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Abstract. Assuming the Unique Games Conjecture, we show strong
inapproximability results for two natural vertex deletion problems on
directed graphs: for any integer k ≥ 2 and arbitrary small ε > 0, the
Feedback Vertex Set problem and the DAG Vertex Deletion problem are
inapproximable within a factor k−ε even on graphs where the vertices can
be almost partitioned into k solutions. This gives a more structured and
therefore stronger UGC-based hardness result for the Feedback Vertex
Set problem that is also simpler (albeit using the “It Ain’t Over Till It’s
Over” theorem) than the previous hardness result.

In comparison to the classical Feedback Vertex Set problem, the DAG
Vertex Deletion problem has received little attention and, although we
think it is a natural and interesting problem, the main motivation for
our inapproximability result stems from its relationship with the classi-
cal Discrete Time-Cost Tradeoff Problem. More specifically, our results
imply that the deadline version is NP-hard to approximate within any
constant assuming the Unique Games Conjecture. This explains the dif-
ficulty in obtaining good approximation algorithms for that problem and
further motivates previous alternative approaches such as bicriteria ap-
proximations.

1 Introduction

Many interesting problems can be formulated as that of finding a large induced
subgraph satisfying a desired property of a given (directed) graph. One of the
most well studied such problems is the Feedback Vertex Set (FVS) problem
where the property is acyclicity, i.e., given a directed graph G = (V,E) we
wish to delete the minimum number of vertices so that the resulting graph is
acyclic. Another example is the DAG Vertex Deletion (DVD) problem, where
we are given an integer k and a directed acyclic graph and we wish to delete
the minimum number of vertices so that the resulting graph has no path of
length1 k.
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1 For notational convenience, we shall measure the length of a path in terms of the
number of vertices it contains instead of the number of edges.
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The FVS problem and the related Feedback Arc Set problem was shown to be
NP-complete already in Karp’s seminal paper [9] and there is a long history of
approximation algorithms for these problems. Leighton and Rao [13] first gave a
O(log2 |V |)-approximation algorithm. Seymour [16] improved the approximation
guarantee by showing that a certain linear program approximates the value
within a factor O(log |V | log log |V |). Seymour’s arguments were then generalized
by Even et al. [5] to obtain the best known approximation algorithms achieving
a factor O(log |V | log log |V |) even in weighted graphs.

Motivated by certain VLSI design and communication problems, Paik et
al. [15] considered the DVD problem and showed it to beNP-complete on general
graphs and polynomial time solvable on series-parallel graphs. One can also see
that DVD for a fixed k is a special case of the Vertex Cover problem on k-uniform
hypergraphs and has a fairly straightforward k-approximation algorithm.

In comparison to FVS, the DVD problem has received little attention and,
although we think it is a natural problem, our main motivation for studying
its approximability comes from its relationship (that we prove in Section 4)
with the classical deadline version of the project scheduling problem known as
the Discrete Time-Cost Tradeoff problem. Informally (see Section 4 for a formal
definition of the Deadline problem), this is the problem where we are given a
deadline and a project consisting of tasks related by precedence constraints, and
the time it takes to execute each task depends, by a given cost function, on
how much we pay for it. The objective is to minimize the cost of executing all
the tasks in compliance with the precedence constraints so that they all finish
within the given deadline. Due to its obvious practical relevance, the problem
has been studied in various contexts over the last 50 years (see the paper [11]
by Kelly and Walker for an early reference). Fulkerson [6] and Kelley [10] ob-
tained polynomial time algorithms if all cost functions are linear. In contrast,
the problem becomes NP-hard for arbitrary cost functions [3] and there is even
no known constant factor approximation algorithm in the general case. However,
better (approximation) algorithms have been obtained for special cases. For ex-
ample, Grigoriev and Woeginger [7] gave polynomial time algorithms for special
classes of precedence constraints and one of several algorithms by Skutella [17]
is a bicriteria approximation that, for any µ ∈ (0, 1), approximates the Deadline
problem within a factor 1/(1− µ) if the deadline is allowed to be violated by a
factor 1/µ.

In summary, there are no known constant approximation algorithms for FVS,
DVD, and the Deadline problem although few strong inapproximability results
are known. The best known NP-hardness of approximation results follow from
the fact that they are all as hard to approximate as Vertex Cover which is NP-
hard to approximate within a factor 1.3606 [4]. It is indeed easy to see that
Vertex Cover is a special case of FVS and DVD, and Grigoriev and Woegin-
ger [7] gave an approximation-preserving reduction from Vertex Cover to the
Deadline problem. If we assume the Unique Games Conjecture (UGC) [12], our
understanding of the approximability of FVS becomes significantly better: the
hardness of approximation result for Maximum Acyclic Subgraph by Guruswami
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et al. [8] implies that it is NP-hard to approximate FVS within any constant
factor assuming the UGC. However, the results in [8] use very sophisticated tech-
niques that are not known to imply a similar hardness for DVD and the Deadline
problem.

Even though the starting motivation of this work was to better understand
the approximability of the Deadline problem (and DVD), the techniques that
we develop also lead to a stronger UGC-based hardness result for FVS: similar
to the recent results for Vertex Cover on k-uniform hypergraphs by Bansal and
Khot [1,2], we show that, for any integer k ≥ 2 and arbitrarily small ε > 0, there
is no k − ε-approximation algorithm for FVS even on graphs where the vertices
can be almost partitioned into k feedback vertex sets. Our reduction is also
much simpler than the one in [8] (albeit using the “It Ain’t Over Till It’s Over”
theorem) but is tailored for FVS and does not yield any inapproximability result
for the Maximum Acyclic Subgraph problem. More importantly, our techniques
also lead to an analogous result for the DVD problem (and thereby the Deadline
problem). Formally, our results for the considered vertex deletion problems can
be stated as follows.

Theorem 1. Assuming the Unique Games Conjecture, for any integer k ≥ 2
and arbitrary constant ε > 0, the following problems are NP-hard:

FVS: Given a graph G(V,E), distinguish between the following cases:
– (Completeness): there exist disjoint subsets V1, . . . , Vk ⊂ V satisfying

|Vi| ≥ 1−ε
k |V | and such that a subgraph induced by all but one of these

subsets is acyclic.

– (Soundness): every feedback vertex set has size at least (1− ε)|V |.

DVD: Given a DAG G(V,E), distinguish between the following cases:
– (Completeness): there exist disjoint subsets V1, . . . , Vk ⊂ V satisfying

|Vi| ≥ 1−ε
k |V | and such that a subgraph induced by all but one of these

subsets has no path of length k.

– (Soundness): every induced subgraph of ε|V | vertices has a path of length
|V |1−ε.

Note that in the completeness cases, letting V ′ = V \ (V1 ∪ · · · ∪ Vk), the sets
V ′∪Vi for i = 1, . . . , k are almost disjoint solutions of size at most ( 1k+ε)|V | each.
In contrast, any solution basically needs to delete all vertices in the soundness
case (even to avoid paths of length |V |1−ε for DVD).

When proving UGC-based inapproximability results, the main task is usu-
ally to design “gadgets” of the considered problems that simulate a so-called
dictatorship test. Once we have such “dictatorship gadgets”, the process of ob-
taining UGC-based hardness results often follows from (by now) fairly standard
arguments. In particular, the main ideas needed for our reductions leading to
Theorem 1 are already present in the design of the gadgets. We have therefore
chosen to present those gadget constructions with less cumbersome notation in
the conference version (Section 3) and the reductions from Unique Games can
be found in the full version of the paper.
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As alluded to above, our main interest in DVD stems from its relationship with
the Deadline problem. More specifically, in Section 4, we give an approximation-
preserving reduction from DVD to the Deadline problem that combined with
Theorem 1 yields:

Theorem 2. Conditioned on the Unique Games Conjecture, for every C > 0,
it is NP-hard to find a C-approximation to the Deadline problem.

This explains the difficulty in obtaining good approximation algorithms for the
Deadline problem and also further motivates alternative approaches such as the
bicriteria approach by Skutella [17] that approximates the Deadline problem
within a constant if the deadline is allowed to be violated by a constant factor.

2 Preliminaries

2.1 Low Degree Influence and “It Ain’t over Till It’s over” Theorem

Let [k] = {0, 1, . . . , k − 1}. When analyzing our hardness reductions, we shall
use known properties regarding the behavior of functions of the form f : [k]R &→
{0, 1} depending on whether they have influential co-ordinates. Similar to [14,
Section 3], we define the influence of the i-th co-ordinate by

Infli(f) = Ex[Var(f)|x1, . . . , xi−1, xi+1, . . . , xR].

We note that if f : {−1, 1}R &→ {−1, 1} then this definition coincides with the
intuitive expression Prx[f(x1, . . . , xi, . . . , xR) (= f(x1, . . . ,−xi, . . . , xR)].

It is well known that if we let f =
∑

Φ f̂(φ)Xφ be the multi-linear representa-
tion of f (where, analogous of the standard Fourier representation, the charac-
ters (Xφ)φ∈[k]R define an orthonormal basis of the vector space of all functions
[k]n &→ R) then the influence can also be expressed as

Infli(f) =
∑

φ:φi %=0

f̂2(φ),

which motivates the following definition of the degree d-influence of the i-th
co-ordinate:

Infldi (f) =
∑

φ:φi %=0,|φ|≤d

f̂2(φ).

As we shall not work directly with these definitions or with the multi-linear
representation, we refer the reader to [14] for the precise definitions and cut the
discussion short by mentioning the property of low degree influence that shall
be crucial to us (which follows from that

∑
φ f̂

2(φ) = Ex[f(x)2] ≤ 1).

Observation 3. For a boolean function f : {0, 1}R &→ {0, 1}, the sum of all
degree d-influences is at most d.
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We shall now introduce a simplified version of the “It Ain’t Over Till It’s Over”
theorem that is sufficient for the applications in this paper. The first proof was
given by Mossel et al. [14] and a more combinatorial proof of a simplified version
(very similar to the one used here) was given by Bansal and Khot [1] who used
it to prove tight inapproximability results for Vertex Cover and a classical single
machine scheduling problem. In fact many of our ideas are inspired from [1].
For x ∈ [k]R and a subsequence Sε = (i1, . . . , iεR) of εR not necessarily distinct
indexes in [R], let

Cx,Sε = {z ∈ [k]R : zj = xj ∀j (∈ Sε}

denote the sub-cube defined by fixing the co-ordinates not in Sε according to
x. Let also f(Cx,Sε) ≡ 0 denote the expression that f is identical to 0 on the
sub-cube Cx,Sε .

Theorem 4. For every ε, δ > 0 and integer k, there exists η > 0 and integer d
such that any f : [k]R &→ {0, 1} that satisfies

E[f ] ≥ δ and ∀i ∈ [R], Infldi (f) ≤ η,

has
Pr
x,Sε

[f(Cx,Sε) ≡ 0] ≤ δ.

Here and throughout the paper, the probability over x, Sε is such that x and
Sε are taken independently and uniformly at random. When ε is clear from
the context we often also abbreviate Sε by S. Note that the theorem says that
a reasonably balanced function with no low degree influential co-ordinates has
very low probability to be identical to 0 over the random choice of sub-cubes. In
contrast, it is easy to see that a dictatorship function (on the boolean domain)
f(x) = xs, for some s, has Prx,Sε [f(Cx,Sε) ≡ 0] = Prx,Sε [f(Cx,Sε) ≡ 1] ≥ 1/2−ε.
It is this drastic difference that we will exploit in our hardness reductions.

2.2 Unique Games Conjecture

An instance of Unique Games L = (G(V,W,E), [R], {πv,w}(v,w)) consists of a
regular bipartite graph G(V,W,E) and a set [R] of labels. For each edge (v, w) ∈
E there is a constraint specified by a permutation πv,w : [R] &→ [R]. The goal is to
find a labeling ρ : (V ∪W ) &→ [R] so as to maximize val(ρ) := Pre∈E [ρ satisfies e],
where a labeling ρ is said to satisfy an edge e = (v, w) if ρ(v) = πv,w(ρ(w)). For
a Unique Games instance L, we let OPT (L) = maxρ:V ∪W (→[R] val(ρ). The now
famous Unique Games Conjecture that has been extensively used to prove strong
hardness of approximation results can be stated as follows.

Conjecture 1 ([12]). For any constants ζ, γ > 0, there is a sufficiently large
integer R = R(ζ, γ) such that, for Unique Games instances L with label set [R]
it is NP-hard to distinguish between:

– (Completeness): OPT (L) ≥ 1− ζ.
– (Soundness): OPT (L) ≤ γ.
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3 Dictatorship Gadgets for Vertex Deletion Problems

We give fairly simple gadgets of the considered vertex deletion problems that
informally corresponds to a dictatorship test in the following sense: (Complete-
ness:) any dictatorship function f : [k]R &→ [k] (defined by f(x) = xs for some
s ∈ [R]) corresponds to a good solution whereas (Soundness:) any non-trivial
solution corresponds to a function f : [k]R &→ {0, 1} with a high influence co-
ordinate. By fairly standard arguments, these gadgets are then used to obtain
analogous hardness results assuming the Unique Games Conjecture (see the full
version of the paper for details).

Throughout this section, we fix k to be an integer, ε, δ > 0 to be arbitrarily
small constants, and let η and d be as in Theorem 4 (depending on k, ε and δ).

3.1 Feedback Vertex Set

We shall here describe a graph G = (V,E) that naturally corresponds to a
dictatorship test in the following sense:

– (Completeness:) A dictatorship function partitions the vertex set into subsets
V ′, V0, . . . , Vk−1 satisfying Vj ≥ 1−ε

k |V |, |V ′| ≤ ε|V |, and for j ∈ [k] the graph
obtained by deleting V ′ ∪ Vj is acyclic.

– (Soundness:) Any feedback vertex set that deletes less than (1 − 2δ)|V |
vertices corresponds to a function f : [k]R &→ {0, 1} with a co-ordinate i so
that Infldi (f) > η.

Dictatorship Gadget. To make the analysis more intuitive, it will be conve-
nient to first present a gadget that consists of two types of vertices that we refer
to as bit-vertices and test-vertices and all arcs are between bit- and test-vertices:

– There is a bit-vertex bx of weight ∞ for every x ∈ [k]R.

– There is a test-vertex tx,S of weight 1 for every x ∈ [k]R and every sequence
S = (i1, . . . , iεR) ∈ [R]εR of εR not necessarily distinct indices.

– The arc incident to a test-vertex tx,S are the following. There is an arc
(bz, tx,S) if z ∈ Cx,S and an arc (tx,S , bz) if z ∈ C⊕

x,S , where

C⊕
x,S = {z ⊕ 1 : z ∈ Cx,S}

(here ⊕ denotes addition mod k).

As the bit-vertices have weight ∞, they will never be deleted in an optimal
solution. We can therefore obtain an unweighted graph G of same optimal value
by omitting the bit-vertices and having an arc (tx,S , tx′,S′) between two test
vertices if there exists a bit-vertex bz so that (tx,S, bz) and (bz, tx′,S′). The vertex
set of G will therefore correspond to the set T of test-vertices. The analysis of
G therefore follows from proving that (completeness:) any dictatorship function
partitions the test-vertices as required and (soundness:) that any solution that
deletes less than a fraction 1 − 2δ of the test-vertices corresponds to a function
with a co-ordinate of high influence.
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Completeness. We show that a dictatorship function f : [k]R &→ [k] of index
s naturally partitions the test-vertices into subsets T ′, T0, . . . , Tk−1 satisfying
Tj ≥ 1−ε

k |T |, |T ′| ≤ ε|T |, and such that the sets T ′ ∪ Tj for j ∈ [k] are almost
disjoint feedback vertex sets of size at most ( 1k + ε)|T | each.

As f(x) = xs, it partitions the bit-vertices in k equal sized sets

Bj = {bx : f(x) = j} for j ∈ [k].

We say that a test-vertex tx,S is good if s (∈ S and partition the good test-vertices
into k equal sized sets

Tj = {tx,S : s (∈ S and f(x) = j} for j ∈ [k].

The sets are of equal size since they are partitioned according to x and whether
a test-vertex is good only depends on S. Furthermore, as at least a fraction 1− ε
of the test-vertices are good we have that |Tj | ≥ 1−ε

k |T | for j ∈ [k] and therefore
the remaining test-vertices in T ′ are at most ε|T | many.

It remains to show that Tj ∪ T ′ defines a feedback vertex set for any j ∈ [k].
The key observation is that Tj only have incoming edges from bit-vertices in
Bj and outgoing edges to bit-vertices in Bj⊕1. Indeed, consider a test-vertex
tx,S ∈ Tj and an arc (bz, tx,S). By definition we have that z ∈ Cx,S and as S is
good we have that f(z) = f(x) = j, which implies that z ∈ Bj . The exact same
argument implies that tx,S only has outgoing edges to Bj⊕1.

The graph obtained by deleting all bad test-vertices and one of the sets
T0, T1, . . . , TQ−1 is therefore acyclic as required.

Soundness. Let A be the last 1/2 fraction of the bit-vertices according to a
topological sort of the graph. Let fA be the indicator function of A. Note that a
test-vertex tx,S has incoming arcs from all bit-vertices in Cx,S and outgoing arcs
to all bit-vertices in C⊕

x,S . Therefore, if a test-vertex tx,S is not deleted then we
must have that either fA is identical to 0 on Cx,S (if tx,S is placed before the
last bit-vertex for which fA evaluates to 0) or identical to 1 on C⊕

x,S (if tx,S is
placed after the last bit-vertex for which fA evaluates to 0) depending on where
tx,S is placed according to the topological sort.

As E[fA] = 1/2, we have by Theorem 4 that if Infldi (fA) ≤ η for all i ∈ [R]
then

Pr
x,S

[f(Cx,S) ≡ 0] ≤ δ

and

Pr
x,S

[f(C⊕
x,S) ≡ 1] = Pr

x,S
[f(Cx,S) ≡ 1] = Pr

x,S
[(1− f)(Cx,S) ≡ 0] ≤ δ.

Therefore, if the solution does not correspond to a function with a co-ordinate
of high low-degree influence it must have deleted at least a fraction 1− 2δ of the
test-vertices.
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3.2 Dag Vertex Deletion Problem

We shall describe a directed acyclic graph (DAG) G = (V,E) that naturally
corresponds to dictatorship test in the following sense:

– (Completeness:) A dictatorship function partitions the vertex set into subsets
V ′, V0, . . . , Vk−1 satisfying Vj ≥ 1−ε

k |V |, |V ′| ≤ ε|V |, and such that for j ∈ [k]
the graph obtained by deleting V ′ ∪ Vj has no path of length k.

– (Soundness:) Any graph obtained by deleting less than (1 − 6δ)|V | vertices
either has a path of length |V |1−δ or corresponds to a function f : [k]R &→
{0, 1} with a co-ordinate i such that Infldi (f) > η.

Dictatorship Gadget. As in Section 3.1, it will be convenient to first present
a gadget that consists of two types of vertices that we refer to as bit-vertices and
test-vertices, and all edges will be between bit- and test-vertices:

– The bit-vertices are partitioned into L + 1 bit-layers (L is selected below).
Each bit-layer ) = 0, . . . , L contains a bit-vertex b&x of weight ∞ for every
x ∈ [k]R.

– Similarly, the test-vertices are partitioned into L test-layers. Each test-layer
) = 0, . . . , L − 1 has a test-vertex t&x,S of weight 1 for every x ∈ [k]R and

every sequence of indices S = (i1, . . . , iεR) ∈ [R]εR.

– The arcs are the following: there is an arc (b&z, t
&′

x,S) if ) ≤ )′ and z ∈ Cx,S ,

and there is an arc (t&
′

x,S , b
&
z) if ) > )′ and z ∈ C⊕

x,S .

– Finally, L is selected so as δL ≥ |T |1−δ, where T is the set of test-vertices.

Note that, as there are only arcs from a bit-layer ) to a test-layer )′ if )′ ≥ )
and only arcs from a test-layer )′ to a bit-layer ) if ) > )′, the constructed graph
is acyclic. Similar to the gadget for FVS, the bit-vertices can be omitted to
obtain an unweighted graph G (with the set T of test-vertices as vertices) with
the same optimal value by having an arc between two test-vertices if there was
a path between them through one bit-vertex. Note that a path in G of length
k is a path in the gadget that consists of k test-vertices. When arguing about
the gadget, we will therefore say that a path has length k if it consists of k
test-vertices.

Similarly to Section 3.1, the analysis of G follows from proving that (com-
pleteness:) any dictatorship function partitions the test-vertices as required and
(soundness:) that any solution that deletes less than a fraction 1 − 6δ of the
test-vertices either has a path of length |T |1−δ or corresponds to a function with
a co-ordinate of high influence.

Completeness. We show that a dictatorship function f : [k]R &→ [k] of index
s naturally partitions the test-vertices into subsets T ′, T0, . . . , Tk−1 satisfying
Tj ≥ 1−ε

k |T |, |T ′| ≤ ε|T |, and such that for j ∈ [k] the graph obtained by
deleting T ′ ∪ Tj has no path of length k.
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This can be seen by the same arguments as in Section 3.1. Indeed if we “col-
lapse” the different layers by identifying the different copies of bit- and test-
vertices then the gadget constructed here is identical to the gagdet in that
section. We can therefore (by the arguments of Section 3.1), partition the bit-
vertices into k equal sized sets B0, B1, . . . , Bk−1 and all but an ε fraction of the
test-vertices into k equal sized sets T0, T1, . . . , Tk−1 so that any test-vertex in Tj

has only incoming arcs from bit-vertices in Bj and outgoing arcs to bit-vertices
in Bj⊕1.

Any j ∈ [k] therefore corresponds to a solution by removing an ε fraction of
the test-vertices (i.e., the set T ′) and those test-vertices in Tj .

Soundness. Before proceeding to the analysis it will be convenient to consider
a different but equivalent formulation of the problem.

First, note that in any solution to DVD, i.e., a subgraph so that each path
contains less than k test-vertices, we can find a coloring χ (using for example
depth-first search) that assigns a color in {1, 2, . . . , k} to the bit-vertices with the
property that, for each remaining test-vertex, the maximum color assigned to its
predecessors is strictly less than the minimum color assigned to its successors.
Similarly, any such coloring χ can be turned into a solution to DVD by deleting
those test-vertices, for which not all predecessors are assigned lower colors than
all its successors. Furthermore, from the construction of the arcs, we can assume
w.l.o.g that the coloring satisfies χ(b&x) ≤ χ(b&

′

x ) if ) ≤ )′.
Fromthe above discussion, an equivalent formulationofDVDonthe constructed

instances is as follows: find a coloring χ that assigns a color in {1, 2, . . . , k} to each
bit-vertex satisfying χ(b&x) ≤ χ(b&

′

x ) if ) ≤ )′ so as to minimize the number of un-
satisfied test-vertices where a test-vertex t&x,S is said to be satisfied if

max
z∈Cx,S

χ(b&z) < min
z∈C⊕

x,S

χ(b&+1
z ),

that is all its predecessors are assigned lower colors than its successors.
It will also be convenient to consider the following lower bound on the colors

assigned to most bit-vertices in each layer: define the color χ()) of a bit-layer
) = 0, 1, . . . , L as the maximum color that satisfies Prx[χ(b&x) ≥ χ())] ≥ 1− δ.

Now, with each test-layer ) = 0, 1, . . . , L−1 we associate the indicator function
f & : [k]R &→ {0, 1} defined as follows

f &(x) =

{
0 if χ(b&+1

x ) > χ()),

1 otherwise.

The key observation for the soundness analysis is the following.

Claim. For ) = 0, . . . , L − 1, assuming that Infldi (f
&) ≤ η for all i ∈ [R]: if a

fraction 3δ of the test-vertices of test-layer ) are satisfied, then χ()) < χ()+ 1).

Proof. As at least a fraction 3δ of the test-vertices of test-layer ) are satisfied,

Pr
x,S

[
max

z∈Cx,S

χ(b&z) < min
z∈C⊕

x,S

χ(b&+1
z )

]
≥ 3δ.
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By the definition of χ()) we have Prx[χ(b&x) ≥ χ())] ≥ 1− δ and therefore

Pr
x,S

[
χ()) < min

z∈C⊕
x,S

χ(b&+1
z )

]
= Pr

x,S

[
f &(Cx,S) ≡ 0

]
≥ 2δ.

As Infldi (f
&) ≤ η for all i ∈ [R], Theorem 4 implies that E[f &] < δ and hence

χ()+ 1) > χ()).

If a coloring satisfies more than a fraction 6δ of the test-vertices then at least
a 3δ fraction of the test-layers are such that at least a fraction 3δ of the test-
vertices of that layer are satisfied, which in turn by the preceding claim implies
that either one of them corresponds to a function with a co-ordinate of high
influence or 3δL many colors are needed (or equivalently the graph contains a
path consisting of at least 3δL− 1 ≥ δL ≥ |T |1−δ test-vertices).

4 Discrete Time-Cost Tradeoff Problem

In the discrete time-cost tradeoff problem we are given a set J of activities
together with a partial order (J,<). Any execution of the activities must comply
with the partial order, that is, if j < k activity k may not be started until j is
completed. The duration of an activity depends on how much resources that are
spent on it. This tradeoff between time and cost for each job is described by a
nonnegative cost function cj : R+ &→ R+ ∪ {∞}, where cj(xj) denotes the cost
to run j with duration xj . The project duration t(x) of the realization x is the
makespan (length) of the schedule which starts each activity at the earliest point
in time obeying the precedence constraints and durations xj . Given a deadline
T > 0, the Deadline problem is that of finding the cheapest realization x that
obeys the deadline, i.e., t(x) ≤ T .

Theorem 5. The Deadline problem is as hard to approximate as DVD.

Proof. We reduce (in polynomial time) the problem of approximating DVD to
that of approximating the Deadline problem. Given an instance of DVD, i.e., an
integer k and a DAG G(V,A) with the vertices ordered 0, 1, . . . , n− 1 according
to a topological sort, consider the instance of the Deadline problem defined as
follows:

– The deadline T is set to n.

– The set J of activities contains three activities li,mi, ri for each vertex i ∈
V = {0, 1 . . . , n − 1} with precedence constraints li < ci < ri and cost
functions

cli(x) =

{
0, if x ≥ i

∞, otherwise
cmi(x) =

{
0, if x ≥ 9/10

1, otherwise

cri(x) =

{
0, if x > n− 1− i

∞, otherwise .
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0 1 2 3

G

0 1 2 3 4

Deadline Problem

Fig. 1. For each vertex i ∈ V the activity mi is depicted in light gray (activities li and
ri are omitted). The activities corresponding to arcs are depicted in white. Finally, the
depicted solution pays a cost of 1 for running activity m2 in time 0.

In addition, there is an activity a(i,j) for each arc (i, j) ∈ A with precedence
constraints mi < a(i,j) < mj and cost function

ca(i,j)
(x) =

{
0, if x ≥ j − i− 9

10 + 1
10(k−1)

∞, otherwise.

See Figure 1 for an example of the Deadline problem corresponding to a DVD
instance G with k = 3.

Note that the cost functions of li,mi, and ri enforces that activity mi has to
be executed in the interval [i, i+ 1) and that it will require time 9/10 unless we
pay a cost of 1 which allows us to run the activity in 0 time. Furthermore, as an
activity a(i,j) always has duration (at least) j− i− 9

10 +
1

10(k−1) , the start time sj
of activitymj must be such that sj−j ≥ si−i+ 1

10(k−1) , where si is the start time

of activity i. Using the fact that an activity mi must run in the interval [i, i+1)
in order to obey the deadline, it follows that we have to pay a cost of 1 for at
least one activity corresponding to each path of length k. By similar arguments,
it also follows that this is also sufficient for having a realization respecting the
deadline. Therefore, any solution to the Deadline problem naturally corresponds
to a solution to DVD (and vice versa) by deleting those vertices corresponding
to activities with a cost of 1.
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