noting that whenever both (u, v) and (v,u) are present in E, then wI(u, v) = wI(v,u).
Based on the above ideas, we can prove the following theorem.

Theorem 2.3. Assume we have a polynomial-time α-approximation algorithm with respect to the Held-Karp
relaxation for every laminarly-weighted ATSP instance. Then there is a polynomial-time α-approximation
algorithm with respect to the Held-Karp relaxation for the general ATSP problem.

We remark that the concept of laminarly-weighted instances generalizes the special case of
node-weighted instances. Indeed, node-weighted instances are those laminarly-weighted instances
I where the laminar family L consists only of singletons. Thus for any edge (u, v) ∈ E we
have wI(u, v) = y{u} + y{v} (the numbers y{v} for v ∈ V are called node weights). For that special
case, [Sve15] gave a (27 + ε)-approximation algorithm for any ε > 0.

For future reference, we refer to the Held-Karp lower bound as the value of the instance I and
we define it as a function of the dual: value(I) := 2

∑
S∈L yS. For a given subset S ⊆ V of the vertices,

it will also be convenient to localize the contribution of the dual variables contained strictly inside
S: we let value(S) = 2 ·

∑
R∈L:R(S yS. See Figure 2 for examples of these definitions.

3 Reduction to Irreducible Instances

By the previous section, we may assume that we are given a laminarly-weighted instance I =
(G,L, x, y) as input. Now an important observation for our approach is the following: since
each set S ∈ L is tight, we can obtain a smaller instance I/S = (G′,L′, x′, y′) by contracting
the set S into a new vertex s. We get G′, L′ and x′ in the natural way (see Figure 3 for an
example and the full version for the formal definition). For instance, L′ is obtained from L by
removing sets R ⊆ S and adding the singleton {s}. To complete the description of I/S, it remains
to specify how to set the new value y′

{s}. To that end, we define the “distance” functions dS and
DS. For u, v ∈ S, define dS(u, v) to be the minimum weight of a path from u to v (inside S) and let
DS(u, v) =

∑
R∈L: u∈R(S yR + dS(u, v) +

∑
R∈L: v∈R(S yR. We now set

y′
{s} = yS + max

u∈Sin,v∈Sout
DS(u, v)/2 ,

where Sin and Sout denote those vertices of S that have an incoming edge from outside of S or an
outgoing edge to outside of S, respectively. This completes the description of I/S.

One can show that every vertex in Sin is connected to every vertex in Sout by a directed path
inside S, and that DS(u, v) can be upper-bounded by the value of S:
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Instance I
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1
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A tour of the instance I/S

s
(u1

in, s)

(u2
in, s)

(s, v2
out)

(s, v1
out)

The lift of the tour to a subtour of I

S
5

2 4

3

1

2

(u1
in, v

1
in)

(u2
in, v

2
in)

(u2
out, v

2
out)

(u1
out, v

1
out)

Figure 3: An example of the contraction of a tight set S and the lift of a tour. Only y-values of the sets
R ∈ L : R ⊆ S are depicted. On the left, only edges that have one endpoint in S are shown. These
are exactly the edges that are incident to s in the contracted instance. In the center, a tour of I/S is
illustrated, and on the right we depict the lift of that tour.

Lemma 3.1. For every u ∈ Sin and v ∈ Sout there is a path from u to v inside S that crosses each laminar set
R ( S at most 2 − |R ∩ {u, v}| times. Consequently, DS(u, v) 6 valueI(S).

The intuition of the definition of DS and the setting of y′
{s} is as follows. After contracting S, all

sets of the laminar family are still present in the contracted instance except for the sets contained in
S. Now, after finding a tour in the contracted instance, we lift it back to a subtour in the original
instance. We obtain this subtour by, for each visit of the tour to s on some edges (ui

in, s), (s, vi
out),

replacing (ui
in, s), (s, vi

out) by the corresponding edges (i.e., by their preimages) (ui
in, v

i
in), (ui

out, v
i
out)

of G together with a minimum-weight path inside S from vi
in to ui

in (depicted by swirly edges in
Figure 3). The change in weight incurred by this operation (for the i-th visit) is

2 · yS + DS(vi
in,u

i
out)︸                   ︷︷                   ︸

the weight incurred “inside” S in I

− 2 · y′
{s} .︸ ︷︷ ︸

the weight of visiting s in I/S

(3.1)

Indeed, consider the example depicted in Figure 3. In each visit to s in the tour of I/S, the set {s} is
crossed twice, incurring a weight of 2 · y′

{s}. Now, say in the first visit to s, the lift of the tour to I
incurs the following weight instead of 2 · y′

{s}:

yS︸︷︷︸
=5

+
∑

R∈L: v1
in∈R(S

yR

︸           ︷︷           ︸
=2

+ dS(v1
in,u

1
out)︸        ︷︷        ︸

=2+2·2+4+3

+
∑

R∈L: u1
out∈R(S

yR

︸            ︷︷            ︸
=3+4

+ yS︸︷︷︸
=5

= 2 · yS + DS(v1
in,u

1
out)︸                   ︷︷                   ︸

=32

.

The selection of y′
{s} = yS +maxu∈Sin,v∈Sout DS(u, v)/2 is such as to guarantee that (3.1) is never positive,

which implies the the following:

Lemma 3.2. Let T be a tour of the instance I/S. Then the lift F of T satisfies wI(F) 6 wI/S(T).

The lift F is not guaranteed to be a tour in I: it visits all the vertices in V \ S but only
a subset of the vertices in S (in the example in Figure 3, there are two vertices not visited).
However, if we can obtain a “cheap” F, then we can complete it inside S using our remaining
budget. This idea is formalized in a recursive framework. By definition of the contraction
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we have value(I/S) = value(I) −
(
valueI(S) −maxu∈Sin,v∈Sout DS(u, v)

)
. Recall from Lemma 3.1

that maxu∈Sin,v∈Sout DS(u, v) 6 valueI(S), and therefore the value cannot increase after contraction:
value(I/S) 6 value(I). Any slack in this inequality can be used to pay for completing the lift F into
a tour of the original instance I. This motivates the following definition.

Definition 3.3. We say that a set S ∈ L is reducible if maxu∈Sin,v∈Sout DS(u, v) < 3/4 value(S). An
instance I is called irreducible if no set S ∈ L is reducible.

Note that if we contract a reducible set S, then we are guaranteed that the value decreases by
at least 1/4 value(S). This decrease is sufficient to employ our recursive strategy and to reduce the
problem of approximating ATSP to that of approximating irreducible instances:

Theorem 3.4. LetA be a polynomial-time ρ-approximation algorithm for irreducible instances. Then there
is a polynomial-time 8ρ-approximation algorithm for general laminarly-weighted instances.

Proof sketch. Consider a laminarly-weighted instance I. First, if there are no reducible sets in I,
then we can just useA to find a ρ-approximate tour of I. Otherwise we proceed recursively as
follows:

1. Select a minimal (inclusion-wise) set S ∈ L that is reducible.

2. Recursively find a tour T of I/S of weight at most 8ρvalue(I/S) 6 8ρvalue(I) − 2ρvalue(S).

3. UseA to complete the lift of T into a tour of I.

By Lemma 3.2 we have that the weight of the lift of T is no larger than that of T and so it is at most
8ρvalue(I) − 2ρvalue(S). Therefore, the statement will follow if we can show how to useA to find
a set F of edges with w(F) 6 2ρvalue(S) such that F plus the lift of T form a tour of I.

We now argue that this is possible under the following simplifying assumption: the restriction
of x to the smaller instance I′ obtained by only considering the vertices in S is a feasible solution to
the Held-Karp relaxation of I′. With this assumption, I′ is a laminarly-weighted instance with
value(I′) = value(S). It is furthermore an irreducible instance, since S was selected to be a minimal
reducible set. We can thus useA to find a tour F of I′ with w(F) 6 ρvalue(S). The lift of T plus
F form a tour of I and so the statement follows, under this simplifying assumption. In general,
the assumption is not true and, in the full version, we define an operation of inducing on the set S
which results in an instance of value equal to 2 · value(S) (instead of value(S) as above). While this
loses a factor of 2, it allows us to find a set F of weight w(F) 6 2ρvalue(S) (which is still sufficient)
such that the lift of T plus F form a tour of I. �

4 Reduction to Vertebrate Pairs

Theorem 3.4 shows that it suffices to find a constant-factor approximation algorithm for ATSP
for any irreducible instance I. Recall that this means that for every set S ∈ L there are two
vertices uS

max, vS
max ∈ S with DS(uS

max, vS
max) > 3/4 value(S). Informally, the shortest path from

uS
max to vS

max crosses a large (weighted) fraction of all laminar sets inside S. (Indeed, if we had
DS(uS

max, vS
max) = value(S), then it would cross all laminar sets inside S.) Our objective is to use this

property, together with the constant-factor approximation algorithm for node-weighted instances
[Sve15], to construct a low-weight subtour B that does not necessarily visit every vertex, but crosses
every non-singleton set of L.

Definition 4.1. We say that an instance I = (G,L, x, y) and a subtour B form a vertebrate pair if every
S ∈ L with |S| > 2 is crossed by B, i.e., δ(S) ∩ B , ∅. The set B is referred to as the backbone of the
instance.
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The rerouting inside S when obtain-
ing B from a lift of a tour of the in-
stance obtained by contracting maxi-
mal sets in L.

R2

uS
max

uS R1

vS
max

vS

The lift of the tour found in the ver-
tebrate pair (I′,B), where I′ is ob-
tained by contracting R1 and R2.

R2

R1

The final tour obtained by recur-
sive calls on R1 and R2.

R2

R1

Figure 4: An illustration of the steps in the proof of Theorem 4.2. Only one maximal set S ∈ L is shown.

Our main result of this section further reduces the problem of approximating ATSP in general
to that of approximating ATSP on vertebrate pairs.

Theorem 4.2. LetA be a polynomial-time algorithm that, given a vertebrate pair (I′,B), returns a tour of
I
′ with weight at most β (value(I′) + w(B)). Then there is a polynomial-time 64β-approximation algorithm

for irreducible instances.

Proof sketch. Consider an irreducible instance I. We begin by contracting all maximal sets in L to
obtain an instance I′. As noted in Section 3, we have value(I′) 6 value(I). Furthermore, the new
instance is node-weighted, since all laminar sets are now singletons. Therefore we can use the
node-weighted algorithm [Sve15] to find a tour T of I′ with wI′(T) 6 28 value(I′).

Now we wish to obtain a subtour in I from T. Thus we perform the lift operation, just as
in the previous section, to get a subtour B′. By Lemma 3.2, the lift B′ satisfies wI(B′) 6 wI′(T).
Thus we have wI(B′) 6 wI′(T) 6 28 value(I′) 6 28 value(I). However, B′ might not cross every
non-singleton set in L, or even a large weighted fraction of all sets.

We therefore slightly modify B′ to obtain our subtour B, as follows. For each maximal set S ∈ L,
suppose the first visit to S in the subtour B′ arrives at a vertex uS

∈ S and departs from a vertex
vS
∈ S. Then we replace the segment of B′ from uS to vS by (see also the left part of Figure 4):
– a shortest path from uS to uS

max,
– a path from uS

max to vS
max inside S as guaranteed by Lemma 3.1,

– and a shortest path from vS
max to vS.

Recall that, intuitively, a path from uS
max to vS

max crosses a large (weighted) fraction of the sets
R ∈ L : R ( S. We seek out these long paths, because taking them in every maximal set S ∈ Lwill
allow the subtour B to cross a large fraction of the LP value of the entire instance. On the other
hand, it is a detour we can afford to make: it can be shown that the weight of each of the paths is at
most value(S), we take only one detour (consisting of three paths) per set S, and all these sets are
disjoint by laminarity. Thus we have w(B) 6 w(B′) + 3 value(I) 6 31 value(I).

The formal statement concerning this part of our argument is summarized in the following
claim (see the concept of quasi-backbone in the full version).
Claim 4.3. There is a polynomial-time algorithm that, given an irreducible instance I, constructs
a subtour B such that w(B) 6 31 value(I) and 2

∑
S∈L∗ yS 6 1/4 value(I), where L∗ consists of those

sets in L that B does not cross.
It is possible that the subtour B is already a backbone: it might cross all non-singleton sets in L.

But even if it does not, the sets that it does not cross are now far and between: their total LP value is
at most a 1/4 fraction of the LP value of the instance. This allows us to use a recursive approach
similar to the one used in the proof of Theorem 3.4:
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1. Let I′ be the instance yielded by contracting all maximal S ∈ L∗. (In Figure 4, R1 and R2 are
such maximal sets.) Then B is a backbone for I′ and (I′,B) is a vertebrate pair. InvokeA on
this pair to obtain a tour T′ ofI′with w(T′) 6 β(value(I′)+w(B)) 6 β(value(I)+31 value(I)) =
32βvalue(I).

2. Complete the lift of T′ to a tour by making one recursive call for each maximal set S ∈ L∗.

See the right part of Figure 4 for an example of a tour of I created in this way. By Lemma 3.2, lifting
a tour does not increase its weight and so the weight of the lift of T′ is at most 32βvalue(I). Hence,
the statement will follow if we can show how to implement Step 2 in such a way that we complete
the lift into a tour by incurring an additional weight of at most 32βvalue(I).

As in the previous section, we argue that this is possible under the following simplifying
assumption: for each maximal S ∈ L∗, the restriction of x to the smaller instance IS obtained by
only considering the vertices in S is a feasible solution to the Held-Karp relaxation of IS. Then IS is
a laminarly-weighted instance with value(IS) = value(S). It is furthermore an irreducible instance,
since Iwas irreducible. Hence we can recursively call our algorithm to find a tour FS of IS with
w(FS) 6 64βvalue(S). As mentioned in Section 3, the simplifying assumption is not true in general.
However, in the full version we describe a similar approach (where we introduce an operation of
inducing on S) that loses another factor of two, and so w(FS) 6 2 · 64βvalue(S) = 128βvalue(S) in
general. Thus the weight increase in the course of completing the lift into a tour is at most

128β ·
∑

S maximal in L∗
value(S) 6 128β · 1/4 value(I) = 32βvalue(I) ,

as required. The above inequality follows from the construction of B (see Claim 4.3). Indeed, we
crucially used the property

∑
S∈L∗ value(S) 6 1/4 value(I) to bound the total value of the subinstances

for which we make recursive calls, for which we incur an approximation factor of 2 · 64β. If these
comprised, say, at least half of the total LP value, then the weight incurred by the recursive calls
would be prohibitively large and the argument would fail. �

5 Algorithm for Vertebrate Pairs

Now we are dealing with a vertebrate pair (I,B). Results in [Sve15] imply that it is enough to solve
an easier problem called Local-Connectivity ATSP.

Local-Connectivity ATSP. The Local-Connectivity ATSP problem consists in finding “local”
subtours that are only required to cross the sets of a given partition V = V1 ∪ ... ∪ Vk of vertices
instead of connecting the entire graph (as in standard ATSP). A “good” solution to Local-Connectivity
ATSP has a local requirement: each subtour should not be much more expensive than the lower
bound on the cost (weight) of visiting the vertices in the subtour.

That lower bound on the cost of visiting vertices is defined in terms of a lower bound function
lb : V → R+. Intuitively, lb(v) encodes how much we are willing to pay to visit vertex v. The lb
function needs to be fixed by our algorithm before it is allowed to access the given partition.

More formally, the input to Local-Connectivity ATSP is an instance I together with a partition
V = V1 ∪ ... ∪ Vk of vertices. (In the case of vertebrate pairs, we are also given a backbone B to
help us.) A solution F ⊆ E must be Eulerian and cross every set Vi in the partition. For some
parameter α, we say that a solution F ⊆ E is α-light with respect to lb if for every connected component
G̃ = (V(G̃),E(G̃)) of F we have w(E(G̃)) 6 α lb(V(G̃)). We also say that an algorithm is α-light if for
any input partition it returns an α-light solution.
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Theorem 5.1 ([Sve15]). Suppose there is a polynomial-time algorithm for Local-Connectivity ATSP that is
α-light with respect to a lower bound function lb on I. Then a tour of weight at most 10α lb(V) can be found
in polynomial time.

To simplify the notation, let yu = y{u} if {u} ∈ L and let yu = 0 otherwise. We define the lower
bound function

lb(v) =

(value(I) + w(B)) / |V(B)| if v ∈ V(B),
2yv otherwise.

Clearly lb(V) 6 2 value(I) + w(B) 6 2(value(I) + w(B)).3 We exhibit an O(1)-light algorithm
for Local-Connectivity ATSP with respect to lb. Theorem 4.2 via Theorem 5.1 then provides a
constant-factor approximation algorithm for arbitrary irreducible instances, which in turn implies a
constant-factor approximation algorithm for ATSP by Theorems 3.4 and 2.3.

We showcase our main ideas using the special case when the input is the singleton partition:
V = {v1} ∪ {v2} ∪ . . . ∪ {vn}. Then, the connectivity requirement is to find an Eulerian edge set F
which is adjacent to all vertices – in other words, a cycle cover. For more general partitions, we
need to modify the construction by adding auxiliary vertices for each partition class. This can be
achieved by extending the approach in [Sve15, Section 4].

For the singleton partition case, we first present the further special case when L also contains
only singletons. This setting corresponds to a node-weighted instance. Then we extend the
argument to a general family L.

Node-weighted instances. Suppose that L contains only singletons. Then we have a node-
weighted weight function: w(u, v) = yu + yv for each (u, v) ∈ E. Further note that B = ∅ is a valid
backbone. In the sequel we assume that B = ∅, and thus lb(u) = 2yu for any u ∈ V. We now find a
1-light edge set F for the singleton partition.

Our approach for this case is similar to the classical algorithm in [FGM82]. Let us solve the
minimum-weight integer circulation problem in G with the following constraints: minimize w>z
over z ∈ RE

+, subject to z(δ−(v)) = z(δ+(v)) = 1 for every v ∈ V with yv > 0, and z(δ−(v)) = z(δ+(v)) > 1
whenever yv = 0. We observe that the Held-Karp solution x provided in the instance I is a feasible
solution. Using the integrality of the circulation polytope, there must be an integer solution z ∈ ZE

+

with w>z 6 w>x = value(I).
Now, the edge set F defined by including z(e) copies of every edge e ∈ E satisfies the connectivity

requirement. To prove 1-lightness, consider a connected component G̃ of F. We have

w(E(G̃)) =
∑

(u,v)∈E(G̃)

yu + yv = 2
∑

v∈V(G̃)

yv = lb(V(G̃)). (5.1)

The second equality holds because every u ∈ V with yu > 0 has exactly one incoming and one
outgoing edge.

General laminar families. Let us now consider the case when L can be arbitrary, but the input
for Local-Connectivity ATSP is still the singleton partition. We will find a 4-light edge set F with
respect to lb, in the form F = B ∪ F′, where B is the backbone (now non-empty) and F′ is another
Eulerian edge set.

3In the full version we normalize the lb function so that lb(V) 6 value(I). This is done to further emphasize the
dependency between the lightness guarantee and the final approximation guarantee. Here we have preferred to keep the
notation as simple as possible.
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Figure 5: An example of the construction of Gsp. The vertices of the backbone are depicted in black. The
nonsingleton sets in L are S1,S2, and S3. Straight, swirly, and dashed edges correspond to various
edge types in the construction.

We will obtain F′ by solving a minimum-weight circulation problem on a modification of the
graph, called a split graph Gsp. The vertex set of Gsp contains two copies of every original vertex:
V(Gsp) = {v0, v1 : v ∈ V}. We can naturally map the split graph to G by mapping v0 and v1 to v. The
edge set is defined so that it satisfies the following property; the construction details are given in
the full version. See Figure 5 for an illustration.

Fact 5.2. Consider a cycle Csp in Gsp. If the image of Csp in G (obtained by contracting every pair v0, v1 of
vertices into a single vertex v) crosses a non-singleton tight set in L, then it visits a vertex of the backbone.

Note that the image of Csp in Gsp will be a subtour. We define the weight function wsp in the
split graph so that wsp(up, vq) = wsp(u, v) for p, q ∈ {0, 1}, whenever this edge is added. Further, we

show that x can also be mapped to an Eulerian vector xsp ∈ R
E(Gsp)
+ .

Lemma 5.3. There is a polynomial-time algorithm that finds an Eulerian vector xsp ∈ R
E(Gsp)
+ such that the

image of xsp in G is x, and w>spxsp = w>x.

The lemma can be proved by solving an auxiliary LP, which “channels” flow entering relevant
sets in L to vertices in V(B) inside these sets. This construction is inspired by [STV16].

Given the split graph Gsp and xsp, we can solve a similar minimum-weight circulation problem
as in the node-weighted case. For every v ∈ V either v0 or v1 will have at least 1/2 units of in-flow in
xsp; we set a lower bound 1 on this vertex. Further, if yv > 0, then we also set an upper bound of 2.

We observe that 2xsp is a feasible solution to this problem. We find an integer solution z ∈ ZE(Gsp)
+

with w>spz 6 2w>spxsp = 2w>x = 2 value(I).
We obtain the edge set F′ by mapping z from the split graph to the original graph G, and

adding z(e) copies of e ∈ E. Hence w(F′) 6 2 value(I). Also note that for every yv > 0 we have
|δ−(v) ∩ F′| 6 4.

It remains to show that F = B∪F′ is a 4-light edge set with respect to lb. Consider any connected
component G̃ of F. We distinguish two cases.

First, assume G̃ is the component containing the backbone B. We can upper-bound the weight of
the component by the total weight of F: w(E(G̃)) 6 w(F) = w(B) + w(F′) 6 w(B) + 2 value(I). On the
other hand, we have lb(V(G̃)) > lb(V(B)) = w(B) + value(I). This shows that w(E(G̃)) 6 2 lb(V(G̃)).

Assume now that G̃ is any other component. Thus E(G̃) ⊆ F′ and V(G̃) ∩ V(B) = ∅. Therefore
lb(V(G̃)) = 2

∑
v∈V(G̃)) yv. We will now take advantage of Fact 5.2, the key property of the split graph.

It implies that G̃ cannot contain any edge that crosses a non-singleton set in L. Indeed, if there
were any such edge, then V(G̃) would intersect V(B). Consequently, w(u, v) = yu + yv for every
(u, v) ∈ E. Now we can use a similar estimation as in (5.1) to obtain w(E(G̃)) 6 4 lb(V(G̃)); we use
that |δ−(v) ∩ F′| 6 4 for every yv > 0.
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